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Abstract

Despite the huge success of deep neural networks (NNs), finding good mechanisms
for quantifying their prediction uncertainty is still an open problem. Bayesian neural
networks are one of the most popular approaches to uncertainty quantification. On
the other hand, it was recently shown that ensembles of NNs, which belong to
the class of mixture models, can also be used to quantify prediction uncertainty.
In this paper, we enhance the flexibility of mixture models by replacing the fixed
mixing weights by an adaptive, input-dependent distribution represented by NNs,
and by considering uncountable many mixture components. The resulting class
of models can be seen as the continuous counterpart to mixture density networks
and is therefore referred to as compound density networks (CDNs). We employ
likelihood maximization to train CDNs, and empirically show that they yield better
uncertainty estimates on out-of-distribution data and are more robust to adversarial
examples than previous approaches.

1 Compound density networks

We generalize mixture density networks (MDNs) [1] from finite mixture distributions to mixtures of
an uncountable set of components. The resulting model is given by

p(y|x;ψ) =
∫
p(y; f(x;θ))p(θ; g(x;ψ)) dθ = Ep(θ;g(x;ψ))[ p(y; f(x;θ))] , (1)

and, in correspondence to MDNs, is referred to as compound density network (CDN). Here, f(x;θ)
corresponds to a neural network (NN) with parameters θ that outputs the parameters of the compound
distribution (e.g. the mean and variance of a Gaussian). The parameters θ are random parame-
ters themselves with a distribution that is parametrized by another function g(x;ψ) modelled by
NNs. As MDNs, CDNs can be trained by maximizing the log-likelihood of ψ given the dataset
D = (xn,yn)

N
n=1. For regularization, one can subtract a Kullback-Leibler divergence (DKL) term

encouraging the mixing distribution to stay close to some distribution p(θ), which leads to the
objective

LML(ψ) =

N∑
n=1

logEp(θ;g(xn;ψ))[ p(yn; f(xn;θ)]− λ
N∑

n=1

DKL[p(θ; g(xn;ψ))‖p(θ)] , (2)

where λ is a hyperparameter controlling the strength of the regularization. Interestingly, the ap-
proximation of this objective gets equivalent to the approximation of the variational information
bottleneck (VIB) [2] when it is based on a single sample of θ. When setting λ = 1 in addition it also
gets equivalent to the single sample based approximation of the ELBO employed for performing
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variational inference for an amortized BNN. However, using more samples for the approximations
demonstrates, that the objective in eq. (6) leads to better results than VIB or ELBO, as we show in
Appendix D.1. Note, that only a variational inference based training leads to a Bayesian model.

1.1 Probabilistic hypernetworks

A hypernetwork is an NN that generates the parameters of another NN [3]1. We follow this approach
for modeling a CDN, that is, we model the mixing distribution p(θ; g(x;ψ)) over network parameters
with NNs. Since now the hypernetworks map x to a distribution over parameters instead of a specific
value θ, we refer to them in analogy to Bayesian hypernetworks [4]2 as probabilistic hypernetworks.
In the following, we will describe this idea in more detail.

Let f = fL ◦ · · · ◦ f1 be a multi-layer perceptron (MLP) with L-layers, parametrized by a set of
layers’ weight matrices3 θ = {Wl}Ll=1, that computes the parameters of the CDN’s component
distribution p(y; f(x;θ)) in eq. (1). Let hl = fl(W

T
l hl−1), for l = 1, ..., L, and define h0 = x. We

now assume the weight matrices {Wl}Ll=1 to consist of random variables, which are independent
to each other given the state of the previous hidden layer. We define a series of probabilistic
hypernetworks g = {gl}Ll=1 (parametrized by ψ = {ψl}Ll=1), where gl maps hl−1 to the parameters
of the distribution of Wl, and let the joint distribution over θ be given by

p(θ; g(x;ψ)) =

L∏
l=1

p(Wl; gl(hl−1;ψl)) . (3)

An illustration of a stochastic two-layer network is given in Figure 2 in the appendix.

