Recurrent Neural Processes

Timon Willi Jonathan Masci Jiirgen Schmidhuber
NNAISENSE SA NNAISENSE SA NNAISENSE SA
timon@nnaisense.com jonathan@nnaisense.com juergen@nnaisense.com

Christian Osendorfer
NNAISENSE SA

christian@nnaisense.com

Abstract

We extend Neural Processes (NPs) to sequential data through Recurrent NPs or
RNPs, a family of conditional state space models. RNPs model the state space
with Neural Processes. Given time series observed on fast real-world time scales
but containing slow long-term variabilities, RNPs may derive appropriate slow
latent time scales. They do so in an efficient manner by establishing conditional
independence among subsequences of the time series. Our theoretically grounded
framework for stochastic processes expands the applicability of NPs while retaining
their benefits of flexibility, uncertainty estimation, and favorable runtime with
respect to Gaussian Processes (GPs). We demonstrate that state spaces learned by
RNPs benefit predictive performance on real-world time-series data and nonlinear
system identification, even in the case of limited data availability.

1 Introduction

The surge of neural latent variable models for performing inference on stochastic processes is a
recent development in Deep Learning. Neural Processes (NPs) [Garnelo et al., 2018b]] combine the
best of neural networks and GPs, estimating uncertainty and model distributions over functions,
while still achieving O(n + m) runtime instead of O ((n + m)*), where n is the number of context
points and m the number of target points [Garnelo et al.,2018a].

Our novel Recurrent NPs (RNPs) transfer the benefits of NPs to deep generative state-space models
by modeling the state space with NPs. By introducing a hierarchy of NPs, the RNPs learn in the
space-time domain and integrate information in space and time into a general model.

By modeling the state space with Neural Processes, we can capture multiple time scales. Consider a
time series of 10 years of hourly temperature measurements. Daily cycles (warm days, cold nights)
are superimposed by seasonal cycles (winter, summer). RNPs can derive slow latent time scales
(reflecting winter and summer) despite fast real-world time scales (reflecting hourly observations).
RNPs retain the benefits from NPs of (a) estimating uncertainty, (b) modeling distributions over
functions, and (c) high flexibility at test time without increasing runtime. RNPs enable efficient
inference of the latent space by establishing conditional independence among subsequences in
a given time series. We apply RNPs to various real-world one-step-look-ahead prediction tasks,
illustrating their performance and benefits.

2 Background

The name "Neural Process" has two components. The "Process" comes from the fact that we are
learning a stochastic process (SP). A stochastic process {Z; }cr is defined as a collection of random

4th workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada.

2+ Space — SP

©)

Figure 1: (a) Graphical Model of Eq. (2). Figure adapted from [Singh et al.,[2019]]. (b) An example
application for the RNP, where we want to predict the rest of the frame at each time step of a video
given some context pixels. This is just an example and does not display the real performance of the
RNP. (c) An example application of the graphical model displayed in[Ta] We are given a sequence of
fixed-length sample functions from a stochastic process slowly changing over time. The z; models
the relations in the sample function but does not model the relations between the different time steps.

variables on a probability space (€2, F, P) [Lamperti, 2012]. The random variables Z; are indexed by
some set 7'. The random variables Z; take values in a common measure space (=, Z). Consider that
Z(w) takes two arguments: Z (t,w), where w €). If we fix ¢, we get the standard random variable
Z1(w) from before. If we fix w, Z(t) becomes a function from T to =. Basically, a stochastic process
is a function-valued random variable. That is why the realization of a stochastic process is called a
sample function Z : T' — =.

The "Neural" in Neural Processes comes from the fact that we are learning the SP with a Neural
Network. To learn a stochastic process means to learn a distribution over functions mapping from an
input x € R to a random variable Y € R% . To learn the distribution over functions, the NPs are
cast as conditional latent variable models trying to learn the conditional probability distribution

IKYﬂX&»C)=L/f%YﬂX&u@f%ZKUdZ ()

where C' = (X¢,Yc) = (24, Yi);e1(c) are the context and D = (X1, Y1) = (24, Yi);e1(p) are the
target points, and z is some latent variable assumed to represent the parameterization of the stochastic
process P : {y tzex. The I(+) is returning the desired indices of a dataset. The points in C' and D
are assumed to come from the true stochastic process P.

