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Abstract

Reinforcement learning (RL) has been widely studied for improving sequence-
generation models. However, the conventional rewards used for RL training
typically cannot capture sufficient semantic information and therefore render model
bias. Further, the sparse and delayed rewards make RL exploration inefficient. To
alleviate these issues, we propose the concept of nested-Wasserstein distance for
measuring the distance between two policy distributions. Based on this, a novel
nested-Wasserstein self-imitation learning framework is developed, encouraging
the model to exploit historical high-rewarded sequences for deeper explorations
and better semantic matching. Our solution can be understood as approximately
executing proximal policy optimization with nested-Wasserstein trust-regions. Ex-
periments on a variety of unconditional and conditional sequence-generation tasks
demonstrate the proposed approach consistently leads to improved performance.

1 Introduction

Sequence generation is an important research topic in machine learning, covering a wide range
of applications, including machine translation [4, 10, 52], image captioning [1, 57, 63], and text
summarization [41, 45]. Standard sequence generation follows an auto-regressive model design
under maximum likelihood estimation (MLE) learning [24, 52, 60]. That is, models are trained to
maximize the expected log-likelihood of the next word conditioned on its preceding ground-truth
partial sentence. However, when testing, the generated partial sequence is fed to the generator to
draw the next token. Such a discrepancy between training and testing, commonly known as exposure
bias, leads to accumulated approximation errors along the sequence-generation trajectory [6, 43].

To address exposure bias, reinforcement learning (RL) techniques have been introduced [43]. Unlike
MLE, which only leverages training examples, RL can also exploit samples drawn from the current
policy. Improvements are gained from reinforcing the training towards more-plausible generations,
typically based on a user-specified reward function [43, 65]. However, the manually designed rewards
often target specific desirable properties in sequence generation (e.g., matching n-gram overlap
between generated sequences and ground-truth references), which unintentionally induces extra
bias and is often criticized as a bad proxy for human evaluation [58]. Concerns have also been
raised w.r.t. efficient exploration in sequence generation. In existing RL-based methods for sequence
generation [3, 43, 44], all experiences are treated as equivalent. However, merely relying on policy
samples to explore often leads to forgetting a high-reward trajectory, unless it can be re-sampled
frequently [31]. This problem becomes more severe in the sparse-reward setting used in sequence
generation, i.e., the reward is only available after the whole sentence is generated.

Motivated by the above observations, we present a novel nested-Wasserstein Self-Imitation Learning
(WSIL) framework for sequence generation. Specifically, we maintain an experience replay buffer
to store historical high-reward sequences, and employ the nested-Wasserstein distance between the
behavior policy and the artificial policy defined by the replay buffer to encourage self-imitation.
WSIL is inspired by and derived from the policy optimization with Wasserstein trust-regions [66].
Specifically, it provides a novel reward function to match the generated sequences with the high-
reward sequences in the replay buffer, encouraging semantic matching rather than simple n-gram
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overlapping. Based on the nested-Wasserstein distance, two novel schemes are proposed for self-
imitation learning, depending on whether the historical sequences interact with the policy directly or
indirectly.

The main contributions of this paper are summarized as follows. (i) A novel nested-Wasserstein
self-imitation learning framework is developed for sequence generation, exploiting historical good
explorations for better future exploration. (ii) A novel Wasserstein reward is introduced when
calculating the nested-Wasserstein distance for sequence generation, effectively alleviating the model
training bias imposed by conventional rewards. (iii) Extensive empirical evaluation is performed
on both unconditional and conditional text generation tasks, demonstrating consistent performance
improvement over existing state-of-the-art approaches.

2 Background
Sequence-generation model We consider the problem of discrete sequence generation, which
learns to generate a sequence Y = (y1, . . . , yT ) of length T , possibly conditioned on context X .
Here each yt is a token from vocabulary A. Pairs (X,Y ) are used for training a sequence-generation
model. We are particularly interested in applications to text generation, where Y is a sentence and each
yt is a word. Starting from the initial state s0, a recurrent neural network (RNN) produces a sequence
of states (s1, . . . , sT ) given an input sequence-feature representation (e(y1), . . . , e(yT )), where e(·)
denotes a word embedding mapping a token to its d-dimensional feature representation. The states
are recursively updated with a function known as the cell: st = hθ(st−1, e(yt)), where θ denotes the
model parameters. Popular implementations include Long Short-Term Memory (LSTM) [21] and
the Gated Recurrent Unit (GRU) [11]. In order to generate sequence Y s from a (trained) model, one
iteratively applies the following operations:

