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Abstract

To what extent can Variational Autoencoders (VAEs) identify semantically mean-
ingful latent variables? Can they at least capture the correct topology if ground-truth
latent variables are known? To investigate these questions, we introduce the Diffu-
sion VAE, which allows for arbitrary (closed) manifolds in latent space. A Diffusion
VAE uses transition kernels of Brownian motion on the manifold. In particular,
it uses properties of the Brownian motion to implement the reparametrization
trick and fast approximations to the KL divergence. We show that the Diffusion
Variational Autoencoder is indeed capable of capturing topological properties.

1 Motivation

Figure 1: Latent space and reconstruction im-
ages for a ∆VAEs with S1 as latent space
trained on the rendered images of a 3D model
of a rotating airplane. The ∆VAE manages to
capture the underlying geometrical structure.

A large part of unsupervised learning is devoted to the
extraction of meaningful latent factors that explain a
certain data set. The terminology around Variational
Autoencoders (VAEs) [1, 2] suggests that they are
a good tool for this task: they encode datapoints in
a space that is called latent space. Purely based on
this terminology, one could be tempted to think of
elements in this space as latent variables, but is this
interpretation warranted?

As an example, one could think of pictures of dif-
ferent objects, rotated over various angles, translated
over various positions, taken under different light-
ing conditions. Desired algorithms should discover
angles, positions and lighting conditions as latent
variables.

One aspect of such algorithms that currently receives
a lot of attention is the disentanglement of latent fac-
tors. It means that a desired algorithm should cleanly
separate (disentangle) the various latent factors: an-
gles should be separated from the type of the object
and from lighting. A variety of algorithms applied to
this end are based on VAEs and have a linear latent
space [3, 4, 5, 6, 7]; separation should correspond
to latent factors being represented in independent
subspaces.

But there is a very important, different aspect to such algorithms as well, that is still relevant even
when a factor such as rotation is disentangled from the rest. The rotation of an object is, due to its
periodicity not a linear latent factor, and cannot be disentangled into linear subspaces further. Still,
we want our algorithm to somehow capture it, but what do we even mean by that?
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To be precise, a rotation could, in principle, satisfy the definition of linear disentanglement by Higgins
et al. [8]. However, simple experiments with rotations of objects show that in general, it does not in
case of a simple VAE [9]. This illustrates the need for either a different definition of “capturing a
rotation", or a different VAE. We follow both directions.

We can sharpen the discussion by assuming that we know a ground-truth generative process for the
pictures. For instance, pictures are generated by picking at random an angle α in the circle S1 which
we call Ztrue, rotating an airplane by that angle and taking a picture Gen(α).

Suppose for the moment that we are working with a VAE, we give the latent space also the structure
of S1 and call it ZVAE. The encoder Enc of the VAE would take a picture as input and produce an
element in ZVAE as output.

Naively, from the element in latent space we would like to be able to read off directly what was the
original angle. However, since rotations of latent space do not change the loss of the autoencoder,
this would be too much to ask for (the choice of origin is somehow arbitrary and can never be found
by the autoencoder). The best we can hope for is that the composition

Ztrue
Gen−→ X

Enc−→ ZVAE

is an isometry, i.e. it is a bijection that preserves distances.

In some cases, even an isometry may be too much to ask for and we can further weaken the
requirement and just ask that the composition is a bi-Lipschitz map with bi-Lipschitz constant not too
far from 1 (this is what we would mean by capturing the geometry), or that the composition is just a
homeomorphism, i.e. a continuous map with a continuous inverse (what we would mean by capturing
the topology). These requirements express in a weaker and weaker fashion that points that are close
in data space should end up close in latent space and vice versa. The last version of the requirement
closely corresponds to homeomorphic auto-encoding [10, 11].

We narrow down the question is the interpretation of the latent space of a VAE warranted? to can a
VAE capture topological and geometrical properties of latent space?

For the VAE to have any chance of doing so, the latent space needs to be homeomorphic to the
original space, otherwise one runs into the phenomenon of manifold mismatch. Therefore, to follow
this route and investigate whether Variational Autoencoders are capable of capturing geometry or
topology of the true latent variables, we needed to construct VAEs with manifolds as latent space,
instead of just a linear vector space.