3 Recurrent Neural Processes

Next up we want to derive the Recurrent Neural Processes. The first step is to introduce time-
dependent variants of the components of the NP. Therefore we define a time-dependent context C;,
where ¢ is the time step. The observations in Cy, D; are from a stochastic process P;, instead of only
P. In other words, we impose a temporal structure P,_; — P; with the underlying assumption that
at each new timestep, there is a different stochastic process. Equivalently to the NPs, the processes
P, mentioned above are represented as distributions on latent variables z;. The sequential nature of
the data leads to the assumption that it is helpful to make the current z; dependent, not only on the
current context C}, but also on previous timesteps z<¢, resulting in P (z¢|z<¢, Ct). In order to access
information from the previous step, we need to maintain a recurrent state throughout the sequence.
Trivially the observation model is P (Y¢|X4, z:). The bold letters indicate that the variables are
observable. From here it follows that the generative process of the new model is

T
P(Y,Z|X,C) = [[P (YelXt, 20) P (2] 2. Co))

t=1

The graphical model of the generative process is shown in Fig. [Ta] In comparison to the NP in Eq. [T]
we add recurrence to the prior on z. By following the above intuitive and straightforward steps, we
end up with a new NP model family able to deal with stochastic processes changing over time.
Imagine the data points represent frames in a video, a sequence of images, as shown in Fig[Ib] For

Z fv: Time— SP

(©

(b)
(a)

Figure 2: (a) Graphical model of the RNP with a temporal and spatial stochastic process. In this
case, we have no recurrence over the temporal stochastic process. (b) For each data point, we infer
its value in the temporal stochastic process. Here the observed timeline aligns perfectly with the
latent timeline. This means that each Z(t) parameterizes exactly one observed time step. We use the
data points that we already know to infer the temporal SP. (c) In this graphical model, we have no
recurrence over the spatial or the temporal SP.

each frame, we are given some context points. Our goal is to fill in the remaining pixels for each
frame. This task accentuates the fact that the variables inside of the data points do not necessarily
have a temporal dependency between each other. For example, in a frame of a video at a time step ¢,
no pixel in that frame is generated before any other pixel in the same frame. The stochastic process z;
of Eq. (@) is, therefore, keeping track of the spatial relationships between the pixels of the same frame
at time step ¢. The stochastic process z; is not modeling the temporal relationships of pixels between
different time steps. It is the recurrent state that captures all the temporal relationships between pixels
at different time steps.

In theory, the recurrent state of Eq. (2) can model all necessary dynamics. Also, in practice, the model
shows good performance [Singh et al.,|2019]]. However, a recurrent hidden state has no principled
way of propagating forward uncertainty over the temporal dynamics. Furthermore, the model from
Eq. (@) lacks expressivity. It is not bringing the spirit of Neural Processes to sequences. It merely
uses a recurrent state to take care of the sequence dynamics and uses the stochastic process for the
already known problem domain. A model true to the idea of NPs would make use of the stochastic
process also for modeling the temporal dynamics. We want to add a temporal stochastic process
v : {2t }rer that affects all of the spatial stochastic processes z;, as motivated in Fig. This leads
to a new generative process

pY,V,.ZX,C.T.L) =] | TI P(vkixi =) |P(zlz<t.Crov.t) PIL) (3
t=1 \sicI(D;)

where L = (T, Z1) = (t, 2t),¢ 1z, is the context for the temporal stochastic process v. We infer
the temporal context points z; in L from the spatial context points in C;. The graphical model is
shown in Fig. [2a] Since the temporal stochastic process v is now capturing the changing dynamics,
the recurrence over the spatial SP z; in Equation (3) might not be necessary. Leading to:

T
P(Y,MZ|X,C,T,L):H H P (yi|xt,z) | P(2|Cy,v,t) P(v|L) 4)
t=1 \i€I(Dy)

