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Abstract

Reinforcement Learning (RL) has demonstrated state-of-the-art results in a number
of autonomous system applications, however many of the underlying algorithms
rely on black-box predictions. This results in poor explainability of the behaviour
of these systems, raising concerns as to their use in safety-critical applications.
Recent work has demonstrated that uncertainty-aware models exhibit more cautious
behaviours through the incorporation of model uncertainty estimates. In this work,
we build on Probabilistic Backpropagation to introduce a fully Bayesian Recurrent
Neural Network architecture. We apply this within a Safe RL scenario, and
demonstrate that the proposed method significantly outperforms a popular approach
for obtaining model uncertainties in collision avoidance tasks. Furthermore, we
demonstrate that the proposed approach requires less training and is far more
efficient than the current leading method, both in terms of compute resource and
memory footprint.

1 Introduction

Reinforcement Learning (RL) has achieved state-of-the-art results in a variety of applications, from
Atari games (Mnih et al.| 2013) to autonomous vehicles (Zhang et al.| 2016} Shalev-Shwartz et al.}
2016). The models underlying these systems are often black-box in nature, and do not provide
estimates of model uncertainty. This results in over-confident predictions on out-of-distribution
data, resulting in poor performance in novel data scenarios (Amodei et al., 2016} Lakshminarayanan
et al., |2017; Hendrycks and Gimpel, 2016)). Recent work (Kahn et al., 2017} |Liitjens et al., [2018)
demonstrates that more cautious behaviours can be attained by incorporating model uncertainty
estimates into the decision making processes of RL agents. In their work, Liitjens ef al. demonstrate
that a Long-Short-Term-Memory (LSTM) ensemble using MC Dropout (Gal and Ghahramani, [2015)
is able to approximate model uncertainties. While this demonstrates a clear advantage over a standard
LSTM with no uncertainty estimates, the accuracy of their approach’s uncertainty estimates is tied to
the size of the ensemble and the number of dropout forward passes executed. Thus, obtaining high
quality model uncertainty estimates can quickly become demanding for both compute and memory
resources.

An alternative to the approximate Bayesian inference provided by MC Dropout and ensemble methods
is Probabilistic Backpropagation (PBP) (Hernandez-Lobato and Adams), |2015) - a fully Bayesian
method for training Bayesian Neural Networks (BNNs), which thus produces fully-Bayesian model
uncertainty estimates. Unlike ensemble-based methods (Lakshminarayanan et al., [2017)), PBP
provides a probabilistic neural network architecture at only twice the memory footprint of its non-
probabilistic equivalent. As PBP is fully Bayesian, it only requires training a single network, and
inference only requires one forward pass - making it far less computationally intensive than ensemble
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(Lakshminarayanan et al.2017), MC Dropout (Gal and Ghahramanil 2015]), or combined (Liitjens
et al.,[2018)) methods.

In this paper we leverage PBP to produce a probabilistic variant of a standard Recurrent Neural
Network (RNN). We apply this to a collision avoidance task, and demonstrate that the PBP-RNN
exhibits competitive performance when compared with the MC Dropout Ensemble (MDE) described
in (Litjens et al.||2018), and achieves higher-quality model uncertainty estimates.

2 Related Work

2.1 Safe Reinforcement Learning

Safe RL involves learning policies which maximize performance criteria, e.g. reward, while ac-
counting for safety constraints (Garcia and Fernandez, [2015}; |Berkenkamp et al., 2017, and is a field
of study that is becoming increasingly important as more and more automated systems are being
designed to operate in safety-critical situations (Zhang et al.|[2016} (Chen et al.,2019; |Shalev-Shwartz
et al.l2016). A key issue with many existing approaches is their lack of uncertainty quantification -
agents’ inability to quantify what they ‘don’t know’. By incorporating uncertainty, RL agents can
make better decisions by opting for actions for which they are more confident of a positive outcome.
Incorporating this principal in safety-constrained tasks results in agents choosing safer actions (Kahn
et al.| 2017; Liitjens et al.l 2018)), and is crucial for making RL feasible for safety-critical scenarios.