For special types of manifolds, such VAEs have already been developed: the hyperspherical VAEs
allow for spheres in latent space [12], and Falorsi et al. implemented VAEs where the latent space is
a Lie group [11].

2 Related work

Our work originated out of the search for algorithms that find semantically meaningful latent factors
of data. The use of VAEs and their extensions to this end has mostly taken place in the context of
disentanglement of latent factors [3, 8, 13]. Examples of extensions that aim at disentangling latent
factors are the β-VAE [3], the factor-VAE [4], the β-TCVAE [6] and the DIP-VAE [7].

However, the examples in the introduction already show that in some situations, the topological
structure of the latent space makes it practically impossible to disentangle latent factors. The latent
factors are inherently, topologically entangled: in the case of a 3d rotation of an object, one cannot
assign globally linearly independent angles of rotation.

Still, it is exactly global topological properties that we feel a VAE has a chance of capturing. What
do we mean by this? One instance of ‘capturing’ topological structure is when the encoder and
decoder of the VAE provide bijective, continuous maps between data and latent space, also called
homeomorphic auto-encoding [11, 10]. This can only be done when the latent space has a particular
topological structure, for instance that of a particular manifold.

We can also ask for more, that besides topological structure also geometric structure is captured. In
that case, we require that distances in latent space carry some important meaning, for instance that
distances in latent space are close to distances in data space, or to distances between ground-truth
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latent variables in case they are known. Tosi et al. [14] and Arvanitidis et al. [15] take a related, but
different point of view. They do not consider a standard metric or predetermined metric on latent
space, but rather determine a Riemannian (pullback) metric that by construction reflects the distances
in data space.

One of the main challenges when implementing a manifold as a latent space is the design of the
reparametrization trick. In [12], a VAE was implemented with a hyperspherical latent space. To our
understanding, they implemented a reparametrization function which was discontinuous.

If a manifold has the additional structure of a Lie group, this structure allows for a more straightfor-
ward implementation of the reparametrization trick [11]. In our work, we do not assume the additional
structure of a Lie group, but develop a reparametrization trick that works for general submanifolds of
Euclidean space, and therefore by the Whitney (respectively Nash) embedding theorem, for general
closed (Riemannian) manifolds.

The method that we use has similarities with the approach of Hamiltonian Variational Inference [16].
Moreover, the implementation of a manifold as a latent space can be seen as enabling a particular,
informative, prior distribution. In that sense, our work relates to [17, 18]. The prior distribution we
implement is degenerate, in that it is does not assign mass to points outside of the manifold.

There are also other ways to implement approximate Bayesian inference on Riemannian manifolds.
For instance, Liu and Zhu adapted the Stein variational gradient method to enable training on a
Riemannian manifold [19]. However, their proposed method is rather expensive computationally.

The family of approximate posteriors that we implement is a direct generalization of the standard
choice for a Euclidean VAE. Indeed, the Gaussian distributions are solutions to the heat equations, i.e.
they are transition kernels of Brownian motion. One may want to increase the flexibility of the family
of approximate posterior distributions, for instance by applying normalizing flows [20, 21, 22].

3 The Diffusion Variational Autoencoder ∆VAE

Our aim was to develop a VAE that also works if the latent space is just a manifold, and does not have
the additional structure of a Lie group. This has led to the development of the Diffusion Variational
Autoencoder (∆VAE) [23].

Two important ingredients in a Variational Autoencoder are the reparametrization trick and a quick
computation of the loss. Using a random-walk approximation of the diffusion kernels, we can
implement the reparametrization trick. As a replacement of the exact evaluation of the KL loss in
a standard Variational Autoencoder, we introduce an approximation of the KL term relying on a
parametrix expansion.

A VAE has generally the following ingredients:

• a prior probability distribution PZ on a latent space Z,
• a family of encoder distributions QαZ on Z, parametrized by α in a parameter space A,
• a family of decoder distributions PβX on data space X , parametrized by β in a
• an encoder neural network α which maps from data space X to the parameter space A,
• a decoder neural network β which maps from latent space Z to parameter space B.

The neural network weights are optimized to minimize the negated evidence lower bound (ELBO)

L(x) = −E
z∼Qα(x)

Z

[
log p

β(z)
X (x)

]
+DKL

(
Qα(x)
Z ||PZ

)
.