The corresponding graphical model is shown in Fig.
Eq.(3) and (@) have a subtle aspect that turns out to be important for modelling sequences. The
temporal stochastic process v : {z;}:er shares the same temporal indexing 7" with our observed

sequence of data points {(Y}, X1)}¥ 1,7, where N is the size of the data points. That means

latent and observed time steps are aligned; one input sequence { (Y}, X*)}¥, }; corresponds to one
z;. Clearly, this does not need to be the general case. For example, let us say the input sequences
{(YL,x ﬁ)}ﬁvzl}teT correspond to sine waves and z; corresponds to the amplitude of the sine wave.
It is not unreasonable to assume that one z; might correspond to multiple input sequences. To

Z vy : Time — SP

E a 7 v Time — SP Zy 7!2 : Time — SP
Mapping : Q

/ \ hzsmzwzsp M M Sp(malSP

== g =5

Figure 3: (a) We map two time steps of the observed time to one time step of the latent time. The
mapping is indicated by the blue arrows. (b) The graphical model of the RNP accounting for multiple
temporal SPs. By introducing multiple temporal SPs, we explicitly model for different latent timelines.
(c) Visualization of the RNP with multiple temporal SPs.

differentiate between the observed time and the latent time, we introduce a new time line 75, which
is the temporal indexing of the observed data {(Y "}, X'***)}¥, };cr,,.. The time line 7T stays the
time line of the temporal stochastic process v : {z; }+er. In general, we do not know how T" and
T,y relate to each other. As a consequence, we have to find a mapping between the different indices
T <= T,ps to properly assign the credit of influence. We propose to do so via implicitly learning the
connections in a bipartite graph @) between two index sets. One set is formed by 7,5 and the other
by T'. The connections in-between the two disjoint sets have to satisfy the temporal causal constraints
that when ¢ maps to ¢, ¢ + 1 cannot map to t;bs < tobs-

PQIT,Tows) = [[TI P@ttos. |tobs:t) 5)

tET tobs €ETobs

‘We can thus write the model as follows

PY. v, 2TIX. T,)= [II 1I (6)

tobs €Tobs tET ieI(Dtobs)

P(yrlx ovsr U 1) P(Qltons; 1) P(v,t|L)

One can imagine the model with or without recurrence at this point. The model is displayed in Figure
[3al Interestingly we can keep the recurrence on the spatial stochastic process. The updates happen at
the frequency of the corresponding latent time 7" and not T,;s. This is similar to other previously
proposed methods where updates happen at different discrete time steps for different units in RNNs
[Schmidhuber} 1991} 1992, [El Hihi and Bengiol [1996| Koutnik et al., 2014].

Eq. only accounts for one latent time scale. Again, this might be overly restrictive: In the
temperature example, we would want to model multiple times. The daily temperature fluctuations
tick on a different time scale than the yearly seasons. In theory, it is possible for one temporal SP to
account for these factors, but again, this lacks expressivity. This leads to the generative model

POYV.ZTX T O) = [T TI TI TI P(vicrix,f) ™

tovbs€Tobs BEV i€l (Dy ,) teTH

fb? Zt) (2t]2<t, Cy

obs
P (zﬂzgt, Ctobs,uﬁ,tﬁ) P (Qﬁ\tﬁ,tobs) P (vﬂ,t6|Lﬂ)

with the graphical model shown in Figure 3b|and a visualization shown in Fig. Finally, we arrived
at the RNP. We were able to extend the NP to arrive at the RNP and thus show a generalization of the
former. Now we will highlight some important aspects of the RNP. Then we proceed with presenting
the architecture and a suitable loss function to train the model.

Whereas Eq. (2) only spans the spatial dimension with a stochastic process, the RNP additionally
spans an SP over time. This has a few favorable consequences. First, a temporal SP provides more
options to induce biases about the problem, which can be explained with the following example.
Consider Figure] You are given a series of temperature measurements, one measurement per hour
for a few years. The data points are one-dimensional, so technically, the spatial stochastic process
consists of only one variable, and the temporal stochastic process spans over the whole sequence.