For the practical implementation we follow [5] by modelling p(Wl; gl(hl−1;ψl)) with a matrix
variate normal distribution, and employ a probabilistic hypernetwork to compute its parameters (i.e.
the mean matrix and the covariance matrices of rows and columns, respectively). Moreover, we
use the reparametrization trick [6] and vector scaling [3] for an improved scalability. A detailed
description of our implementation can be found in Appendix A.

2 Experiments

Here we present results for two standard tasks on MNIST: classification under out-of-distribution data
(Section 2.1) and detection of and defense against adversarial examples [7] (Section 2.2). Results
for two toy regression problems and the Fashion-MNIST datasets can be found in Appendix D.3
and D.4. The following recent models are considered as the baselines: Variational Matrix Gaussian
(VMG) [5], Multiplicative Normalizing Flow (MNF) [8], Dirichlet Prior Networks (DPN) [9], noisy
Kronecker-factored Approximate Curvature (noisy K-FAC) [10], Monte Carlo Dropout (MCD) [11]
and Deep Ensemble (DE) [12].4

We estimate the predictive distribution p(y|x) of the CDNs, based on 100 samples of θ ∼
p(θ; g(x;ψ)). We also draw 100 samples from the approximate posterior to approximate the predic-
tive distribution of BNN baselines. If not stated otherwise, we use a single sample to perform Monte
Carlo integration during training. We pick the regularization hyperparameter λ in eq. (6) for CDN
out of the set {10−4, 10−5, 10−6, 10−7, 10−8} which maximizes the validation accuracy. We use
Adam [13] with default hyperparameters for optimization in all experiments and the implementations
provided by [8]5 and [10]6 for MNF and noisy K-FAC, respectively. As for the network architecture,
we use for the main network a MLP of size 784-100-10 with one hidden layer along with probabilistic
MLP hypernetworks with 50 hidden units for CDNs. We use mini-batches of size 200. All models

1Specifically, it was proposed to apply a hypernetwork to compute the weight matrix of a recurrent NN at
each time-step, given the current input and the previous hidden state.

2Bayesian hypernetworks are hypernetworks that map Gaussian random noise to an approximate posterior
distribution q(ξ) = q(h(ε)) over the parameters ξ of a BNN.

3We assume that the bias parameters are absorbed into the weight matrix.
4Additional information on these and other related algorithms plus additional experiments are presented in D

in the Appendix.
5https://github.com/AMLab-Amsterdam/MNF_VBNN
6https://github.com/gd-zhang/noisy-K-FAC
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(a) MNIST
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Figure 1: The first two figures show the CDFs of the empirical entropy of the predictive distribution
of the models, trained on MNIST. The caption of each figure indicates the test set used, the y-axis
denotes the fraction of predictions having entropy less than the corresponding value on the x-axis.
(c) and (d) show the prediction accuracy and average entropy of models trained on MNIST when
attacked by FGSM-based adversarial examples. Values in the parenthesis denote the test accuracy.

are optimized over 20000 iterations (≈67 epochs). We chose ReLU as the non-linearity of the CDNs’
hypernetworks. For the details on the selection of the model-specific hyperparameters of the baselines,
we refer the reader to Appendix C.1.

For a quantitative comparison, we calculated the mean maximal confidence for in-distribution (MMC-
in) and OOD data (MMC-out) as well as the area under receiver operating characteristic (AUROC).
The results can be found in Table 1. Our model clearly has the highest MMC value for in-distribution

Table 1: Mean maximal confidence (MMC) for in distribution (MNIST) and OOD data (notMNIST)
and area under receiver operating characteristic (AUROC).

Algorithm MMC-in MMC-out AUROC

CDN 0.978 0.430 0.993
VMG 0.938 0.507 0.964
MNF 0.959 0.504 0.977
MCD 0.950 0.665 0.928
DE 0.970 0.740 0.862
noisy-KFAC 0.949 0.744 0.848

data and the highest AUROC, while having the lowest MMC value for OOD data.