The first term is called reconstruction error (RE); up to additive and multiplicative constants it equals
the mean squared error (MSE). The second term is called the KL-loss.

In a very common implementation, both latent space Z and data space X are Euclidean, and the
families of decoder and encoder distributions are multivariate Gaussian. The encoder and decoder
networks then assign to a datapoint or a latent variable a mean and a variance respectively.

When we implementZ as a Riemannian manifold, we need to find an appropriate prior distribution, for
which we will choose the normalized Riemannian volume measure, a family of encoder distributions
QαZ , for which we will take transition kernels of Brownian motion, and an encoder network mapping
to the correct parameters.
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Brownian motion on a Riemannian manifold We will briefly discuss Brownian motion on a
Riemannian manifold, recommending lecture notes by Hsu [24] as a more extensive introduction. In
the paper, we always assume that Z is a smooth Riemannian submanifold of Euclidean space, which
is closed, i.e. it is compact and has no boundary. There are many different, equivalent definitions of
Brownian motion. We present here the definition that is closest to our eventual approximation and
implementation.

ε1

ε2

ε3

ε4

z

z1

z2
z3

z4

Z

Figure 2: Random walk on a (one-
dimensional) submanifold Z of R2, with
time step τ = 1.

We will construct Brownian motion out of random walks
on a manifold. We first fix a small time step τ > 0. We
will imagine a particle, jumping from point to point on
the manifold after each time step, see also Fig. 2. It will
start off at a point z ∈ Z. We describe the first jump, after
which the process just repeats. After time τ , the particle
makes a random jump

√
τε1 from its current position, into

the surrounding space, where ε1 is distributed according
to a radially symmetric distribution in Rn with identity
covariance matrix. The position of the particle after the
jump, z +

√
τε1, will therefore in general not be on the

manifold, so we project the particle back: The particle’s
new position will be z1 = P (z+

√
τε1) where the closest-

point-projection P : Rn → Z assigns to every point
x ∈ Rn the point in Z that is closest to x. After another
time τ > 0 the particle makes a new, independent, jump ε2 according to the same radially symmetric
distribution, and its new position will be z2 = P (P (z +

√
τε1) +

√
τε2). This process just repeats.

Key to this construction, and also to our implementation, is the projection map P . It has nice
properties, that follow from general theory of smooth manifolds. In particular, P (x) smoothly
depends on x, as long as x is not too far away from Z.

This way, for τ > 0 fixed, we have constructed a random walk, a random path on the manifold.
We can think of this path as a discretized version of Brownian motion. Let now τN be a sequence
converging to 0 as N →∞. For fixed N ∈ N, we can construct a random walk with time step τN ,
and get a random path WN : [0,∞)→ Z.

The random paths WN converge as N → ∞ to a random path W (in distribution). This random
path W is called Brownian motion. The convergence statement can be made precise by for instance
combining powerful, general results by [25] with standard facts from Riemannian geometry. But,
because Riemannian manifolds are locally, i.e. when you zoom in far enough, very similar to
Euclidean space, the convergence result essentially comes down to the central limit theorem and its
upgraded version, Donsker’s invariance theorem.

In fact, W can be interpreted as a Markov process, and even as a diffusion process. If A is a subset of
Z, the probability that the Brownian motion W (t) started at z is in the set A at time t is measured by
a probability measure Qt,zZ applied to the set A. We denote the density of this measure with respect to
the standard Riemannian volume measure Vol by qZ(t; z, ·). The function qZ is sometimes referred
to as the heat kernel.

Let us close this subsection with an alternative description of the function qZ . It is also characterized
by the fact that for every function u0 : Z → R, the solution to the partial differential equation{

∂tu = 1
2∆u on (0,∞)× Z

u(t = 0, ·) = u0 on Z

is given by

u(t, z) =

∫
Z

u0(y)qZ(t; z, y)dy.

Riemannian manifold as latent space A ∆VAE is a VAE with a Riemannian submanifold of
Euclidean space as a latent space, and the transition probability measures of Brownian motion Qt,zZ
as a parametric family of encoder distributions. We propose the uniform distribution for PZ , which is
the normalized standard measure on a Riemannian manifold (although the choice of prior distribution
could easily be generalized).
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As in the standard VAE, we then implement functions z : X → Z and t : X → (0,∞) as neural
networks.

