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Abstract

Generative Adversarial Networks (GANs) suffer from the mode collapse problem.
Variational Autoencoders explicitly maximize a reconstruction-based data log-
likelihood forcing the coverage of all modes, but at the cost of the overall quality
of generated samples. Recent efforts to combine VAE and GAN frameworks still
suffer from several issues chief among them that the data log-likelihood and prior
terms are at odds. To deal with this, we propose a novel objective for VAE-GAN
frameworks which integrates a “Best-of-Many” sample reconstruction cost. Our
proposed objective along with our hybrid VAE-GAN framework shows significant
improvement over both prior hybrid VAE-GANSs and plain GANs in mode coverage
and quality.

1 Introduction

Generative Adversarial Networks (GANs) (Goodfellow et al.,[2014) have achieved state-of-the-art
performance, with respect to sample quality e.g. in case of generative modeling of image distributions.
However, GANs do not explicitly estimate the data likelihood and thus is no direct incentive to cover
the whole data distribution leading to the mode collapse problem.

In contrast, Variational Autoencoders (VAEs) (Kingma
and Welling| 2014) explicitly maximize data likelihood
and can be forced to cover all modes (Bozkurt et al., 2018}, it
Shu et all 2018). VAEs enable sampling by constrain- [ Fpeoder — Decoder [ o> Best Match
ing the latent space to a unit Gaussian prior. However, 2 Real; Fake
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(2017); [Larsen et al] (2016); [Rosca et al.| (2019) which Figure I: In contrast to prior work, our novel
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VAE generation quality. Notably in Rosca et al.|(2019), coder to draw samples with high fikelthood.
GAN:S are integrated in a VAE framework by augmenting the L;/Ly data likelihood term in the VAE
objective with a GAN discriminator based synthetic likelihood ratio term.

However, Rosca et al.| (2019) report that in case of hybrid VAE-GAN:S, the latent space does not
usually match the Gaussian prior. This is because, the reconstruction log-likelihood in the VAE
objective is at odds with the divergence to the latent prior (Tabor et al.| 2018) (also in case of
alternatives proposed by Makhzani et al.| (2016)); |Arjovsky et al.| (2017)). This problem is further
exacerbated with the addition of the synthetic likelihood term in the hybrid VAE-GAN objective — it
is necessary for sample quality but it introduces additional constraints on the encoder/decoder. This
leads to the degradation in the quality and diversity of samples. Therefore, we relax the constraints
on the hybrid VAE-GAN encoder, giving the encoder multiple chances to draw samples with high
reconstruction likelihood — only the best sample is penalized (see [Figure T). We show that our “Best
of Many”-VAE-GAN framework significantly improves upon prior hybrid VAE-GANSs and plain
GAN:Ss, on the benchmark highly multi-modal synthetic datasets, CIFAR-10 and CelebA.
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2 Leveraging the “Best of Many’’ samples

We begin with a discussion of our VAE backbone with prior distribution p(z). VAEs maximize the
log-likelihood of the data, using amortized variational inference with a recognition network, where
q4(z|x) is the posterior distribution of latent variables. The ELBO is maximized,

Lvae = Eq, )y l0g(po(x[2)) — Drcr(g0(2[%) || p(2))- (1)

However, in the average likelihood of the samples generated from the posterior ¢, (z|x) is
maximized. This forces all samples from ¢4 (z|x) to explain x equally well, penalizing any variance
in g4(z|x) and thus forcing it away from the Gaussian prior p(z). Therefore, in|Bhattacharyya et al.
(2018) a “Best of Many” sample objective was proposed,

Lvis = 10g (Ey,ppo(x12) ) — Dicr (4o(zIx) || p(2)). @

Unlike , this objective considers multiple samples from ¢(z|x) and the likelihood of only the
best sample. This allows g, (z|x) to have higher variance, helping it better match the prior and
significantly reducing the trade-off with the data log-likelihood. However, only a reconstruction
based Gaussian data likelihood term is considered, which might not be sufficient in case of complex
high dimensional distributions e.g. in case of image data this leads to blurry samples. We address this
issue by integrating a GAN based synthetic likelihood term into (2)), (full derivation in the Appendix)

s o clo (B 0 P20 ) + 8108 (B oo (x12)) = Dica(ao(2k) | p(2)
3
=1lz,x
~ alog (E%(ZX)M) + Blog (E%(Z|X)p9(x|z)) — Dxr(gs(z|x) || p(2)).