2.1 Out-of-distribution classification

Following [12], we train all models on the MNIST training set7 and investigate their performance on
the MNIST test set and the notMNIST dataset8, which contains images (of the same size and format
as MNIST) of letters from the alphabet instead of handwritten digits. On such an out-of-distribution
(OOD) test set, the predictive distribution of an ideal model should have maximum entropy, i.e. it
should have a value of ln 10 ≈ 2.303 which would be achieved if all ten classes are equally probable.
We present the results in Figure 1 (a) and (b), where we plotted the cumulative distribution function
(CDF) of the empirical entropy of the predictive distribution, following [8]. A CDF curve close
to the top-left corner of the figure implies that the model yields mostly low entropy predictions,
indicating that the model is very confident. While one wishes to observe high confidence on data
points similar to those seen during training, the model should express uncertainty when exposed to
OOD data. That is, we prefer a model to have a CDF curve closer to the bottom-right corner on
notMNIST, as this implies it makes mostly uncertain (high entropy) predictions, and a curve closer
to the upper-left corner for MNIST. The results show, that the CDN is more confident than all other
models on within-distribution data, while showing higher uncertainty than all other models, except

7We use Fashion-MNIST as OOD data for training the DPN.
8http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html.
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from the DPN, on OOD data. Note however, that training DPNs requires additional OOD data (which
makes the comparison unfair) and that the DPN’s prediction accuracy and confidence on the MNIST
test set are low compared to all other models.

2.2 Adversarial examples

To investigate the robustness and detection performance of CDNs w.r.t. adversarial examples [7],
we apply the Fast Gradient Sign Method (FGSM) [14] to a 10% fraction (i.e. 1000 samples) of the
MNIST test set.9 We do so, by making use of the implementation provided by Cleverhans [15].
Note, that we do not use adversarial training when training the Deep Ensemble in this experiment
to allow for a fair comparison. Figure 1 (c) and (d) present the accuracy and the average empirical
entropy of the predictive distribution w.r.t. adversarial examples for MNIST with varying levels of
perturbation strength (between 0 and 1). We observe that the CDN is significantly more robust in
terms of accuracy to adversarial examples than all other models, while showing a competitive and
nicely increasing entropy.

3 Conclusion

We introduce compound density networks (CDNs), a new class of models that corresponds to
compound distributions (i.e. a mixture with uncountable components) in which both the component
distribution and the mixing distribution are parametrized by input dependent NNs. An experimental
analyses demonstrated that CDNs yield better uncertainty estimates on out-of-distribution data and
are more robust to adversarial examples than several baseline models. These promising results
indicate the benefits of applying an infinite ensemble model in conjunction with input dependencies
for NN based uncertainty quantification.
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A Implementation details

As mentioned in the main part in Section 1.1 we use matrix variate normal (MVN) distributions
[16] for modelling the mixing distribution inspired by previous work [5, 17, 10, 18]. A MVN is
parametrized by three matrices: a mean matrix M and two covariance matrices A and B. It is
connected to the multivariate Gaussian by the following equivalence

X ∼MN (X;M,A,B) ⇐⇒ vec(X) ∼ N (vec(X); vec(M),B⊗A) , (4)

where vec(X) denotes the vectorization of matrix X. Due to the Kronecker factorization of the
covariance, a MVN requires fewer parameters compared to a multivariate Gaussian, which motivates
us to use it as the distribution over weight matrices in this work. Furthermore, we assume that the
covariance factor matrices are diagonal matrices, following [5]. That is, we choose the mixture
distribution of the CDN to be

p(θ; g(x;ψ)) =

L∏
l=1

MN (Wl; gl(hl−1;ψl)) =

L∏
l=1

MN (Wl;Ml, diag(al), diag(bl)) , (5)

where gl maps the state hl−1 of the previous hidden layer onto the l-th MVN’s parameters
{Wl,al,bl}10 defining the distribution over Wl. Suppose Wl ∈ Rr×c, then the correspond-
ing MVN distribution has rc + r + c parameters, which is more efficient compared to rc + rc
parameters when modeling Wl as fully-factorized Gaussian random variable. To further reduce the
amount of parameters we use a vector-scaling parametrization similar to the one used by [3] and
[4] for the mean matrices {Ml}Ll=1. That is, we make a trade-off between the expressiveness of the
hypernetwork gl and the number of parameters by replacing Ml with a fixed parameter matrix Vl of
the same size (with c-dimensional row vectors vli, i = 1, . . . , r ) and a scaling vector dl ∈ Rr. Then
gl maps hl−1 to {dl,al,bl} (instead of {Ml,al,bl}) and Ml is defined by

Ml ≈


dl1vl1

dl2vl2

. . .

dlrvlr

 .

