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Abstract

Machine learning models are vulnerable to adversarial examples: minor perturba-
tions to input samples intended to deliberately cause misclassification. While an
obvious security threat, adversarial examples yield as well insights about the ap-
plied model itself. We investigate adversarial examples in the context of Bayesian
neural network’s (BNN’s) uncertainty measures. As these measures are highly
non-smooth, we use a smooth Gaussian process classifier (GPC) as substitute. We
show that both confidence and uncertainty can be unsuspicious even if the out-
put is wrong. Intriguingly, we find subtle differences in the features influencing
uncertainty and confidence for most tasks.

1 Introduction

Machine learning classifiers are used for various purposes in a variety of research and industry
applications. However, these classifiers have been shown to be vulnerable to a number of different
attacks [Lowd and Meek, 2005, Mei and Zhu, 2015, Goodfellow et al., 2015, Biggio and Roli,
2018]. Adversarial examples, or evasion attacks, present a direct threat to classification at test-time.
The classifier outputs a wrong label given an input sample with original utility, however slightly
modified by the attacker. In the area of computer vision, adversarial examples are often visually
indistinguishable images which are are misclassified by state-of-the-art models [Goodfellow et al.,
2015, Moosavi-Dezfooli et al., 2016].

Adversarial examples and Bayesian uncertainty have been investigated before. Bekasov and Murray
[since 2018] show the importance of priors in robustness. Gal and Smith [2018] propose an attack
to sample garbage examples in the pockets of the uncertainty of BNN. BNN are further investigated
by Louizos and Welling [2017], Rawat et al. [2017] and Liu et al. [2019]. All these authors test
simple fast-gradient-sign adversarial examples on (variants of) BNN and find notable differences in
model uncertainty for adversarial examples. Further, Li and Gal [2017] observe differences for high
confidence adversarial examples. We show that adversarial examples exist that show no deviation
for uncertainty measures, are visually similar to the original, and yet are misclassified by BNNs.

2 Experimental Setup and Results

We extend the notion of adversarial examples from a classifiers’ output to Bayesian confidence
and uncertainty. Here, we assume a binary classifier. Confidence is a real value between 0 (not
at all confident) and 1 (very confident). Further, uncertainty is a real larger than 0, where larger
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Table 1: Average size of perturbation and uncertainty change of HC/HCLU to benign data.

Spam FMNIST19 FMNIST57 MNIST19 MNIST38

‖ δHC ‖2 0.006±0.01 0.194±0.036 0.019±0.012 0.053±0.014 0.029±0.011
‖ δHCLU ‖2 0.008±0.006 0.194±0.036 0.019±0.013 0.053±0.014 0.03±0.012
diff. unc. 2.35 0.0 0.89 0.31 0.74

means more uncertain. We formalize the resulting optimization problem of high-confidence-low-
uncertainty (HCLU) examples:

min
δ

‖ δ ‖2

s.t. confidence(f(x+ δ)) > 0.95,

and uncertainty(f(x+ δ)) ≤ uncertainty(f(x)),

where we minimize the perturbation δ using the L2 norm. An extension to other norms (as by Carlini
and Wagner [2017]), or a restriction to change only a subset of the features, is straight forward. In
general, we minimize the change between benign sample x and its corresponding adversarial exam-
ple x + δ. The first constraint maximize the confidence of classifier f and yields misclassification
(e.g., the initial confidence was small). The second constraint limits the uncertainty.

Yet, as Smith and Gal [2018] show in their work, the uncertainty estimates of BNNs are highly
non-smooth, and the above problem potentially hard to solve. We thus decide to use a GPC as a
substitute, since its decision surface is smoother.

Setup. We use spam [Lichman, 2013] data and two sub-tasks of each MNIST [LeCun et al., 1998]
and Fashion MNIST [Xiao et al., 2017]. On Fashion MNIST, we train on trousers vs. ankle boots
(one vs. nine) and sandals vs. sneakers (five vs. seven). On MNIST, we train on the one vs. nine
and three vs. eight sub-tasks. We choose small tasks to fit scalability of the GPC substitute, which
is further optimized on only 750 samples. Our experiments are implemented in Python. For deep
neural networks (DNN) and BNN, we use Tensorflow [Abadi et al., 2016], and GPy [GPy, 2012]
for GPC. The attack on GPC is implemented using the optimization routines of SciPy [Jones et al.,
2001] and L-BFGS-B [Zhu et al., 1997]. Our attack is publicly available in the adversarial robustness
toolbox [Nicolae et al., 2018], which we also used for Carlini and Wagner [2017]’s L2 attack.

Properties of HCLU examples. We show the HCLU adversarial examples with the smallest δ in
the fifth row of Figure 1. These examples are still adversarial: we see in the figure that almost all
are visually similar to their benign origin. To verify for all depicted examples that they were altered
in the crafting process, we plot the original sample beneath the examples. The success rates on GPC
are 100%, where however often the specified confidence of 0.95 is barely not met, and the resulting
confidence is around 0.948. Table 1 shows the statistics of the adversarial perturbations per feature
measures using the L2-norm. We observe very small changes on spam, large changes on Fashion
MNIST19 and descent changes for all other datasets.

