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Abstract

In this paper, we propose a variational autoencoder based framework that gen-
erates discrete data, including both count-valued and binary data, via negative-
binomial distribution. We also examine the model’s ability to capture self- and
cross-excitations in discrete data, which are critical for modelling overdispersion.
We conduct extensive experiments on text analysis and collaborative filtering.
Compared with several state-of-the-art baselines, the proposed models achieve
significantly better performance on the above problems. By achieving superior
modelling performance with a simple yet effect Bayesian extension to VAEs, we
demonstrate that it is feasible to adapt the knowledge and experience of Bayesian
probabilistic matrix factorisation into newly-developed deep generative models.

1 Introduction

In this paper, we are interested in handling high-dimensional, sparse, discrete matrices, where
Probabilistic Matrix Factorisation (PMF) [19] has been a key method of choice for such data.
For example, Latent Dirichlet Allocation (LDA) [2], Poisson Factor Analysis (PFA) [5, 30], and
their deep extensions [3, 20, 10, 31, 26, 27] are representative models that generate data samples
using the multinomial or Poisson distributions. The recent success of deep generative models
like Variational Autoencoders (VAEs) [13, 21] on modelling real-valued data such as images has
motivated machine learning practitioners to adapt VAEs to dealing with discrete data as done in recent
works [17, 18, 14, 15]. Instead of using the Gaussian distribution as the data distribution for real-
valued data, the multinomial distribution has been used for discrete data [17, 14, 15]. Following Liang
et al. [15], we refer to these VAE-based models as “MultiVAE” (Multi for multinomial). However,
existing VAE models such as MultiVAE can lead to inferior modelling performance on discrete data
due to: 1) insufficient capability of modelling overdispersion in count-valued data, and 2) model
misspecification in binary data. Specifically, overdispersion (i.e., the variance larger than the mean)
describes the phenomenon that the data variability is large, which is a key property for large-scale
count-valued data. For example, overdispersion in text data can behave as word burstiness [6, 16, 8, 4].
Shown in Zhou [29], the deep-seated cause of insufficient capability of modelling overdispersion
in existing PMF models with Poisson or multinomial is their limited ability of handling self- and
cross-excitation [29]. For example, in text data, self-excitation captures the effect that if a word occurs
in a document, it is likely to occur more times in the same document, while cross-excitation models
the effect that if a word such as “puppy” occurs, it will likely to excite the occurrences of related
words such as “dog.” On the other hand, model misspecification means that it may not be proper to
directly apply multinomial or Poisson to binary data, which is a common misspecification in many
existing models. This is because multinomial and Poisson may assign more than one count to one
position, ignoring the fact that the data are binary, which could result in inferior performance [28].
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Table 1: Comparison of the data distributions, model parameters, predictive rates, and posteriors. q(·) denotes
the encoder in VAE models.

Model Data distribution Model parameter Predictive rate Posterior

PFA yj ∼ Poisson(lj) lj = Φθj l′vj ∝
∑K
k φvkθkj Φ,θj ∼ p(Φ,θj | Y−ij)

LDA yj ∼ Multi(y·j , lj) lj = Φθj/θ·j l′vj ∝
∑K
k φvkθkj/θ·j Φ,θj ∼ p(Φ,θj | Y−ij)

MultiVAE yj ∼ Multi(y·j , lj) lj = softmax(fθ(zj)) l′vj ∝ softmax(fθ(zj))v zj ∼ q(zj | Y−ij)
NBFA yj ∼ NB(lj , pj) lj = Φθj l′vj ∝ (y−ivj +

∑K
k φvkθkj)pj Φ,θj , pj ∼ p(Φ,θj , pj | Y−ij)

NBVAE yj ∼ NB(rj ,pj)
rj = exp (fθr (zj))
pj = sigmoid (fθp(zj)

l′vj ∝ (y−ivj + exp (fθr (zj))v) · sigmoid (fθp(zj)v zj ∼ q(zj | Y−ij)

In this paper, we show the above two issues on modelling discrete data can be addressed in a
principled manner using the negative-binomial (NB) distribution as the data distribution in a VAE-
based framework, called Negative-Binomial Variational AutoEncoder (NBVAE for short). Extensive
experiments have been conducted on two important problems of discrete data analysis: text analysis
on bag-of-words data and collaborative filtering on binary data. Compared with several state-of-the-art
baselines, NBVAE achieves significantly better performance on the above problems.

2 Analytical study and model details

Here we start with the introduction of our proposed NBVAE model for count-valued data, and then
give a detailed analysis on why NBVAE is capable of better handling self- and cross-excitations,
and finally describe the variant of NBVAE for modelling binary data. Note that we focus on the
generative process of the models and omit the details of the inference process due to the space limit.