Existing work on Safe RL has typically aimed to discover uncertainty in the environment or model
(Garcia and Fernandez, 2015) - with the former commonly being the goal in the case of risk-sensitive
RL (RSRL) (Mihatsch and Neuneier, |2002; |Shen et al., [2014). In this work we focus on model
uncertainty, with the aim of quantifying the model’s confidence on out-of-distribution data and using
this uncertainty quantification to produce safer decisions.

2.2 Probabilistic Neural Networks

There are a variety of approaches for modeling distributions and producing accurate uncertainty
estimates (Williams and Rasmussen, [2006; |(Ghahramani, [2015)), however many of these methods do
not scale well to large datasets. Over recent years neural network-based methods have demonstrated
state-of-the-art performance on a wide range of tasks (Cho et al.| [2014; He et al., 2016} [Ledig
et al., 2017)), partly due to their ability to leverage large amounts of data. This has helped to drive
interest in the development of a variety of probabilistic neural network approaches, which are
capable of modeling uncertainty while also scaling to large datasets (Gal and Ghahramani, 2015}
Hernandez-Lobato and Adams, 2015} \Snoek et al.,[2015)).

In probabilistic neural networks, network weights are modeled as distributions, rather than as point
estimates, allowing the network to encode model uncertainty. If we consider y to be an N-dimensional
vector of targets y,,, and X to be an N x D matrix of features x,,, then we can define the likelihood
for y given the network weights W, X, and noise precision -y as:
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where w;;; denotes a weight in weight matrix W; at layer [, V; is the number of neurons in layer ,
and )\, is a precision parameter. For additional details pertaining to A, and its hyper-prior, please
see (Hernandez-Lobato and Adams, [2015)). Using the above definition, we can obtain the posterior
distribution for parameters W, v and A\, by applying Bayes’ rule:
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where D = (X,y). Predictions for some output y, can then be obtained through:
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As this integral is computationally intractable, several approximations have been proposed
(Hernandez-Lobato and Adams), 2015 |Gal and Ghahramani, |2015§ |Ghosh et al.| 2016). In this
work, we use PBP to train a fully Bayesian neural network, as opposed to the approximation provided
by MC Dropout or ensemble-based methods.

2.3 Probabilistic Backpropagation

The PBP network can be viewed as a modification of a standard Multilayer Perceptron (MLP) wherein
each weight w;;; € W, is defined by a one dimensional Gaussian and correspondingly is represented
by two weights - a mean m;;; and a variance v;; ;.

Similarly to standard backpropagation, PBP training consists of two phases. The first phase comprises
forward propagation of the input features through the network to obtain the marginal log-likelihood,
logZ (instead of loss, which is used in typical backpropagation). The gradients of logZ with respect
to the mean and variance weights are then backpropagated using reverse-mode differentiation, and
the resulting derivatives are used to update the mean and variance weights of the network.

The update rule for PBP obtains the parameters of the new Gaussian beliefs ¢"*"(w) =
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These rules ensure moment matching between ¢™““ and s, guaranteeing that the distributions have
the same mean and variance. These are the update equations used in the PBP-RNN described in this
paper. For further details on PBP, please see (Hernandez-Lobato and Adams, [2015).

3 Probabilistic Backpropagation for Recurrent Neural Networks

Recurrent Neural Networks (RNNs), and specifically LSTMs, are the current state-of-the-art for
dynamic obstacle avoidance tasks (Alahi et al., 2016; [Liitjens et al., [2018; | Vemula et al., 2018). This
is due to their ability to encode contextual dependencies, allowing them to accurately model the
temporal patterns of dynamic obstacles. As such, we have chosen to use an RNN for our collision
prediction network. In order to provide fully-Bayesian model uncertainty estimates, we adapt a
standard RNN architecture to use Probabilistic Backpropagation (PBP).