We optimize the weights in the network, aiming to minimize the average loss for the loss function

−E
z∼Qt(x),z(x)

Z

[
log p

β(z)
X (x)

]
+DKL

(
Qt(x),z(x)
Z ‖PZ

)
.

The first integral can often only be approached by sampling, and in that case it is often advantageous
to perform a change of variables, commonly known as the reparametrization trick [1].

Approximate reparametrization by random walk Instead, we construct an approximate
reparametrization map by approximating Brownian motion by a random walk, similar to how we
defined it in this paper. Starting from a point z on the manifold, we set a random step in ambient
space Rn. We then project back to the manifold and repeat: we take a new step and project back to
the manifold. In total, we take N steps, see Fig. 2.

We define the function g : EN × (0,∞)× Z → Z by

g(ε1, . . . , εN , t, z) = P

(
· · ·P

(
P

(
z +

√
t
N ε1

)
+
√

t
N ε2

)
· · ·+

√
t
N εN

)
.

If we take ε1, . . . , εN as i.i.d. random variables, distributed according to a radially symmetric
distribution, then y = g(ε1, . . . , εN , z) is approximately distributed as a random variable with density
qZ(t; z, ·). The computational complexity of the sampling is linear in N . Yet the approximation is
very accurate for small times t, even for small values of N , if we take ε1, . . . , εN approximately
Gaussian. We have set N = 10 throughout the presented results. The observation that for small
times, the diffusion kernel qZ is approximately Gaussian, is also very helpful in approximating the
KL term in the loss.

Approximation of the KL-divergence Unlike the standard VAE, or the hyperspherical VAE with
the Von-Mises distribution, the KL-term cannot be computed exactly for the ∆VAE. There are several
techniques one could use to get, nonetheless, a good approximation of the KL divergence. We have
implemented an asymptotic approximation, which we will describe first.

Asymptotic approximation We can use short-term asymptotics, i.e. a parametrix expansion, of
the heat kernel on Riemannian manifolds to obtain asymptotic expansions of the entropy.

Proposition 1 The KL divergence follows the following formal asymptotic expansion, where d is the
dimensionality of Z, and Sc is the scalar curvature of the manifold Z in z.

DKL(Qt,z‖PZ) =

∫
Z

qZ(t; z, y) log qZ(t; z, y)dy + log Vol(Z)

= −d
2

log(2πt)− d

2
+ log Vol(Z) +

1

4
Sc t+ o(t).

We give the derivation of the expansion in Appendix A. In our implementation, we restrict t so that it
cannot become too large, thus ensuring a certain accuracy of the asymptotic expansion.

Besides the asymptotic approximation, one may also choose to approximate the heat kernel numeri-
cally or use Monte Carlo approximation.

4 Experiments

4.1 Periodic translation of pictures

As a test of the ∆VAE we trained a ∆VAE with a flat torus as a latent space on a dataset consisting of
periodically translated versions of the same picture. That is, we took a fixed picture, sampled many
random elements from the flat torus (depicted in Fig. 3a) and shifted the picture over those elements.
The ∆VAE only gets to see the dataset of resulting pictures, but not the corresponding shifts.

After training, the encoder of the ∆VAE maps pictures to latent space, and the important question is
whether it arranges the picture according to the latent shifts. To judge that, we have sampled a regular
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grid of shifted pictures, and plotted their image under the encoder in latent space in Fig. 3c, color
coded according to the scheme in Fig. 3a. The resulting picture is up to a shift almost the original
one.

4.2 Rotations of objects

We have also investigated the capabilities of the ∆VAE in capturing the underlying topological
structure for a synthetic dataset consisting of rendered images from a 3D model of an airplane within
the ModelNet [26] data set. The images consists of gray-scale renders of 64× 64 pixels, showing of
the 3D model centered in a frame of reference and rotated around the z-axis. The angle of rotation
for each image is chosen from a regular partition of the interval S1.

Fig. 1 shows the latent variables of a ∆VAE trained with S1 as a latent space and 100 rendered images.
The color encoding represents the true angles at which each of the images was generated. The ∆VAE
is capable of capturing the topological of the latent orientation.