That is, each element of dl is being used to scale the corresponding row of Vl. Thus, the number of
parameter of gl is reduced to 2r + c, which is more manageable and implementable for large weight
matrices.

To be able to learn the parameters of the mixing distribution by back-propagation, the reparametriza-
tion trick [19] is employed. That is, we first sample E ∈ Rr×c fromMN (0, Ir, Ic) with 0 ∈ Rr×c

zero matrix, Ir ∈ Rr×r and Ic ∈ Rc×c being the identity matrices, by separately sampling each
entry, εij ∼ N (0, 1) ∀ i = 1, . . . , r ∀ j = 1, . . . , c , and than estimate Wl based on the output of
the hypernetwork as

Wl = Ml + diag(al)
1
2 E diag(bl)

1
2 .

For the regularization during likelihood maximization (i.e. for the second term in eq. (6)), we define
the prior over θ to be p(θ) :=

∏L
l=1MN (Wl;0, Ir, Ic).

The DKL-Term can then be calculated deterministically during training, since the DKL-divergence
betweenMN (Wl;Ml,a,b) andMN (Wl;0, Ir, Ic) following [5] is given by

DKL[ p(Wl)‖MN (0, Ir, Ic)] =
1

2

( r∑
i=1

ali

c∑
j=1

blj + ‖Ml‖2F − rc− c
r∑

i=1

log ali − r
c∑

j=1

log blj

)
.

10Assume Wl ∈ Rr×c then Ml ∈ Rr×c, A ∈ Rr×r and B ∈ Rc×c, where al and bl are the diagonal
values.
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hx φ
W1 ∼ p(W1; g1(x,ψ1)) W2 ∼ p(W2; g2(h;ψ2))

g1(x;ψ1) g2(h;ψ2)

Figure 2: An example of a probabilistic hypernetwork applied to a MLP with one hidden layer.

B Pseudocode for training CDNs

Algorithm 1 The training procedure of CDNs with LML.

Require:
Mini-batch size M , number of samples S of θ, regularization strength λ, and learning rate α.

1: while the stopping criterion is not satisfied do
2: {xm,ym}Mm=1 ∼ D
3: for m = 1, . . . ,M ; s = 1, . . . , S do
4: θms ∼ p(θ; g(xm;ψ))
5: φs(xm) = f(xm;θms)
6: end for
7: L(ψ) =

∑M
m=1 log

1
S

∑S
s=1 p(ym;φs(xm))− λ

∑M
m=1DKL[ p(θ; g(xm;ψ))‖p(θ))]

8: ψ ← ψ + α∇L(ψ)
9: end while

C Related work

We briefly describe the models we compare our algorithm with, for a more detailed description the
reader is referred to the original papers:

Variational Matrix Gaussian (VMG) proposed by [5] are Bayesian neural networks which are
trained with variational inference (VI). They are trained with a MVN distribution as the approximate
posterior of each weight matrix.

Multiplicative Normalizing Flow (MNF) [8] models the approximate posterior as a compound
distribution, where the mixing density is given by a normalizing flow.

Kronecker-factored Approximate Curvature (K-FAC) [10] use an MVN approximate posterior
and apply approximate natural gradient [20] based maximization on the VI objective.

Variational Information Bottleneck (VIB) [2] assumes θ to be the hidden units of a certain layer
instead of the parameters of an NN and trains the model with an objective derived from the information
bottleneck method [21].

Dirichlet Prior Networks (DPNs) [9] can be described by p(y|x;ψ) =
∫
p(y|θ)p(θ|x;ψ) dθ and

aim at modeling data uncertainty with the component distribution and what they call “distributional
uncertainty” (i.e. uncertainty due to mismatch between the distributions of test and training data)
with the mixture distribution. Specifically, they propose DPNs for uncertainty quantification in
classification tasks, where p(θ|x;ψ) is assumed to follow a Dirichlet distribution. In contrast to
CDNs, DPNs use only a single NN to parametrize the model and an objective that augments likelihood
maximization/ DKL minimization by a term explicitly making use of out-of-distribution samples.