Figure 4: We can build a hierarchy of Neural Processes. In the temperature example, we could
use one stochastic process to model the intra-day dynamics, another one to model the intra-week
dynamics. The next stochastic process of the hierarchy could capture the intra-month dynamics, and
SO on.

The temporal SP is, therefore, tasked to model all of the dynamics, and the spatial SP is idle.
However, given our prior knowledge about the temperature data, we can offload computation from
the temporal SP to the spatial SP by splitting the time series into same-sized chunks, e.g., we split
them into days. One chunk is considered one data point. Now the spatial SP is responsible for
modeling the intra-day dynamics of temperature and the temporal SP of the inter-day dynamics. We
cannot only chunk the observed sequence, but we can also chunk the temporal stochastic process and
impose another stochastic process onto those chunks. We could split the observed sequence into daily
chunks, have a first level of temporal SP that models the intra-month dynamics, and a second level of
temporal SP that models the inter-month dynamics and so on. This leads to an architecture we term
the Hierarchical Neural Process (HNP), which is the extension of Figure [2c|to an arbitrary number of
SPs. If the chunks are self-similar, one could even think of a Recursive Neural Process. If we were to
model recursive vegetables, we could even introduce the Romanesco Neural Process. Although the
HNP was just derived from a time series example, it is not restricted to problems with a temporal
structure.

The above application is also a good example to show another limitation of Eq. (2). What if we had
no intuition on how to split the temperature data? An example shown in Figure [5b|

The spatial SP of Equation (2)) would be tasked with modeling only one value, whereas the recurrent
hidden state would have to capture all the dynamics over time. In the RNP, all of the dynamics
could be modeled by the temporal SP or recurrence. To have two components available to model the
dynamics is advantageous. The temporal SP might be better suited to capture uncertainty than the
recurrent state. The recurrent state can help to distinguish the true signal from noise.

The second consequence of a temporal SP is the ability to use information from future timesteps, if
available, in a meaningful way. For example, imagine you are in a setup such as displayed in Figure
[5al You are given information about your targeted time step from the past and from the future.
First, how would you include information from future timesteps in Eq. (2Z)? One could, for example,
first process the available data points 1, 7, 18 and 26, appended with the time step, and then predict
datapoint 13. The hidden state is then additionally tasked with keeping track of time jumps. This goes
directly against the model design where we assume to receive data points in the sequence in which
they were generated P,_; — P,. Additionally, it is overloading the spatial stochastic process with
uncertainty in time and space. However, in the RNP, the explicit indexing with time 7,5 enables a
principled way of querying the temporal stochastic process for specific positions in time. This allows
using future time steps as inducing points. Therefore, when we predict timestep 13 in Figure [5a]
information from the inducing points 18 and 26 of the temporal SP flows into the current prediction.
Now we proceed with the architectural details of the RNP.

3.1 Architecture

We are given a sequence of one-dimensional data points, as displayed in Fig. [5b|and we infer temporal
stochastic processes by selecting a set of N subsequences {{(z;,y;), ..., (¥j4.7,yj+s)} H¥q. The J
is the length of the subsequences. The index j is the starting point of the subsequence and can be
any legal value given the length of the time series. The selection of the subsequences is problem
dependent. It is a convenient way of introducing prior knowledge about the problem into the model.
The subsequences do not necessarily need to have the same length .J. The formulation of the mapping
allows variable length subsequences. For example, in Fig. [6a] we select subsequences as contexts (on

Zfreq Frequency Zamp| . Amplitude

() ()

Figure 5: (a) If we are provided with observed time steps that are further apart, intuitively this should
give better coverage of the temporal stochastic process. The idea of temporal SP also allows by design
to account for future time steps. (b) If we do not know when the dynamics change or we have no prior
knowledge about the problem setting, we have to deal with the one-dimensional time series. In this
case, the spatial SP is underutilized. For example, in a sine wave we know it is parameterized through,
e.g. Frequency and Amplitude. The RNP models the dynamics of the Frequency and Amplitude with
a stochastic process inferred from previously seen time steps.

the left) and predict our target sequence (on the right).