As a small discussion, we should mention that the topological structure is not captured in every
training run, but depends on the random initialization of the Variational Autoencoder.

4.3 ∆VAEs for MNIST

We then trained ∆VAEs on binarized MNIST [27]. We show the manifolds as latent space with
encoded MNIST digits in Fig. 4. When MNIST is trained on different latent spaces, different
adjacency structures between digits may become apparent, providing topological information.

The SO(3) is isometric to a scaling of the RP3 (with natural choices of Riemannian metrics).
Although we have implemented an embedding and projection map for this embedding for the SO(3)
directly based on an SVD decomposition to find the nearest orthogonal matrix, training on the RP3

with the following trick was faster and we only present these results.

For training the projective spaces, we used an additional trick, where instead of embedding RPd in a
Euclidean space, we embed Sd in Rd+1, and make the decoder neural network even by construction
(i.e. the decoder applied to a point s on the sphere equals the decoder applied to a point −s). Then,
an encoder and decoder to and from the RP3 are defined implicitly. However, it must be noted that
this setup does not allow for a homeomorphic encoding (because RPd does not embed in Sd).

(a) Color scheme (b) Latent space flat torus (c) Reconstructed images

Figure 3: (a) Color scheme with periodic boundaries used to identify the horizontal and vertical
translation that generated the training data. Results shown correspond to the training of a ∆VAE with
a flat torus as latent space on a rendered image of an airplane subject to periodical translation along its
height and width. Figures show the resulting embeddings in the latent space manifold with periodic
boundaries using color scheme for translations (b) and the reconstructed images from a regular grid
over the latent variables (c).
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(a) SO(3) ∼= RP3 (b) Torus (c) S2 (d) RP2 (e) Flat torus

Figure 4: Latent space representation of MNIST for several manifolds. The projective spaces are
represented by a 3- and 2-dimensional ball respectively, for which every point on the boundary is
identified with its reflection through the center. The effect of this identification can be seen, since the
same digits that map close to a point on the boundary also map close to the reflected point.

The numerically computed ELBO, reconstruction error and KL-divergence are shown in Table 1
together with the estimated log-likelihood for a test dataset of the binarized MNIST. We provide a
comparison with the values obtained in [12] trained on a spherical latent space S2 with a uniform
prior. Additionally we present the results obtained in [28] trained on a latent space consisting of two
circular independent latent variables with a uniform prior, which can be directly compared to the
∆VAE with a flat torus latent space.

The ∆VAE achieves similar log-likelihood estimates with respect to the results on S2 from [12]. On
the other hand, the results for the ∆VAE trained on a flat torus have a lower log-likelihood compared
to the results from [28] (higher values are better)

Table 1: Numerical results for ∆VAEs trained on binarized MNIST. The values indicate mean and
standard deviation over 10 runs. The columns represent the (data-averaged) log-likelihood estimate
(LL), Evidence Lower Bound (ELBO), KL-divergence (KL) and reconstruction error (RE) evaluated
on the test data. For comparison we present results for S2 as reported by [12] and for the flat torus as
reported by [28].

MANIFOLD LL ELBO KL RE

S2 -132.20±0.39 -134.67±0.47 7.23±0.05 -127.44±0.47
EMBEDDED TORUS -132.79±0.53 -137.37±0.59 9.14±0.18 -128.23±0.67

FLAT TORUS -131.73±0.69 -139.97±0.78 12.91±0.08 -127.07±0.81
RP3 -125.27±0.37 -128.17±0.58 9.38±0.12 -118.79±0.60
RP2 -135.87±0.66 -138.13±0.72 7.02±0.12 -131.11±0.73
R3 -124.71±0.93 -128.01±1.05 9.12±0.09 -118.89±1.01
R2 -134.17±0.53 -136.61±0.64 7.05±0.06 -129.56±0.63

S2 [12] -132.50±0.83 -133.72±0.85 7.28±0.14 -126.43±0.91
FLAT TORUS[28] -127.60±0.40 - - -

Estimation of log-likelihood For the evaluation of the proposed methods we have estimated the log-
likelihood of the test dataset according to the importance sampling presented in [29]. The approximate
log-likelihood of datapoint x is calculated by sampling M latent variables z(1), . . . , z(M) according
to the approximate posterior Qt(x),z(x)

Z . The estimated log-likelihood for datapoint x is given by

log pβX(x) ≈ log

(
1

M

M∑
m=1

p
β(z(m))
X (x)pZ(z(m))

qZ(t(x); z(x), z(m))

)
.