yst+1 ∼ Multi(softmax(g(st))), st = h(st−1, e(y
s
t )) , (1)

where Multi(·) denotes a multinomial distribution. In conditional generation, s0 is initialized with
Enc(X), where Enc(·) encodes the relevant information from the context [3, 11]. For unconditional
generation, one typically draws s0 from a standard Gaussian distribution.

Sequence generation as an RL problem Sequence generation can be considered as an RL problem
with deterministic state transition and sparse reward. It can be formulated as a Markov decision
process (MDP) M = 〈S,A, P, r〉, where S is the state space, A is the action space, P is the
deterministic environment dynamics and r(s, y) is a reward function. The policy πθ, parameterized
by θ, maps each state s ∈ S to a probability distribution over A. The objective is to maximize the
expected reward, defined as:

J(πθ) = EY∼πθ [r(Y )] =

T∑
t=1

E(st,yt)∼πθ [r(st, yt)] , (2)

where Y , (s1, y1, · · · , sT , yT ) is a trajectory from policy πθ with yt ∈ A, and r(Y ) represents the
reward for a sentence Y , which can be decomposed into a summation of the rewards over state-action
pairs r(st, yt). RL seeks to learn an optimal policy, that maximizes J(πθ). In practice, we use the
first objective, since the reward is only revealed after the whole sequence is generated.

Optimal transport on discrete domains The optimal transport (OT) distance Wc(µ,ν) is a dis-
crepancy score that measures the distance between two probability distributions µ(·) and ν(·)
w.r.t. a cost function c(·, ·). Specifically, we consider two discrete distributions µ ,

∑n
i=1 uiδzi

and ν ,
∑m
j=1 vjδz′

j
with δz the Dirac delta function centered on z. The weight vectors

u = {ui}ni=1 ∈ ∆n and v = {vj}mj=1 ∈ ∆m respectively belong to the n and m-dimensional
simplex, i.e.,

∑n
i=1 ui =

∑m
j=1 vj = 1. Accordingly, Wasserstein distance is equivalent to solving

the following minimization problem:

Wc(µ,ν) = min
T∈Γ(µ,ν)

m∑
i=1

n∑
j=1

Tij · c(zi, z′j) = min
T∈Γ(µ,ν)

〈T,C〉 , (3)

where
∑n
j=1 Tij = 1

m and
∑m
i=1 Tij = 1

n are the constraints, 〈·, ·〉 represents the Frobenius dot-
product, and C is the cost matrix defined by Cij = c(zi, z

′
j). Intuitively, the OT distance is the

minimal cost of transporting mass from µ to ν.
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3 Distributional Semantic Matching for Sequence Generation

We consider evaluating the sentence from syntactic and semantic perspectives. Conventional metric
rewards (e.g., BLEU) can capture the syntactic structure better, where the exact matching of words
(or short phases) to the reference sequences is encouraged, which induces strong bias in many
cases. As such, we focus on the semantic matching and propose nested-Wasserstein distance, which
defines the distance between two sequence distributions. Nested-Wasserstein distance provides a
natural way to manifest semantic matching compared with the conventional rewards used in existing
RL-based sequence models. Alternatively, we can train a discriminator to learn the reward model, but
empirically it only rewards high-quality generations, even though they may be characterized by mode
collapse [20], implying poor diversity in generation; while diversity is also an important aspect in
evaluation. To better understand the issue, consider the following example on sentence matching:

There are six students playing football .

There are six freshmen reading papers .

Six freshmen are playing soccer .

Candiate 1:

Target:

Candiate 2:

BLEU ROUGE-L CIDEr Wasserstein
Candidate 1 36.8 50.0 163.7 76.3
Candidate 2 0.0 35.8 55.9 80.1

Figure 1: Comparison of different rewards
(higher is better).