The subsequences are processed by an LSTM, which will result in a sequence of hidden states
Ry = FS™ee ({(25,95), - (€540, y54.7)}"). The hidden states are used to produce a
representation z; = fMIP(hY) of the subsequence. There are many options on how to produce the
representation. One could, for example, simply take the last hidden state h’; as a representation of
the sequence. The representations z; are aggregated, Agg(z;) = z. A temporal SP v is sampled,
v ~ N (py, 0y), Where [y, 0] = fU(2). Since we do not have multidimensional inputs, there is no
spatial SP, which means there are no spatial context points C.. So we can proceed with predicting
our target value y* at z* with our decoder: y, | v,z.,hi—1 ~ N(uy,0y), where [u,,0,] =
frS™dee(p, 1w, x,). The decoder could be either an MLP or an LSTM, because the temporal
stochastic process v should be able to model all of the dynamics. We can even one-shot predict a
whole sequence of length m if we are certain about the governing dynamics of the next m time steps.
The architecture is visually described in the Appendix in Fig. [9]

This is the problem setting we are interested in for our experiments. That is why we provide a loss
function for this model.

3.2 ELBO

We now proceed with deriving the ELBO for this specific RNP model. Note that we use indexing for
both z and ¢, although ¢ is already the indexing of z. This is done to stay consistent with previous
literature, and it makes it clearer to distinguish between the context points and the target points.
However, note that the index of ¢ represents the value that ¢ assumes.

Let q(v | 21.1,t1.1.) be the variational posterior with which we can learn the non-linear decoder g(-).
The Evidence Lower Bound then looks as follows:

L
p(v)
log p(z1.1, | t1:1) > Eg(ulzr., t:. Elopziv,tiJrlo
g (1L| 1L) q(v|z1.0,t1:L) |J__1 g (|) gq<v|21:L7t1:L>‘|

®)

Equivalently to the NPs we split the dataset into a context set z.x,t1.;, and a target set zx41.0,tk+1:L

& (v | 210, t1ar)
> logp(zilv,ti)ﬂogf““’““] ©)

log p(zk41:L | ti:p, 21:) > E ot
Q(U‘ZLL 1.L) el (’U | zl:L>t1:L)

As p(v | z1.k, t1.) is intractable we will use q(v | 1.k, t1.x)

q(v | 21k, t1:1)
q(v ‘ Zl:LatlzL)

L
log p(zry1:L | L1, 21:6) = Bg(ofzry t1.1) [Z log p (zi|v, t;) + log] (10)

i=k+1

Since we cannot directly observe the latent random functions we have to express this in terms of
the observed data. We can express it with the observed data because we have a mapping () from
the observed time steps and the latent time steps. Thanks to the mapping) we can approximate
(218, tran) With (Y(xeq,, 1> Qi1)» Where Qy,, = {x | z at t parameterizes y at x}. Basically the
latent sequence provides a factorization for the joint distribution of the observed sequence. In other
words, we have independent subsequences in the observed sequence data conditioned on the hidden
sequence, as visually motivated in Fig. [5b]

logp(y{ertk+1:L} | Qtl;L7y{x€Qt1:k}) (11)
L max{ertj}
9(v | Yixeq,,, 1> Quir)
- EQ(vly(er)) Z Z log p (yx|x,v)| +log k Lk
s =kt x:min{er‘j} q (’U | Y{XEQM:L}’ Qtl;L)

The jump from Eq. (I0) to Eq. (TI) is again justified via the mapping. Basically, we approximate
(218, L) With (Yxeq,, 1> @t), Where Q. = {x | 2 at ¢ parameterizes y at x}.

The difficult aspect of Eq. is that we also have to learn the mapping to approximate the right
ELBO. As stated in Eq. (TT), we need to iterate over independent subsequences of our observed time
series to calculate the correct loss. In theory, we would have to select the subsequences corresponding
to the mapping to the hidden variables. In practice, however, we do not know what the mapping looks
like. An option is to choose all possible subsequences. Another option is to select subsequences by
hand.