A standard RNN consists of two weight matrices per layer, the weight matrix W, which is equivalent
to the weight matrices used in a standard MLP, and the weight matrix W,, which holds the transition
weights. For a given input x; at a time step ¢, the output y, and hidden state h; at step ¢ are computed
as:

hy =y, = f(Wnhi—1 + Wox;) (7)

where f() is some activation function and h;_; is the previous hidden state.

For the PBP-RNN, we apply the PBP treatment of a standard MLP to an RNN: each of the weights
wp, € Wp, and w, € W, are represented by mean and variance weights, resulting in four weight
matrices in place of the two standard RNN matrices: W,,,, W,,, Wy,,,, and Wy,,,. This produces two
outputs from the network output layer L at each time step ¢ - a mean my, ; and a variance vy, +:

mrt = Wimhpe—1 + WXy ®)
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Updates to the network at step ¢ are computed using Truncated Backpropagation Through Time
(TBTT) (Boden/[2002) in combination with the standard PBP update procedure, whereby the network
is ‘unrolled’ by some 7' time steps, and the weights are updated in reverse order - from time step 7'
back to t = 1. First, the marginal log likelihoods for each time step are computed:
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These are then used to update the weights in each of the four weight matrices per layer, as per the
typical PBP update rule:
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For incorporating prior factors into ¢, we follow the same procedure for updating the « and
parameters described in (Hernandez-Lobato and Adams) [2015]), but substitute the likelihood Z for
the mean of Z over all time steps:

Z — Zf:l Zt
T

The same procedure is followed for parameters Z; and Z used in the « and 3 updates for standard
PBP, as described in (Hernandez-Lobato and Adams} 2015). As with standard BPTT, this process is
repeated for each time step ¢ € 7" for each mini-batch within each epoch.

4 Methods

Many tasks used for evaluating the performance of RL methods, such as arcade learning environments,
would not obviously benefit from a safe RL approach. In order to transparently and reproducibly
assess the effects of our approach to uncertainty quantification, we decided that the tasks which would
be used for this analysis would include the following qualities:

15)

e The task should reflect a real-world application of RL, rather than a trivial toy problem.
o The task should be simple enough that the results can be clearly interpreted.

e The task should facilitate a comprehensive combination of test cases for evaluating the
impact of using uncertainty quantification, including exposing the agent to novel behaviours,
noise, and missing data.

We felt that the task of collision avoidance, as in (Liitjens et al., 2018)), fulfilled this criteria, and was a
sensible choice to comprehensively evaluate our methods. As such, in this work we use the PBP-RNN
architecture described above for a collision prediction network applied to a collision avoidance task.
This network is used within a Model Predictive Controller (MPC) which selects a motion primitive u
from a set of motion primitives U as in (Liitjens et al., [2018)). Similarly to (Liitjens et al., 2018), U
contains 11 discrete motion primitives spanning heading angles oy, € [, £] of length A = 0.05,
and the MPC chooses the lowest-cost motion primitive according to the following criteria:

(T argmin()\UV(fO” + )\cPciou + Aadgoat) (16)



where P!, is the collision prediction for the motion primitive at i, V.’ , denotes the variance
associated with the collision prediction, dgeq is the distance to the goal, and A, A., Aq are their
respective coefficients. In this work, we use an epsilon greedy policy (Mnih et al.,[2015)), decreasing
€ by £5 after each episode, to continue adding new experience while monotonically decreasing the
probability of random actions. Previous work demonstrates that starting with low A, and increasing
A, over time is helpful for escaping local minima (Liitjens et al.,[2018). As such, we multiply A, by
1 — ¢, so that )\, increases as e decreases.
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Figure 1: Diagram of initial environment settings for training distribution (left) and test distribution
(right). Top (orange) circle: dynamic obstacle. Bottom (blue) circle: agent. Bottom star: goal for
dynamic obstacle. Top star: goal for agent.