The ratio pe (y=112x)/1—p(y=1|x) should be high for generated samples which are indistinguishable from
real images and low otherwise. This can be realized using a shared jointly trained discriminator Dy. In
case of image data, we observe that directly estimating this ratio using Dy leads to increased stability
and improved results and can be further improved with the addition of spectral normalization (Miyato
et al,2018). In practice, we estimate both the integrals of (3]) using Monte-Carlo integration. The
reconstruction based likelihood E, (,x)pe(x|z) takes the form e~ Mx=%lln _ 3 Jog-sum-exp which is
numerically unstable. As we perform stochastic gradient descent, we can deal with this after sampling
of the data points. We can well estimate the log-sum-exp using the max — the “Best-of-Many” samples
(Nielsen and Sunl 2016)). The final objective optimized by our BMS-VAE-GAN takes the form,

Lovss = a E;log (Di(x|2)) + fmaxlog(ps(x[2)) — D1 (4s(2lx) | p(2))- )

We use the same optimization scheme as in Rosca et al.|(2019). We provide the algorithm in detail in
the Appendix.

Approximation error. This “Best-of-Many” estimation does introduce a log(7") error term. However,
as pointed out in|Bhattacharyya et al.| (2018)), this error term is dominated by the low data likelihood
term in the beginning of optimization. Later, as generated samples become more diverse, the log
likelihood term is dominated by the best sample — “Best of Many” is equivalent.

Classifier based estimate of the prior term. Recent work (Makhzani et al., |2016; |Arjovsky et al.,
2017} Rosca et al.,|2019) has shown that point-wise minimization of the KL-divergence using its
analytical form leads to degradation in image quality. Instead, KL-divergence term is recast in a
synthetic likelihood ratio form (similar to (3)) minimized “globally” using a classifier instead of
point-wise. Therefore, unlike Bhattacharyya et al.| (2018)), here we employ a classifier based estimate
of the KL-divergence to the prior. However, as pointed out by prior work on hybrid VAE-GANs
(Rosca et al.| [2019)), a classifier based estimate with still leads to mismatch to the prior as the trade-off
with the data log-likelihood still persists without the use of the “Best of Many” samples. Therefore,
as we shall demonstrate next, the benefits of using the “Best of Many” samples extends to case when
a classifier based estimate of the KL-divergence is employed.

3 Experiments

Next, we evaluate our novel objective (@) for hybrid VAE-GANSs on highly multi-modal synthetic
data, CIFAR-10 and CelebA.



Table 2: Visualization of samples.
Table 1: Evaluation on multi-modal synthetic data.
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Table 3: Effect of our novel objective in the latent space. Top Row: The standard WAE and a-GAN objectives
leads to mismatch to the prior in the latent space. We show samples z (in red) which are highly likely under the
standard Gaussian prior (blue) but have low probability under the learnt marginal posterior g4 (z). Bottom Row:
We show that such points z lead to low quality data samples (in red), which do correspond to any of the modes.
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Synthetic data. We evaluate in|Table 1|on the standard 2D Grid and Ring datasets, which are highly
challenging due to their multi-modality. The metrics considered are the number of modes captured
and % of high quality samples (within 3 standard deviations of a mode). The generator/discriminator
architecture is same as in|Srivastava et al.[(2017). We see that our BMS-VAE-GAN (using the best of
T = 10 samples) outperforms state of the art GANs e.g. (Eghbal-zadeh et al.,|2019) and the WAE and
a-GAN baselines. The explicit maximization of the data log-likelihood enables our BMS-VAE-GAN
and the WAE and a-GAN baselines to capture all modes in both the grid and ring datasets. The
significantly increased proportion of high quality samples with respect to WAE and a-GAN baselines
is due to our novel “Best of Many” objective. We illustrate this in Following [Rosca et al.
(2019) we analyze the learnt latent spaces in detail, in particular we check for points (in red) which
are likely under the Gaussian prior p(z) (blue) but have low probability under the marginal posterior
46(z) = [ q4(z|x)dx. We use tSNE to project points from our 32-dimensional latent space to 2D. In
(Top Row) we clearly see that there are many such points in case of the WAE and a-GAN
baselines (note that this low probability threshold is common across all methods). In[Table 3| (Bottom
Row) we see that these points lead to the generation of low quality samples (in red) in the data space.
Therefore, we see that our “Best of Many” samples objective helps us match the prior in the latent
space and thus this leads to the generation of high quality samples and outperforming both state of
the art GANs and hybrid VAE-GAN baselines.