4 Experiments

Electricity: The model is evaluated on the UCI Individual Household Electric Power Consumption
Dataset [Dua and Graff, |2017]. This is a time series of 2°075°259 measurements collected at
1-minute intervals from a single household. Each measurement consists of 7 features related to power
consumption. In order to compare to other works, we choose the feature “active power” as our target
and the other features as inputs. We compare to earlier results [Lim et al., 2019].

Drives: The Coupled Electric Drives is a dataset for nonlinear system identification [Wigrenl 2010].
It consists of 500 time steps and was produced by two motors driving a pulley using a flexible belt,
where the input is the sum of the voltages on the motors, and the target is the speed of the belt. We
compare our model to the results reported earlier [Mattos et al., 2015].

Metrics: We evaluate model accuracy using the Mean Squared Error (MSE) between the predicted
mean and the target value. The MSEs are normalized based on LSTM performance, which allows
for comparing to previous work. The prediction interval coverage probability (PICP) is a way of
measuring the quality of the predicted uncertainty. We measure the performance on a 90% prediction
interval. It is defined as PICP = £ Zthl ¢, where ¢ = 1if (0.05,t) < v < 9(0.95,1)
and ¢; = 0 otherwise. 1(0.05,¢) is the 5th percentile derived from predictions sampled from
N (f (x¢),0) [Lim et al.,[2019].

5 Results

The results in Table[I|and Table 2] suggest that the performance of the RNP model is comparable to
that of other SSMs. The outcome for the Electricity dataset indicates that the conditioning of the
LSTM decoder was deceptive, rather than informative. This could be due to multiple factors (we
did not choose an exhaustive amount of subsequences or sample them intelligently). For Drives,
RNPs outperform LSTM and suggest informative uncertainty measures. For a qualitative analysis,
see Figures [6aljobl The model learns to capture the time series. Figures show that the RNP can
predict the start of the target sequence and adapt its uncertainty.

Table 1: Normalized MSE for One-Step Pre-

dictions
Electricity Drives Table 2: PICP for One-Step Prediction
LSTM 1.000 1.000 . . .
VRNN 1000 - Electricity Drives
’ VRNN 0.986 -

DKF 1.252 -

DKF 1.000 -
DSSM 1.131 -

DSSM 0.964 -
RNF-LG 0.918 -

RNF-LG 0.960 -
RNF-NP 0.856 -

RNF-NP 0.927 -
MLP-NARX - 1.017 RNP 0,947 0874
GP-NARX - 0.953) i
REVARB - 0.462
RNP 1.111 0.238

6 Conclusion

One significant benefit of Neural Processes is its improved computational cost over Gaussian Pro-
cesses. This benefit becomes especially prominent when stacking the stochastic processes like in the
Hierarchical Neural Process, which we hinted at in this thesis. The meta-learning background of the
Neural Process also helps in time series analysis. Some regular events happen very rarely. The switch
from spring to summer happens only once a year, or the crash of the stock market happens every
decade or so. Since the Neural Process was designed to deal with a lack of data, these regular but rare
events are, at least in theory, more easily captured. The good performance on the Drives dataset also
indicates that the RNP framework can profit from the meta-learning background.

To conclude, we introduce a family of models called Recurrent Neural Processes (RNPs), a gen-
eralization of Neural Processes (NPs) to sequences by introducing a notion of latent time through
modeling the state space with NPs, with a wide range of applications. RNPs can derive appropriate
slow latent time scales from long sequences of quickly changing observations hiding specific long
term patterns.

The framework derived for RNPs enables efficient inference of temporal context by establishing con-
ditional independence among subsequences in a given time series. It also provides an appropriate loss
function for training RNPs. RNPs are also not restricted to modeling only two stochastic processes.
The framework can be arbitrarily expanded to a hierarchy of stochastic processes, as shown in Fig.]

Acknowledgments

We would like to thank Florian Trifterer, Pranav Shyam, Giorgio Giannone, Jan Eric Lenssen, David
Ackermann and Heng Xin Fun for insightful discussions, and everyone at NNAISENSE for being
part of such a conducive research environment.