4.1 Environment

For the collision avoidance task, we use a multi-agent OpenAl Gym (Brockman et al.| [2016) environ-
ment based on (Lowe et al.,|2017) with two agents. The agents start each episode facing eachother,
and each agent is assigned a goal, as illustrated in Figure 1. One agent acts as a dynamic obstacle,
following a collaborative Reciprocal Velocity Object (RVO) policy (Van Den Berg et al.,2011)), while
the other uses the MPC and collision prediction network. The observation o, at time ¢ is defined as:

0r = [Aip.t, Qlot; Qopt, A2, t, Ut) 17

where [a1,, a1, and [agp, ag,] are the positions and velocities for agents 1 and 2 respectively and
u, is the evaluated motion primitive. For the input to the RNN (and the LSTM, which we compare
against), we feed the input 0, which comprises | = 8 observations, from ¢ — [ to ¢. After each episode,
all inputs are collated into a set of input features X, and a set of labels y is populated with the collision
label, y = [0, 1], for the episode. These are collated into an experience pool of examples, from which
samples are randomly drawn to train the collision prediction network.

The results reported here were obtained after e reached 0.1, at which point it was set to 0, and the test
cases were run with no further training cycles. While € > 0, the dynamic obstacle starts in the same
location each episode, posgy , = [0,0.25], and the agent starts at pos,,, , = [0, —0.25]. Once € is set
to 0, we obtain results for 20 episodes using this initialization, after which the starting position of
the dynamic obstacle is randomly generated for pos, , from the range —0.25 to 0.25, as illustrated
in Figure 1. At this point we switch to a non-collaborative policy, for which the obstacle no longer
tries to avoid the agent, and simply moves in a straight-line towards its goal. This combination of
random initialization and policy switching for the dynamic obstacle produces novel dynamic object
behaviour which is used for testing.

4.2 Network Parameters

Using previous work as a guide (Liitjens et al., 2018]), the LSTM Ensemble consists of 5 single-layer
LSTM networks each with 16 units with linear activations and a Rectified Linear Unit (ReLU)
activation on the output. This is trained using MSE loss and Adam optimization with an initial
learning rate of 0.001. For inference (as in (Liitjens et al.| [2018))), we execute 20 forward passes
per network with different dropout masks (setting dropout p = 0.7) from which the sample mean
and variance are drawn from the resulting distribution of 100 predictions. We use an equivalent
architecture for the PBP-RNN - a single layer network consisting of 16 units with linear activations.
For both networks we set the number of time steps 7' equal to the sequence length /. For shorter
sequences (for the first 7 time steps in each episode) we zero pad the input up to 7.

4.3 Training Procedure

For both networks evaluated here we used TensorFlow on a single Power 8+ compute node. During
the training cycles, the dynamic obstacle follows a collaborative RVO policy. We first run 100



Table 1: Means (1) and variances (02) of recorded variances for PBP-RNN and MDE for the training
distribution and three out-of-distribution test cases

PBP-RNN ;41 MDEy PBP-RNNo? MDE ¢~

Train 0.002 0.001 0.002 0.001
Novel 0.003 0.001 0.002 0.0002
Novel + noise (A¢ = 0.005) 0.006 0.001 0.005 0.0003
Novel + dropped obs. (ngropped = 5) 0.039 0.007 0.044 0.003

Table 2: Means (j1) and variances (02) of recorded log-likelihoods for PBP-RNN and MDE for the
training distribution and three out-of-distribution test cases

PBP-RNN ;1 MDEy  PBP-RNNs? MDE ¢”

Train 0.685 2.1x10° 0.108 3.8x10°
Novel -0.555 -6.2x10* 1.048 1.7x10°
Novel + noise (A¢ = 0.005) -2.479 -8.6x10* 1.440 2.5x10°
Novel + dropped obs. (ngropped = 5) -8.760 -66.871 4.707 27.120

episodes to seed the experience pool, for which the agent selects random actions. Following this we
draw 500 random samples from the pool to train the collision prediction network. We then follow
a standard observe-act-train procedure, repeating training after every 10 episodes. To balance the
training data, we draw half of the samples at random from examples where collision labels are y = 0
and half from a pool where collision labels are y = 1.