Deep Ensembles (DEs) [12] are ensembles of NNs trained with a proper scoring rule and adversarial
training to quantify the prediction uncertainty of deep NNs. A DE provides a non-Bayesian approach
for quantifying prediction uncertainty, and is in this sense related to the approaches of [22] and [23].
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Monte Carlo Dropout (MCD) [11] is based on a theoretical framework that relates dropout training
in NNs to approximate Bayesian inference and, as a result, allows to approximate the predictive
distribution by an average over the different networks resulting from independently sampled dropout-
masks, a technique which they applied to estimate the prediction uncertainty in NNs.

C.1 Hyperparameter

For the baseline models in our experiments, we use the hyperparameter values that are suggested in
the respective publications and summarized in the following:

• MNF: The DKL-term is weighted by 1/B, where B is the number of mini-batches used
during optimization (see [24] for a justification of this). Moreover it is annealed with a
hyperparameter initialized to 0 and increasing to 1 during training. We found that this yields
better results than using no re-weighting of the DKL-term and is necessary to achieve the
results reported by [8].

• noisy K-FAC: DKL-term weight is set to λ = 1 to reflect the Bayesian objective and the
prior variance is set to η = 0.1 as suggested by the authors.

• DPN: the OOD datasets used are Fashion-MNIST and MNIST, respectively for the MNIST
and Fashion-MNIST training set.

• Deep Ensemble: The number of mixture components is 5, the adversarial perturbation
strength is set to 1% of the input range, and the weight decay is 0.0001.

• MC-dropout: The dropout probability is set to 0.5 and the weight decay parameter to
0.0001.

• VIB: λ is set to 1e− 5 which maximizes the validation accuracy compared to other choices
of λ ∈ {1e− 4, 1e− 5, 1e− 6, 1e− 7, 1e− 8}.

D Further experiments

D.1 Comparison of different objectives objectives

We experimentally compare the effects of training the proposed model by optimizing the likelihood
based objective LML versus the VIB approach, which corresponds to optimizing the following
objective

LVIB(ψ) =

N∑
n=1

Ep(θ;g(xn;ψ))[ log p(yn; f(xn;θ)]− λ
N∑

n=1

DKL[p(θ; g(xn;ψ))‖p(θ)] . (6)

As stated in the main text Sec.1, both objectives become equivalent when approximated by a single
sample of θ. Therefore, to analyze the differences we approximate them based on 10 samples of θ.
As a special case we investigated LVIB with λ = 1 which resembles the variational inference (VI)
objective of BNNs with an amortized prior but did not obtained reasonable accuracy in this setting.
For comparison, we analysed the performance of an VMG trained by approximating the ELBO with
10 samples because it is a closely related BNN.

We present the results for OOD classification on MNIST in Figure 3 (a) and (b). LML and LVIB both
work well, the former showing slightly better results. Using 10 instead of one sample leads to higher
uncertainty on OOD data for the ML objective but also increases uncertainty on the in-distribution
test set a tiny bit.

Results for the robustness to adversarial examples created with FGSM are shown in Figure 3 (c) and
(d). We observe that optimizing based on the likelihood objective approximated with 10 samples
of θ gives the best results. While the increased sample size improved the performance of models
trained with the VIB as well as with the ML objective, the model trained with LML and 10 samples
clearly outperforms the others, reaching a surprisingly high accuracy about 0.8 even under strong
perturbations.

Generally, the VMG showed worse results, which suggests that the input dependency of the dis-
tribution over θ plays a crucial role for the increased performance observed compared to baseline
models.

8



In summary, the VI objective for a BNN with an amortized prior could not be employed for training
our model successfully, and based on our observations ML seems to be superior to the VIB objective,
when approximated by several samples.
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(c) MNIST adversarial accuracy
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Figure 3: Comparison of the effects of training the proposed model with the VIB or the CDN
objective and VMG on MNIST. “Objective-S” denotes that the objective was approximated based on
S samples of θ during training. Note that the entropy is calculated over all examples and not only the
missclassified ones.