The log-likelihood estimates presented in Table 1 are obtained with M = 1000 samples for each
datapoint, averaged over all datapoints.
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5 Conclusion

Our motivation to develop Diffusion Variational Autoencoders, was to investigate to which extent
VAEs find semantically meaningful latent variables, and more specifically, whether they can capture
topological and geometrical structure in datasets. By allowing for an arbitrary manifold as a latent
space, ∆VAEs can remove obstructions to capturing such structure.

Our experiments with translations of periodic images and rotations of objects show that a simple
implementation of a ∆VAE with a flat torus as latent space is capable of capturing topological
properties, although depending on the random initialization it does not always succeed.
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A Asymptotic expansion KL divergence

In this appendix, we derive a short-term asymptotic expansion of the KL divergence term for arbitrary
Riemannian manifolds presented in Section 3 and given by

DKL(Qt,z‖PZ) =

∫
Z

qZ(t; z, y) log qZ(t; z, y)dy + log Vol(Z)

= −d
2

log(2πt)− d

2
+ log Vol(Z) +

1

4
Sc t+ o(t).

We will focus on the derivation of the integral in the KL divergence∫
Z

qZ(t; z, w) log qZ(t; z, w)dw. (1)
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We base the expansion on a short-term expansion of the heat kernel itself, also known as a parametrix
expansion, cf. [30]

qZ(t; z, w) :=
1

(2πt)d/2
exp

(
−r

2

2t

)
(u0(z, w) + tu1(z, w) + o(t))

=
1

(2πt)d/2
exp

(
−r

2

2t

)
u0(z, w)

(
1 + t

u1(z, w)

u0(z, w)
+ o(t)

)
,

(2)

where r is the distance between z and w, and where we use the notation o(t) for terms that go to zero
faster than t.

Because the heat kernel decays exponentially, for calculating the asymptotic behavior in (1), only
the behavior of the function uj(z, w) for z close to w is relevant. We choose normal coordinates
yi centered at z (so z corresponds to yi = 0, and r2 = |y|2), and Taylor expand the functions uj
in terms of yi. It is helpful to keep in mind as a rule of thumb, that a monomial of degree k in yi
corresponds to a factor of degree k/2 in t in the final asymptotic expansion of the integral (1).

We split the logarithm of qZ in four terms,

log qZ(t; z, w) = J1(t; z, w) + J2(t; z, w) + J3(t; z, w) + J4(t; z, w) (3)

where

J1(t; z, w) := −d
2

log(2πt)

J2(t; z, w) := −r
2

2t
J3(t; z, w) := log u0(z, w)

J4(t; z, w) := log

(
1 + t

u1(z, w)

u0(z, w)
+ o(t)

)
= t

u1(z, w)

u0(z, w)
+ o(t)

where we used the Taylor expansion of the logarithm to get the second line of J4.

Write
θ(z, w) =

√
det(gij(w))

where gij are the coefficients of the metric in the normal coordinates yi centered at z.

In the parametrix expansion, the function u0 equals

u0(z, w) =
1√

θ(z, w)

see p. 208 of [30].

Key are the following asymptotic expansions in normal coordinates yi centered at z,

θ(0, y) = 1− 1

6
Ricijy

iyj +O(|y|3),

and √
θ(0, y) = 1− 1

12
Ricijy

iyj +O(|y|3). (4)

As a consequence, we have the following asymptotic expansion for u0

u0(0, y) =
1√
θ(0, y)

= 1 +
1

12
Ricijy

iyj +O(|y|3). (5)

Next, we use that the function u1 is given by the following integral (see (E.III.1) in [30], but note that
they have a different sign convention for the Laplacian, see formula (G.III.2) in their book, and that
we use the stochastic normalization in the heat equation, which accounts for an extra factor of 1

2 )

u1(z, w) =
1

2
θ−1/2(z, w)

∫ 1

0

θ1/2
(
z, expz

(
τ exp−1z (w)

))
∆u0

(
z, expz

(
τ exp−1z (w)

))
dτ
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where the Laplacian is taken in the second argument and where expz denotes the exponential map
based at z.