For PBP, we run an initial phase of 5 epochs of training after the first 100 episodes, and 2 epochs of
training after each subsequent set of 10 episodes. This relatively small number of training epochs is
guided by empirical evidence and prior work demonstrating that PBP requires relatively few epochs
for training (Benatan and Pyzer-Knapp}, 2018} [Herndndez-Lobato and Adams|, 2015)). We found that
the MDE performed better with comparatively more epochs of training, and so trained this for 100
epochs after the first 100 episodes, followed by 10 epochs of training after each subsequent set of 10
episodes.

For the MPC, we use the same values for the A parameters as recommended in (Liitjens et al., 2018)
for both the MDE and PBP-RNN, setting A, = 25, A, = 200 and \; = 3.

5 Results
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Figure 2: Box-and-whisker plots of results for collision detection network performance. Top: results
from training distribution. Bottom: results from test (novel) distribution.

5.1 Collision Detection Network Performance

Following the completion of all training cycles, we collect a set of in-distribution (training) and a
set of out-of-distribution (novel) test data, each for 20 episodes - the entire process is repeated 10
times. For the out-of-distribution data, we randomly initialize the dynamic obstacle as described in
Section 4.1. We use this data to evaluate the performance of the collision prediction network through



obtaining the log-likelihood, false positive rate (FPR) (the number of times a collision is predicted,
but not encountered) and false negative rate (FNR) (the number of times a collision occurred when
one was not predicted). Additionally, for all non-collision episodes, we record the minimum distances
between the agent and obstacle in order to build an impression of the caution exhibited by the agent.

As demonstrated in Figure 2, the PBP-RNN achieves substantially better results on the training
distribution, with O false-positives, false-negatives, and collisions. As would be expected, we see
these figures degrade somewhat in the case of novel data for both the PBP-RNN and the MDE;
however the PBP-RNN continues to demonstrate better overall performance, with a significantly
lower FPR and fewer collisions.

The minimum distance plots in Figure 2 (far right top and bottom) demonstrate that the agent using
the PBP-RNN leaves a greater margin when passing the obstacle than the agent using the MDE;
indicating more cautious behavior. This is supported by the variance results in Table 1, which show
that the PBP-RNN’s variance values increase between the training and novel scenarios, whereas this
isn’t the case for MDE. This indicates that the PBP-RNN has a comparatively higher quality model
of uncertainty, as its variances increase with the degree of novelty in the observations - thus resulting
in more cautious behaviour.

5.2 Collision Avoidance with Noise and Dropped Observations

Uncertainty-based methods have demonstrated advantageous performance in the presence of noise or
dropped observations due to their ability to leverage model uncertainty when selecting actions (Liitjens
et al.| |2018). Here, we investigate the performance of the MDE and PBP-RNN approaches with
varying levels of additive noise by adding a matrix of noise terms £ multiplied by an incrementally
increasing noise coefficient A¢ to our matrix of observations:

0rc = 0; + &X¢ (18)
where £ is a matrix of values each generated from the distribution A/(0, 1). For each method, we
run 10 episodes for each value of \¢ after the initial training phase, and repeat this process 10 times.
We again use the non-collaborative policy for the dynamic obstacle. As Figure 3 demonstrates, the
PBP-RNN exhibits better robustness to noise, with fewer collisions on average. This performance can
again be explained by the change in the PBP-RNN’s variance output as the level of noise increases.
This is demonstrated in the bottom plot of Figure 3, which shows o steadily increasing for the
PBP-RNN, whereas this is not the case for MDE - again indicating that the PBP-RNN has a better
model of uncertainty.

In the final test case, we combine the non-collaborative policy with dropped observations - whereby,
for increasing values of 14;opped, between 1 and 8 observations in the sequence are randomly selected
and set to zero, simulating the kind of behaviour that may occur in electronic sensor systems. The
PBP-RNN again exhibits better performance when compared with the MDE, as shown in Figure 4,
and the same underlying theme is evident: the o2 values for the PBP-RNN increase with the number
of dropped observations, whereas these remain very small (although do increase marginally) for the
MDE.