Electricity Electricity

Timesteps Timesteps

(@) (b)

Electricity Drives

20 40 60 80 100 120 140 o 100 200 300 400 500
Timesteps Timesteps

(© (d

Figure 6: (a) A sample of the predictive performance on the Electricity dataset. The green line
depicts the mean; the blue dotted line depicts one standard deviation. The blue line is the target.
The multi-colored segments are randomly sampled subsequences used as context.(b) Close-up of the
predicted sequence from the previous figure.(c) A second sample of the predictive performance on
the Electricity dataset. The model is able to predict the start of the target sequence, given the context
sequences. (d) The model is able to approximate the second half of the Drives dataset. However, it is
relatively uncertain about the start point.

References

Dheeru Dua and Casey Graff. UCI machine learning repository - individual household electric power
con- sumption data set, 2017., 2017. URL http://archive.ics.uci.edu/mll

Salah El Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-term dependencies.
In Advances in neural information processing systems, pages 493—499, 1996.

Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shana-
han, Yee Whye Teh, Danilo J. Rezende, and S. M. Ali Eslami. Conditional Neural Processes. jul
2018a. URL http://arxiv.org/abs/1807.01613,

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali Eslami,
and Yee Whye Teh. Neural Processes. jul 2018b. URL http://arxiv.org/abs/1807.01622,

Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and Jirgen Schmidhuber. The Sacred In-
frastructure for Computational Research. In Katy Huff, David Lippa, Dillon Niederhut, and M
Pacer, editors, Proceedings of the 16th Python in Science Conference, pages 49 — 56, 2017. doi:
10.25080/shinma-7f4c6e7-008.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive Neural Processes. jan 2019. URL http://arxiv.org/
abs/1901.05761.

http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1807.01613
http://arxiv.org/abs/1807.01622
http://arxiv.org/abs/1901.05761
http://arxiv.org/abs/1901.05761

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn. arXiv
preprint arXiv:1402.3511, 2014.

John Lamperti. Stochastic processes: a survey of the mathematical theory, volume 23. Springer
Science & Business Media, 2012.

Tuan Anh Le, Hyunjik Kim, Marta Garnelo, Dan Rosenbaum, Jonathan Schwarz, and Yee Whye
Teh. Empirical Evaluation of Neural Process Objectives. Technical report, 2018. URL http:
//bayesiandeeplearning.org/2018/papers/92.pdfl

Bryan Lim, Stefan Zohren, and Stephen Roberts. Recurrent Neural Filters: Learning Independent
Bayesian Filtering Steps for Time Series Prediction. jan 2019. URL https://arxiv.org/abs/
1901.08096

César Lincoln C. Mattos, Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guilherme A. Barreto,
and Neil D. Lawrence. Recurrent Gaussian Processes. nov 2015. URL https://arxiv.org/
abs/1511.06644.

J. Schmidhuber. Learning complex, extended sequences using the principle of history compression.
Neural Computation, 4(2):234-242, 1992.

Jurgen H. Schmidhuber. Neural sequence chunkers. Technical Report FKI-148-91, Technische
Universitdat Miinchen, Munich, Germany, 1991.

Gautam Singh, Jaesik Yoon, Youngsung Son, and Sungjin Ahn. Sequential Neural Processes. June
2019. URL https://arxiv.org/abs/1906.10264,

Torbjorn Wigren. Input-output data sets for development and benchmarking in nonlinear identification.
2010.

10

http://bayesiandeeplearning.org/2018/papers/92.pdf
http://bayesiandeeplearning.org/2018/papers/92.pdf
https://arxiv.org/abs/1901.08096
https://arxiv.org/abs/1901.08096
https://arxiv.org/abs/1511.06644
https://arxiv.org/abs/1511.06644
https://arxiv.org/abs/1906.10264

Appendix

Overview

The Supplementary Material presents more details about the RNP’s implementation, the parameter
search, and the experiments.

Experimental Details

For all three experiments, we performed a coarse hyperparameter search in a grid with the following
possible value ranges. Minibatch size was always 256 except for the smaller Drives set, where it
was 8. We trained the RNP using teacher forcing. The experiments were conducted on p3.16xlarge
instances on the Amazon Web Services.