It is clear that while the first candidate sentence has a similar syntactic structure to the reference, the
second candidate sentence is more semantically consistent with the reference. However, popular hard-
matching metrics [39, 55] consistently indicate the first candidate is a better match to the reference
(see Figure 1). The above contradiction can be alleviated if the reward metric is more semantic-aware.
So motivated, the remainder of this section is devoted to a discussion of design and implementation
of Wasserstein rewards. The general idea is to match the semantic features via minimizing the
Wasserstein distance between hypothesis sentences and their references in the semantic space. It will
automatically match semantically similar words as shown in Figure 1, where the matching (black
arrows) is determined by the optimal transport matrix T, and weights are determined by C in (3).
Definition 1 (Wasserstein Distance between Sequence Pairs) Consider sequence Y =
(y1, . . . , yT ) as a discrete distribution pY = 1

T

∑
t δe(yt) in the semantic space, with the

length-normalized point mass placed at the semantic embedding, i.e., zt = e(yt) of each token yt
from the sequence Y . Given a hypothesis sequence Y w.r.t. a reference sequence Y ′, we define the
Wasserstein distance as Wc(pY , pY ′) , minT〈T,C〉 between pY and pY ′ with cost c(z, z′). When
the cosine distance ccos(z, z

′) = 1− zᵀz′

‖z‖2‖z′‖2 is used as our cost, we define the Wasserstein reward

as rs , 〈T∗, 1−C〉, where T∗ is the optimal transport matrix.
Remark 1 Wasserstein distance aims at semantic matching and does not consider the syntactic
information. To incorporate both types of information, we propose the self-imitation scheme.
Nested-Wasserstein distance Note our ultimate goal is to measure distance between two policy
distributions instead of sequence pairs. Given two sets of sequences from the two policies, one aims to
incorporate the semantic information between sequences into the distance measure. Directly applying
Wasserstein distance between two distributions with limited samples is not accurate enough, which,
in addition, does not consider semantic information directly. To deal with this issue, we propose the
nested-Wasserstein distance in Definition 2.
Definition 2 (Nested-Wasserstein Distance) Consider two sets of sequences Y = {Yi}Ki=1 and
Y ′ = {Y ′j }K

′

j=1 drawn from two sequence distributions PY and PY ′ , where K and K ′ are the
number of sequences in Y and Y ′. The nested-Wasserstein distance, denoted asWnc(PY ,PY ′), is a
metric measuring the distance between PY and PY ′ in a nested manner:

Wnc(PY ,PY ′) , min
T ′

K∑
i=1

K′∑
j=1

T ′ijWc(pYi , pY ′
j
) , (4)

where T ′ij ≥ 0 satisfies
∑
i T
′
ij = 1

K and
∑
j T
′
ij = 1

K′ ; and Wc(·, ·) denotes the c-Wasserstein
distance defined in (3).
Remark 2 The word “nested” comes from the definition in (4), which essentially consists of two
nested levels of Wasserstein distances. The proposed nested-Wasserstein distance brings in the
semantic information via the distance measure Wc in the first level distance. Note that we have
omitted the expectation over samples in (4) for simplicity, as we essentially use a single set of samples
to approximateWnc(·, ·) in algorithms.
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Figure 2: Illustration of the proposed nested-Wasserstein Self-Imitation Learning (WSIL) framework. Left:
direct WSIL, where samples from the replay buffer are directly used as pseudo-samples to update the generator.
Right: indirect WSIL, where Wasserstein self-imitation rewards are defined to encourage the generator to imitate
samples from the replay buffer.

4 Nested-Wasserstein Self-Imitation Learning

Purely adopting the nested-Wasserstein distance as the reward in a standard policy-gradient method is
not effective, because the syntactic information is missing. Instead of combining the rewards with dif-
ferent weights [35, 40], we present the nested-Wasserstein Self-Imitation Learning framework, which
provides a novel way to leverage both syntactic (metric) and semantic (Wasserstein) information.