Tables 1 and 2 further validate the model quality of the PBP-RNN with respect to the MDE. In Table 1,
we see that the PBP-RNN’s mean uncertainty increases as the test scenarios deviate from the training
distribution. While the MDE’s variance does eventually increase, it requires the combination of the
non-collaborative policy and a significant number of dropped observations for this to occur. Crucially,
Table 2 illustrates that the log-likelihood values for the PBP-RNN and MDE differ significantly,
with the PBP-RNN obtaining high and consistent log-likelihood scores, while MDE achieves low
and inconsistent log-likelihoods. These poor log-likelihoods are a product of MDE’s over-confident
predictions due to its lack of a descriptive posterior - a known drawback of MC Dropout (Liitjens
et al.} 2018}; |Pearce et al., 2018)), which is clearly documented here in the variance and log-likelihood
values of our results.
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Figure 3: Plots depicting results for collision avoidance in increasingly noisy conditions. Top:
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Figure 4: Plots depicting results for collision avoidance with increasing numbers of dropped obser-
vations. Top: proportion of collisions as the number of dropped observations is increased. Bottom:
o (variance) values as the number of dropped observations is increased. Shaded area denotes 95%
confidence interval.

5.3 Computational Considerations

We analyzed compute time for inference with both the PBP-RNN and the MC Dropout Ensemble. For
MDE, we ran the forward passes serially and recorded a mean inference time of 119.8 4+ 3.2ms. In the
case of the PBP-RNN, we recorded a mean inference time of 29.7 + 0.7ms. While the inference time
for MDE can be greatly reduced by running forward passes in parallel (Liitjens et al., 2018)), it will
still require significantly more compute resource when compared with PBP, due to the requirement of
multiple networks and multiple forward passes. Furthermore, in the case of MDE, the compute time
required will increase with the quality requirements of the model uncertainty estimates.

Additionally, the PBP-RNN required far fewer epochs of training to achieve better performance than
the MDE, with the PBP-RNN executing a total of 27 epochs of training, while the MDE executed
210 epochs of training.

The PBP-RNN is also advantageous in terms of memory footprint, as it only requires twice the
memory of its non-probabilistic alternative, yet provides fully Bayesian uncertainty estimates. In
contrast, the quality of the MDE’s uncertainty estimates is proportional to the number of networks
in the ensemble - requiring larger networks and larger memory footprint to produce uncertainty
estimates of reasonable quality (Lakshminarayanan et al.,|[2017)).

5.4 Variance Weights for Long Term Memory

This work demonstrates that a PBP-RNN is capable of achieving superior performance when com-
pared with an LSTM-based approach. This is particularly interesting when considering that traditional
RNNSs are typically only performant on very short sequences (Graves}, |2012), and LSTM’s are the
state-of-the-art for tasks such as the collision avoidance task used here (Liitjens et al., 2018). We
hypothesize that the performance obtained here is possible due to the variance weights which, through
learning variances associated with different features at different time steps, may function similarly to
the gates used in an LSTM - however, more rigorous investigation is required to confirm whether this
is the case.



6 Conclusion

While there has been previous work on Bayesian RNNs (Fortunato et al., |2017)), our work is the first
to demonstrate that PBP can be effectively applied to an RNN architecture to produce a recurrent
network with fully-Bayesian model uncertainty estimates. The resulting network is less demanding
on both computation and memory resources than popular dropout and ensemble-based methods,
such as the recently proposed MC Dropout Ensemble (Liitjens et al.l 2018)). Crucially, our approach
produces much higher quality uncertainty estimates, which are necessary for improving RL agent
performance in novel scenarios, as demonstrated by the model’s competitive performance in dynamic
obstacle avoidance tasks. In the case of Safe RL, this directly translates to safer behaviour on the
part of the RL agent - a crucial step towards feasibly incorporating more complex machine learning
algorithms in safety-critical tasks.
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