Table 3: Parameter space searched during
hyperparameter search.

Possible Values

LSTM Hidden State Size 3,16, 32, (64)
Context Sequence Length 5, 50, 150/ 20, 60, 80
Latent Vector Size 4,32,128
Bidirectional LSTM-Encoder Yes, No

LSTM Layers 1,2

To manage the experiments and ensure reproducibility we used Sacred [Greff et al.,[2017].

Electricity

We reproduced the LSTM baseline model of previous work [Lim et al., 2019] as accurately as
possible, to compare our model to the reported normalized performances. For dataset preprocessing
and architectural details of the other models we refer to the appendix of the aforementioned paper.
We tried multiple context sequence lengths, {50, 150, 300}, to train and test the network, but length
did not have a significant impact on performance. Experiments on this dataset profited from an
increased hidden state and a decreased latent vector size. We trained the model for 130 epochs.

Drives

For the Drives dataset, we relied on results reported by previous work [Mattos et al.|[2015]. Parameter
search favored a small hidden state size and a larger latent vector size. Due to the dataset size, we
trained the model on shorter context and target sequences of length 5 and 15 respectively. For testing,
we used longer sequences to which the model was able to adapt. We trained it for 100’000 epochs.

Table 4: We used these hyperparameters for our final performance comparison.

LSTM RNP

Electricity Drives Electricity Drives
Hidden State Size 50 up to 2048 | 64 32
Context Sequence Length - - 20 80
Test Sequence Length 50 250 60 250
Latent Vector Size - - 4 32
Bidirectional LSTM-Encoder - - Yes No
LSTM Layers 1 upto3 2 2
Learning Rate 0.1 - 0.01 0.0001

11

Metrics Plot Metrics Plot

—— training_mse.loss —— training.loss
~—— eval_mse.loss —— eval.loss

(a) Learning curve of RNP on training and validation (b) Learning curve of LSTM on training and validation
data of the Electricity dataset. Keep in mind that we do data of the Electricity dataset, optimized for MSE.
not optimize for MSE, but for log likelihood.

Metrics Plot

0.25 —— training_mse.loss
—— eval_mse.loss

(c) Learning curve of RNP on training and validation
data of the Drives dataset.

Figure 7: Training and Validation Metrics for RNP and LSTM on the Electricity ((a), (b)) and Drives
dataset ((c))

Electricity Drives

Speed

0 10 20 Tyme'i(:eps 40 50 60 0 50 Timestops 150 200 250
(a) We can see that the network is able to capture the (b) The model captures the system dynamics; the ap-
time series in its bounds of one standard deviation. parent lag in prediction is possibly due to training by

teacher forcing.

Figure 8: Zooming in on RNP’s predictive performance on Electricity ((a)) and Drives ((b))

12

Architecture

Encoder

Context Sequences
LSTM@ hli hé hé s < m) > r

Y1 Y2 | Ys

)

Ty | Lo | T3 AN
LSTM# == [hi [K | by | - > % —>@—> MLP$ I _
1 €L ——____,—/
-
{EE-O-0

_____ Latent
he—1

Decoder

Deterministic

Tx
Aggregate
LSTM$ @ gerce
r aE] (- @

Figure 9: The architecture displayed here was used in the experiments, as explained in the Architecture

section. We infer the temporal stochastic process from hand-selected subsequences. Adapted from
Kim et al.| [2019]

The architecture depicted in Figure 9] exhibits a stochastic and a deterministic path. Having both
paths was reported to be beneficial [Le et al., 2018]]. Each path has its own encoder. Subsequences
fed into the left will be encoded by LSTMs providing sequences of hidden states.

Bidirectional paths yield two sequences of hidden states that one could encode in various ways. Our
final model uses only the last hidden state and the corresponding input.

The codes are aggregated and fed into the LSTM decoder at each time step. Inferring the first hidden
state of the decoder from the representation was found to be helpful.

13

	Introduction
	Background
	Recurrent Neural Processes
	Architecture
	ELBO

	Experiments
	Results
	Conclusion