We can also craft examples that only maximize confidence by removing the second constraint. Sur-
prisingly, the perturbation δhc is barely different from the original examples, as visible in Table 1:
only on the spam data and two MNIST tasks, a difference is observable. The pictures in the fourth
row of Figure 1 reveal that albeit looking very similar, the examples are actually different. Some fea-
tures are generally changed, whereas others seem only correlated with uncertainty. We conclude that
slightly different features are learned for confidence and uncertainty, respectively. Consequently, for
all datasets except Fashion MNIST ankle boot vs trousers, the observed uncertainty is indeed lower
when targeted. Concerning the unchanged Fashion MNIST task, we observe that the change in
uncertainty for those is examples is only 1% from the original value. In this case, confidence and
uncertainty seem to rely on the same features.

Transferability of misclassification. We investigate how many HCLU are misclassified on a GPC
(trained on a different subset of the data), a DNN, and the BNN. The accuracies are plotted in
Figure 2. Dark colors denote benign accuracy, lighter colors the accuracy on HCLU.
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1: HC vs.
benign

2: Benign
original

3: HC
examples

4: HC vs.
HCLU

5: HCLU
examples

6: Benign
original

7: HCLU
vs. benign

(a) ±.006. (b) ±.4. (c) ±1e−6. (d) ±1e−6. (e) ±.243. (f) ±1.0. (g) ±.02. (h) ±1.0.

Figure 1: Comparison of HCLU, HC, and benign originals. Grey are examples and samples, red
plots (row one, four and seven) show differences between images. HC vs. HCLU differences are
scaled according to column label. For Fashion MNIST, these scales are also used for the comparisons
in row one and seven. We plot all differences using a logarithmic spectrum that allows to see small
changes. In the spectrum, colors go from black over red to yellow to white (strongest change).
Benign originals are the samples started with to craft the upper HCLU or lower HC example. Figures
with differences are best seen in color.
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Figure 2: Transferability of optimized GPC ad-
versarial examples. Dark color denotes accuracy
on benign data, lighter color on HCLU examples.

The decrease in accuracy is similar on all
datasets, except the Fashion MNIST sandals
vs sneakers and the DNN on MNIST three vs
eight. In two cases, we observe that the DNN
shows slightly higher accuracy on HCLU: on
the MNIST data and Fashion MNIST sandals vs
sneakers. Still, in all cases, accuracy is reduced
significantly for HCLU examples.

Transferability of uncertainty. We now test
the effect of HCLU adversarial examples on
Bayesian neural networks (BNN) uncertainty
measures. For misclassification, e.g. non-

Bayesian decision boundaries, Papernot et al. [2016] showed that adversarial examples often fool
several models. In this experiment, we are interested whether behavior differs between benign and
adversarial data. We chose Carlini and Wagner’s L2 attack as a baseline: L2, as in our case, allows
the best optimization. We further configure the attack as to increase transferability of the examples
(corresponding to higher “confidence” on the target DNN)1.

1We set κ = 0.7. The attack definition, in a nutshell, defines κ > 0 to encourage the solver to find a
confidently classified example. For details see Carlini and Wagner [2017] .
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Figure 3: Transferability of HCLU examples (bottom)
to Bayesian Neural Networks. We consider Carlini &
Wagner’s L2 attack as a comparison (middle). Benign
data is also depicted as a baseline (top). Correctly clas-
sified data is plotted in gray shades, misclassified data
in red shades. Figure is best seen in color.

The accuracy on these L2 adversarial ex-
amples on DNN, GPC, and BNN is higher
than on HCLU: the average accuracy is be-
tween 50% and in some cases higher than
90%. Yet, the accuracy under the trans-
ferred attack is always lower than the ac-
curacy observed using clean test data.

We depict the results concerning Bayesian
confidence and uncertainty in Figure 3,
where we distinguish correctly classified
(gray shades) and wrongly classified (red
shades) benign and adversarial data. We
measure the mean (confidence, left plots)
and variance (uncertainty, right plots) of
the sampled posteriors and bin them using
25 bins between 0.0 and 1.0. As large fac-
tions of the histograms are empty, we plot
only the relevant parts. To outline overall
trends, we plot the normalized bins of cor-
rect and wrongly classified data stacked on
top of each other.

In general, the BNN is more confident
on benign data/Carlini and Wagner exam-
ples that are correctly classified. This ob-
servation holds across all data sets. For
HCLU, this trend is reversed: the BNN is
confident on many misclassified examples.
Intriguingly, the BNN outputs low confi-
dence on some HCLU examples which are
not misclassified, or correctly assigned to
their original class. Analogously, the un-
certainty measures are similar between be-
nign data and Carlini and Wagner’s attack.
Uncertainty is generally low for correctly classified data and high for wrongly classified data. This
observations are again reversed for HCLU examples: here uncertainty is often low if an example is
wrongly classified.

3 Conclusion

In this paper, we studied the vulnerability of machine learning models providing Bayesian model
uncertainty. We introduced a technique to craft HCLU adversarial examples, which achieve both
high confidence and low uncertainty on a Gaussian process classifier. Also Bayesian neural net-
works misclassify HCLU. We further found that HCLU adversarial examples are misclassified with
low uncertainty and high confidence, in contrast to high-confidence adversarial examples which are
derived from non-Bayesian models such as DNN.

Our work has several implications. Firstly, different Bayesian models (GPC, BNN) learn similar
confidence and uncertainty features, as our transferability study shows. This implies that such mea-
sures cannot be used as a defense. Our results show as well that there is a subtle difference in the
features learned for uncertainty and confidence, respectively.
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