Because the fraction u1(z, w)/u0(z, w) gets multiplied by a factor t in the parametrix expansion (2),
we will later only need the zeroth order term of u1(z, w)/u0(z, w) and u1(z, w). Since

∆u0(0, y) =
1

12
2tr(Ric) +O(|y|) =

1

6
Sc +O(|y|),

we get from the integral formula that

u1(0, y) =
1

12
Sc +O(|y|)

and, by using (5), that
u1(0, y)

u0(0, y)
=

1

12
Sc +O(|y|). (6)

To compute the integral ∫
Z

qZ(t; z, w) log qZ(t; z, w)dw

we split the logarithm in four terms Ji as in (3). The first term gives∫
Z

qZ(t; z, w)J1(t; z, w)dw = −d
2

∫
Z

qZ(t; z, w) log (2πt) dw

= −d
2

log(2πt).

The fourth term is also easy and gives∫
Z

qZ(t; z, w)J4(t; z, w)dw =

∫
Z

qZ(t; z, w)
1

12
Sc t dw + o(t)

=
1

12
Sc t+ o(t).

Now let us look at∫
Z

qZ(t; z, w)J2(t; z, w)dw = −
∫
Z

qZ(t; z, w)
r2

2t
dw

= −
∫
Rd

1

(2πt)d/2
exp

(
−|y|

2

2t

)
|y|2

2t

1√
θ(0, y)

(
1 + t

u1(0, y)

u0(0, y)
+ o(t)

)
θ(0, y)dy

= −
∫
Rd

1

(2πt)d/2
exp

(
−|y|

2

2t

)
|y|2

2t

(
1 + t

u1(0, y)

u0(0, y)
+ o(t)

)√
θ(0, y)dy.

We substitute the asymptotic behavior of u1(z, w)/u0(z, w) from (6) and the asymptotic behavior of√
θ(0, y) from (4),(

1 + t
u1(0, y)

u0(0, y)
+ o(t)

)√
θ(0, y)

=

(
1 + t

(
1

12
Sc +O(|y|)

)
+ o(t)

)(
1− 1

12
Ricijy

iyj +O(|y|3)

)
.

We expand the factors and integrate. Note that the integral of an O(|y|k) term against the Gaussian
measure can be, after integration, estimated by a term of O(tk/2). We therefore find∫

Z

qZ(t; z, w)J2(t; z, w)dw

= −
∫
Rd

1

(2πt)d/2
exp

(
−|y|

2

2t

)
|y|2

2t

(
1 +

1

12
Sc t− 1

12
Ricij y

iyj
)
dy + o(t).
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All that is left to do is compute Gaussian integrals, which follow from the moments of a multidi-
mensional Gaussian distribution with mean zero and a covariance of t times the identity matrix. In
particular, fixing i, we have∫

Rd

1

(2πt)d/2
exp

(
−|y|

2

2t

)
|y|2(yi)2dy

=

∫
R

1√
2πt

exp

(
− (yi)2

2t

)
(yi)4dy

+
∑
j 6=i

(∫
R

1√
2πt

exp

(
− (yj)2

2t

)
(yj)2dyj

)(∫
R

1√
2πt

exp

(
− (yi)2

2t

)
(yi)2dyi

)
= 3t2 + (d− 1)t2.

We find ∫
Z

qZ(t; z, w)J2(t; z, w)dw

= −d
2
− d

24
Sc t+

1

24
t(3 + (d− 1))

d∑
i=1

Ricii

= −d
2
− d

24
Sc t+

1

24
Sc t(d+ 2)

= −d
2

+
1

12
Sc t.

Finally, we consider∫
Z

qZ(t; z, w)J3(t; z, w)dw =

∫
Z

qZ(t; z, w) log u0(z, w)dw

=

∫
Rd

1

(2πt)d/2
exp

(
−|y|

2

2t

)
1

12
Ricijy

iyjdy + o(t)

=
1

12
Sc t+ o(t).

If we add all contributions, we obtain∫
Z

qZ(t; z, w) log qz(t; z, w)dw = −d
2

log(2πt)− d

2
+

1

4
Sc t+ o(t).
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