Table 4: FID on CIFAR-10 using 10k/5k

real/generated samples. .
Table 5: FID on CelebA using 10k/10k

Method FID | real/generated samples.
100k Generator Iterations Method FID |
SN-GAN (Miyato et al |2018) __ 253 DCGAN (Radford et al| 016} 31.1£0.9
BW-GAN (Adler and Lunz{[2018) 25.1 = — 1
- WGAN-GP (Gulrajani et al.[[2017) 26.8+1.2
a-GAN + SN (Rosca et al.{2019) T =1 24.6+£0.3 .
BEGAN (Berthelot et al.[[2017) 26.3+0.9
BMS-VAE-GAN (Ours) 7' =10 23.84+0.2 . - g
BMS-VAE-GAN (Ours) T’ — 30 23.400.2 Dist-GAN (Tran et al.[[2018) 23.7+£0.3
-VAE-GAN (Ours) T" = AL0. SN-GAN (Miyato et al.| 2018} 21.940.8
300k Generator Iterations a-GAN (Rosca et al.[[2019) 19.2+0.8
Dist-GAN (Tran et al.|[2018) 22.9 a-GAN + SN (Roscaetal.|2019) T =1 15.940.2
BMS-VAE-GAN (Ours) 7" = 10 21.8+0.2 BMS-VAE-GAN (Ours) 7" = 30 14.7+0.4




CIFAR-10. The popular CIFAR-10 dataset consists of images belonging to 10 diverse real-world
classes with considerable intra-class variability. It has been observed that plain auto-encoding based
approaches |[Kingma and Welling| (2014); Makhzani et al.|(2016) do not perform well, as a simple
Gaussian reconstruction based likelihood is insufficient for such highly multi-modal image data. We
report quantitative results in using the FID and IoVM metrics. Please note that due
to the much higher dimensionality (100), it makes the latent spaces much harder to reliably analyze.
Therefore, we rely on the FID and IoVM metrics — also as in this task we are primarily interested
in sample (image) quality. We use the standard CNN architecture used in SN-GAN (Miyato et al.
2018) and the hinge loss to optimize the synthetic likelihood. Therefore, we compare to models
which also use the same model architecture and the hinge loss on the adversarial discriminator.
We better highlight the effectiveness of our “Best of Many” objective, we compare to a improved
version of a-GAN (compared to the simple DCGAN based model used in (Rosca et al.,[2019)) with
a standard CNN architecture and hinge loss on the discriminator. We see that we outperform both
the hybrid a-GAN and plain SN-GAN and BW-GAN in terms of FID score. This shows that our
BMS-VAE-GAN is better at capturing the image distribution without any loss of sample quality. We
also observe an increase in performance with 7" = 30 samples, although this increase saturates with
increasing 7'. The IoVM metric (also see again illustrates that we are able to better capture
the image distribution. Finally, we also experiment using the setting of Dist-GAN [Tran et al.| (2018)) —
training for 300k iterations with the same generator architecture. Again, we significantly outperform
Dist-GAN and achieve a FID of 21.8 — the state of the art FID score with hinge loss.

Table 7: Closest generated images found using IvOM.

Test Sample SN-GAN «@-GAN + SN BMS-VAE-GAN

Table 6: IvOM on CIFAR-10.