D.2 Stronger adversarial attacks

One might argue, that taking one sample for adversarial attacks in probabilistic nets is not sufficient.
Therefore, we varied the strength of our adversarial attack by using 10 and 20 samples for the attack,
instead of 1 as in the baseline in the main paper. The results are shown in Figure 4. Using stronger
attacks does decrease the accuracy and entropy of the CDN to some degree. However, the accuracy
is still superior to that of the other methods when they are attacked with only a one sample attack,
cf. Figure 1(c). Furthermore, there is almost no difference between using 10 and 20 samples when
attacking the CDN.

D.3 Toy regression

Following [25], we generate the first toy regression dataset as follows: We sample 20 input points
x ∼ U [−4, 4] and their target values y = x3 + ε, where ε ∼ N (0, 32), i.e. the data noise is
homoscedastic. We aim at analyzing how well the target function is modeled over the larger interval
[−6, 6]. Having only few data points, it is a desirable property of a model to express high (epistemic)
uncertainty in regions with no or only few samples, e.g. between −6 and −4 or 4 and 6. The second
toy regression dataset is constructed by sampling 100 data points as above, this time with different
scale of noise in different intervals: ε ∼ N (0, 32), if x ≥ 0. and ε ∼ N (0, 152), otherwise. This
dataset is designated for testing whether a model can capture heteroscedastic aleatoric uncertainty.
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Figure 4: Prediction accuracy (circles) and average entropy (crosses) of CDNs for stronger FGSM
based adversarial examples, constructed by averaging over multiple forward-backward passes.

In these experiments, we use a MLP with one layer with 100 hidden units as the predictive network,
while the hypernetworks of the CDNs are modeled with two-layer MLPs with 10 hidden units each.
Three samples of θ are used to approximate the objectives during training of CDNs and BNNs.11 If
not stated otherwise models are optimized over 10000 iterations. A regularization hyperparameter of
λ = 10−3 is used for training CDNs.

The results for the first dataset (shown in the first row of Figure 5) demonstrate that all models were
able to capture the epistemic uncertainty. For enabling the CDN to do so, it was however necessary
to stop training earlier (results shown for stopping after 1700 iterations), and we observed that the
uncertainty decreased over training. A detailed analysis of this behavior and its dependency on
initialization is left for future work. Results for the second dataset show that the mixture models,
i.e. the CDN and the DE, are the only ones able to capture the aleatoric uncertainty on the second
dataset, as shown in the second row of Figure 5. This can be explained by the ability of CDNs and
DEs to model input-dependent variance.
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Figure 5: Comparison of the predictive distributions given by the CDN and the baselines on toy
datasets with homoscedastic noise and few samples (first row) and heteroscedastic noise and more
samples (second row). Black lines correspond to the true noiseless function, red dots correspond
to samples, orange lines and shaded regions correspond to the empirical mean and the ±3 standard
deviation of the predictive distribution, respectively.

D.4 Experiments on Fashion-MNIST

For experiments on the Fashion-MNIST dataset we used the same network architecture as for MNIST
cf. Section 2. The CDN achieves results competitive to the baselines for OOD classification (Figure 6).

11On these toy datasets, we found that using more than one sample is crucial for the results of the CDNs
(i.e. results for using just one sample look similar to that of the VMG and Noisy K-FAC), while it does not
significantly change the behaviour of the BNNs.
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For adversarial attacks, the CDN achieves the highest accuracy by increased perturbation strength
while having a lower entropy than baseline models. We note that strangely, the DPN’s uncertainty
estimate is decreasing with increasing perturbation strength.
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Figure 6: The first two pictures show the CDFs of the empirical entropy of the predictive distribution
of the models, trained on Fashion-MNIST. The caption of each figure indicates the test set used, the
y-axis denotes the fraction of predictions having entropy less than the corresponding value on the
x-axis.
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Figure 7: Prediction accuracy and average entropy of models trained on Fashion-MNIST when
attacked by FGSM-based adversarial examples with varying perturbation strength.
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