Negative-binomial variational autoencoder (NBVAE): Without loss of generality, we present our
model in the case of bag-of-word data for a text corpus, but the model can generally work with any
kind of count-valued matrices. Suppose the bag-of-word data are stored in a V by N count matrix
Y ∈ NV×N = [y1, · · · ,yN ], where N = {0, 1, 2, · · · }; N and V are the number of documents
and the size of the vocabulary, respectively. To generate the occurrences of the words for the jth

(j ∈ {1, · · ·N}) document, yj ∈ NV , we draw a K dimensional latent representation zj ∈ RK
from a standard multivariate normal prior. After that, yj is drawn from a (multivariate) negative-
binomial distribution with rj ∈ RV+ (R+ = {x : x ≥ 0}) and pj ∈ (0, 1)V as the parameters.
Moreover, rj and pj are obtained by transforming zj from two nonlinear functions, fθr (·) and
fθp(·), parameterised by θr and θp, respectively. The above process can be formulated as follows:

zj ∼ N (0, IK), rj = exp (fθr (zj)) ,pj = sigmoid(fθp(zj)),yj ∼ NB(rj ,pj). (1)

How NBVAE captures self- and cross-excitations: We now compare NBVAE and other PMF
models in terms of their ability in capturing self- and cross-excitations in count-valued data. We
first reformulate the models related to NBVAE into the above framework, including Poisson Factor
Analysis (PFA) [5, 30], Latent Dirichlet Allocation (LDA) [2], MultiVAE [17, 14, 15], and Negative-
Binomial Factor Analysis (NBFA) [29] into a unified presentation, shown in Table 1. In particular,
we can show a model’s capacity of capturing self- and cross-excitations by analysing its predictive
distribution. Note that y−ivj denotes the number of v’s occurrences in document j excluding the ith
word. If we compare PFA, LDA, MultiVAE V.S. NBFA, NBVAE, NBVAEdm, it can be seen that
the latter three models with NB as their data distributions explicitly capture self-excitation via the
term y−ivj in the predictive distributions. Moreover, NBFA applies a single-layer linear combination
of the latent representations, i.e.,

∑K
k φvkθkj , while NBVAE can be viewed as a deep extension

of NBFA, using a deep neural network to conduct multi-layer nonlinear combinations of the latent
representations, i.e, rvj = exp (fθr (zj))v and pvj = sigmoid(fθp(zj))v . Therefore, NBVAE enjoys
richer modelling capacity than NBFA on capturing cross-excitation.

NBVAE for binary data: Previous models like MultiVAE [14, 15] treat such binary data as counts,
which is a model misspecification that is likely to result in inferior performance. Here we develop a
simple yet effective method that links NBVAE and the Bernoulli distribution, as follows:

mj ∼ NB(rj ,pj), yj = 1(mj ≥ 1), (2)

where rj and pj have the same construction of the original NBVAE. Here we refer to this extension
of NBVAE as NBVAEb (b for binary).
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Table 2: Perplexity comparisons. “Layers” indicate the architecture of the hidden layers (for VAE models, it
is the hidden layer architecture of the encoder.). Best results for each dataset are in boldface. TLASGR and
SGNHT are the algorithms of SGMCMC, detailed in the papers of DLDA [7] and DPFA [9]. Some results of the
models with Gibbs sampling on RCV and Wiki are not reported because of the scalability issue.

Model Inference Layers 20NG RCV Wiki
DLDA TLASGR 128-64-32 757 815 786
DLDA Gibbs 128-64-32 752 802 -
DPFM SVI 128-64 818 961 791
DPFM MCMC 128-64 780 908 783

DPFA-SBN Gibbs 128-64-32 827 - -
DPFA-SBN SGNHT 128-64-32 846 1143 876
DPFA-RBM SGNHT 128-64-32 896 920 942

NBFA Gibbs 128 690 702 -
MultiVAE VAE 128-64 746 632 629
MultiVAE VAE 128 772 786 756
NBVAE VAE 128-64 688 579 464
NBVAE VAE 128 714 694 529
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Figure 1: Comparisons of NDCG@R (N@R) and RecallR (R@R). Standard errors in multiple runs are
generally less than 0.003 for all the models on all the datasets, which are too tiny to show in the figures.

3 Experiments and conclusion

Experiments on text analysis: We used three widely-used corpora [22, 9, 12, 7]: 20 News Group
(20NG), Reuters Corpus Volume (RCV), and Wikipedia (Wiki). Following Wallach et al. [24] we
report per-heldout-word perplexity of all the models, which is a widely-used metric for text analysis,
shown in Table 2. We compared ours with three categories of models for text analysis: 1) Bayesian
deep extensions of PFA and LDA: DLDA [7], DPFM [12], DPFA [10]; 2) NBFA [29]; is a recently-
proposed single-layer PMF with negative-binomial likelihood; 3) MultiVAE [15, 14], a recent VAE
model for discrete data with the multinomial distribution as the data distribution.

Experiments on collaborative filtering: We evaluate our models’ performance on four user-item
consumption datasets: MovieLens-10M (ML-10M), MovieLens-20M (ML-20M), Netflix Prize
(Netflix), and Million Song Dataset (MSD) [1]. Following Liang et al. [15], we report two evaluation
metrics: Recall@R and the truncated normalized discounted cumulative gain (NDCG@R), shown in
Figure 1. As datasets used here are binary, we compared NBVAEb, with the recent VAE models: 1)
MultiVAE. 2) MultiDAE [15], a denoising autoencoder (DAE) with multinomial likelihood, which
introduces dropout [23] at the input layer. MultiVAE and MultiDAE are the state-of-the-art VAE
models for collaborative filtering and they have been reported to outperform several recent advances
such as Wu et al. [25] and He et al. [11].

Conclusion: In this paper, we have proposed NBVAE and its variant to address the two issues of PMF
and VAE models on discrete data: insufficient capability of modelling overdispersion in count-valued
data and model misspecification in binary data. Our proposed models have achieved the state-of-the-
art performance on text analysis and collaborative filtering. Longer version of our paper and the code
is at https://arxiv.org/abs/1905.00616 and https://github.com/ethanhezhao/NBVAE,
respectively.
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