Method IvOM |

DCGAN (Radford et al.{|2016) 0.0084+0.0020 iy L]
VEEGAN (Srivastava et al.[[2017) 0.0068+0.0001 L -
SN-GAN (Miyato et al.{|2018) 0.005540.0006

a-GAN + SN (Rosca et al.{2019) T'=1 0.0048+0.0005

BMS-VAE-GAN (Ours) 7"= 30 0.0037+0.0005
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CelebA. We present quantitative results on the CelebA dataset in and qualitative results in
Appendix C. We again employ the FID metric to measure performance. We use the standard DCGAN
architecture across all baselines. We use the hinge loss to optimize the synthetic likelihood. We
again compare to a improved version of a-GAN with a hinge loss on the discriminator to highlight
the effectiveness of the “Best of Many” samples. We again observe that our BMS-VAE-GAN with
T = 30 samples perform best. We see that the base DCGAN has the weakest performance among
the GANs. BEGAN suffers from partial mode collapse. The SN-GAN performs better compared
to the WGAN-GP. This shows the effectiveness of Spectral Normalization. However, there exists
considerable artifacts in its generations. The a-GAN of |[Rosca et al.| (2019), which integrates the
base DCGAN in its framework performs significantly better (31.1 vs 19.2 FID). This shows the
effectiveness of hybrid VAE-GAN frameworks in increasing quality and diversity of generations. Our
a-GAN + SN regularized with Spectral Normalization performs significantly better (15.9 vs 19.2
FID). Finally, our BMS-VAE-GAN improves significantly over the a-GAN + SN baseline using the
“Best-of-Many” samples (14.7 vs 15.9 FID) and slows a clear increase in sharpness.

4 Conclusion

We propose a new objective for training hybrid VAE-GAN frameworks which overcomes key
limitations of current hybrid VAE-GANs. We integrate a “Best-of-Many” reconstruction likelihood
which helps in covering all the modes of the data distribution while maintaining a latent space as
close to Gaussian as possible. Our hybrid VAE-GAN framework outperforms state-of-the-art hybrid
VAE-GANSs and plain GANs in generative modelling on highly multi-modal synthetic data, CIFAR-10
and CelebA, demonstrating the effectiveness of our approach.
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Appendix A. Complete derivation

Here we provide complete derivation of (3). For completeness, we begin with a derivation of the
multi-sample objective used in Bhattacharyya et al.| (2018).

The VAE and hybrid VAE-GANSs (Dumoulin et al., [2016; [Makhzani et al.,|2016; |[Rosca et al., [2019j
Zhao et al.,[2017) maximize the log-likelihood of the data (x ~ p(x)). The log-likelihood, assuming
the latent space to be distributed according to p(z),

log(p0(x) = o ([ plxizip(z)a ). ©

Here, p(z) is usually Gaussian. However, the integral in (5)) is intractable. VAEs and Hybrid VAE-
GANSs use amortized variational inference using an (approximate) variational distribution g (z|x)
(jointly learned using an encoder),

(o (x)) = oz ([ mo(xie) s au(abots).

To arrive at a tractable objective, the standard VAE objective applies the Jensen inequality at this stage,
but this forces the final objective to consider the average data-likelihood. Following Bhattacharyya
et al.| (2018)), we apply the Mean Value theorem of Integration (Comenetz, [2002) to leverage multiple
samples,

b !
p(z') /
> ) 6
tox(po() = o ([ poli) s =) +1og (L2S). 7 < ©
We can lower bound (6)) with the minimum value of 7/,
b !
, p(Z)
> . S2
log(py(x)) = log (/a Po(x12) 5 ([x) d'z) Ay log <q¢(Z’|x)) (52)

As the term on the right is difficult to estimate, we approximate it using the KL divergence (as in
Bhattacharyya et al.| (2018)). Intuitively, as the KL divergence heavily penalizes g, (z|x) if it is high
for low values p(z), this ensures that the ratio P(')/q, («|x) is maximized. Similar to Bhattacharyya
et al.| (2018), this leads to the “many-sample” objective (4) of the main paper,

Lus =108 (Eq,popo(x12) ) = Dicr(as(zIx) | p(2)). (4)

Next, we integrate a synthetic likelihood term with (). We first convert the likelihood term in () to a
likelihood ratio form which allows for synthetic estimates, (c, S are regularization terms) by dividing

and multiplying py(x|z) by p(x),

010 (Eq, popo(x12)) + Blog (Eq,opo(x12) ) ~ D1 (p(z) || as(2lx)) )

o o (Egy i "0 + 108 (Eycaom (312) = Dicslas(a) || 20).

To enable the estimation of the likelihood ratio pe (x12)/p(x) using a neural network, we introduce the
auxiliary variable y where, y = 1 denotes that the sample was generated and y = 0 denotes that the
sample is from the true distribution. We can now express (7) as (using Bayes theorem),

m) + Blog (E%(zlx)pe(x‘z)) ~ Drr(gs(zx) || 2(2).

po(y = 1]z, %)
40 (2x) 7 —ply = 1]x)

[e% 10g (Eqd,(z\x)
®)
=alog (B ) + 8108 (Eq, canpa(x|2) ) = Dics (as(zlx) | p(2).

This is because, (assuming independence p(z, x) = p(z)p(x) )

ply = 1|z, x)p(x)

p9(X|Z,y = 1) = p(y — 1)
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and,
ply = 0x)p(x)

ply =0)
Assuming, p(y = 0) = p(y = 1) (equally likely to be true or generated),

pg(X|Z,y = 1) _ p9(y = 1|va)
p(xly =0) p(y = 0[x)

po(xly =0) =

Thus, finally we have,
po(y = 1z,x)
p(y = 0[x)

=1
alog (E%MM) + B10g (Bq, (oppo(x12) ) = Dicr(ag (21x) || (2)).

= alog (E,, ) + B10g (Eq,popo(x12)) — Dicras(zl) | p(2)

This completes the derivation.
Appendix B. Training Algorithm

Best Match Our “Best of Many”-VAE-GAN Objective
>max log(pg (x|2%))

X ~p(x> -
Real - Fake
% ~ po(x|z) gy (z]x) +
GAN
z ~ qy(z[x) ‘l@ —> Real - Fake

Figure 2: Overview of our BMS-VAE-GAN architecture at training time. The terms of our novel objective
(@ are highlighted at the right. We consider only the best sample from the generator Gy while computing the
reconstruction loss. This enables us to generate diverse samples covering all modes of the data distribution while
maintaining the low divergence to the prior.

Algorithm 1: BMS-VAE-GAN Training.

Initialize parameters of Ry, Gy, Dy, Dy ;
for ¢ < 0 to max_iters do
Update R4, Gy (jointly) using our Lgms.s objective;
Update Dj using hinge loss to produce high values (> a) for real images and low (< b)
otherwise: [,y max {0, a — log(Di(x))} + Ep,y max {0,b + log(D1(Gy(2)))};
Update Dy using the standard cross-entropy loss:
Ep(z) IOg(DL(Z)) + IEp(x) 10g<1 - DL(R¢(X)>);

end

We detail in[algorithm 1} how the components Ry, Gg, Dy, Dy, of our BMS-VAE-GAN (see Figure
Figure 2)) are trained. We follow Rosca et al| (2019) in designing However, unlike [Roscal
et al[(2019), we train R4, Gy jointly as we found it to be computationally cheaper without any loss
of performance. Unlike Rosca et al.|(2019)), we use the hinge loss to update Dy as it leads to improved
stability (as discussed in the main paper).

Appendix C. Qualitative Examples on CelebA

We provide qualitative results on CelebA in We observe in [Figure 3a| that although the
SN-GAN (Miyato et al., 2018) produces sharp images, we also observe considerable number of
artifacts. In contrast, the generations of our a-GAN + SN do not contain such artifacts. Finally, the
addition of the “Best of Many” sample loss leads to a considerable increase in sharpness.




(c) Our BMS-VAE-GAN (T = 30)

Figure 3: Qualitative results on CelebA.
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