The overall idea of the proposed nested-Wasserstein self-imitation learning (WSIL) is to define a
nested-Wasserstein trust-region between the current policy (a.k.a. behavior policy) and the artificial
policy defined by the replay buffer. Intuitively, the nested-Wasserstein trust-region encourages the
self-imitation of historical high-reward sequences, which provides semantic signals to guide training,
in addition to the stabilizing effect from trust-region optimization. Specifically, we consider sequences
generated from a conditional behavior policy πθ,X , parameterized by θ with the conditional variable
X . For example, in image captioning, each sequence is generated conditioned on a given image. For
unconditional generation, the conditional variable is empty. Furthermore, a replay buffer is used to
store high-reward historical sequences, whose induced conditional policy is denoted as πB,X . Our
new objective function with a nested-Wasserstein trust-region is defined as:

J(πθ) = EX∼pd
{
EY s∼πθ,X [r(Y s)]− λ · Wnc(πθ,X , πB,X)

}
, (5)

whereWnc is the nested-Wasserstein distance defined in Definition 1, and r(·) can be a metric reward
between Y s and the ground truth references Y . With a little abuse of notation, but for conciseness,
we use πθ to denote both the policy and the distribution over the sequences. Distinct from classic
trust-region policy optimization, which defines the trust region based on KL-divergence [48], WSIL
defines the trust region based on the nested-Wasserstein distance between the behavior policy πθ,X
and the artificial policy πB,X . Note when K = K ′ = 1, the nested Wasserstein distance degenerates
to the definition of Wasserstein distance between two sequences.

As illustrated in Figure 2, we propose two self-imitation schemes towards (5): (i) direct WSIL, where
samples from πB are directly used as pseudo-samples to update the policy (sequence generator);
and (ii) indirect WSIL, where an additional reward is defined to encourage the matching between
the current policy and πB. In general, the two methods differ on how samples from the policies
are realized. Algorithm 2 in the Appendix describes the general implementation procedure of the
two schemes. For simplicity, we may sometimes omit the first expectation EX∼pd in the following
sections.
Indirect nested-Wasserstein Self-Imitation Learning We seek to use historical high-reward se-
quences to define a “self-imitation” reward function, which is then combined with the original reward
function to update the generator with policy gradient methods. The word “indirect” comes from
the mechanism that historical sequences interact with the policy indirectly via the self-imitation
reward. Intuitively, higher self-imitation rewards are achieved when the generated sequences are
close to historical high-reward sequences. Thus the generator is guided to perform self imitation
and we call this method indirect nested-Wasserstein self-imitation learning (WSIL-I). WSIL-I incor-
porates a self-imitation reward, denoted rs(Y s, Y b), into the objective function. Here Y b denotes
a sample from the replay buffer and Y s denotes a sample from the current policy. To this end,
we replace the Wasserstein distance Wc in the nested-Wasserstein distance with rs(Y s, Y b) in the
general objective (5). Specifically, we define the two sets of sample sequences from πθ,X and
πB,X to be {Y s} and Y b , {Y bj }K

′

j=1, with sizes of 1 and K ′, respectively. Here Y s ∼ πθ,X and
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Y bj ∼ πB,X , ∀j. {Y s} and {Y b} will be used in calculating the nested-Wasserstein distance. Let
rns(Y

s,Y b) ,
∑
j T
′
jrs(Y

s, Y bj ) be the nested-Wasserstein reward, with T′ = {T ′j} the optimal
weights. Based on (5), the objective of WSIL-I is adapted to be:

JI(πθ) , EX∼pdEY s∼πθ,X
[
r(Y s) + λrns(Y

s,Y b)
]
, (6)

where r is the original RL reward; rns is the nested-Wasserstein reward. Since not all historical
explored samples are helpful for updating the current policy, we only consider a subset of the high-
reward sequences when performing self-imitation. Using K trajectories sampled i.i.d. from πθ and
introducing a baseline b, the gradient estimate of WSIL-I can be expressed as:

∇θJI(πθ) ≈ −
K∑
k=1

[
(r(Y sk )− b)∇θ log πθ(Y

s
k ) + λrns(Y

s
k ,Y

b)∇θ log πθ(Y
s
k )
]
, (7)

where Y s , {Y sk }Kk=1, Y sk ∼ πθ,X , ∀k. In practice, I
[
r(Y b) > r(Y s)

]
will be combined with

the nested-Wasserstein rewards, where I(·) = 1 if the condition is satisfied, and 0 otherwise; b is
the baseline to stabilize training. If the reward of a historical high-reward sequence is greater than
the current one (i.e., r(Y b) > r(Y s)), the generator learns to imitate this high-reward sequence.
Otherwise, the update based on the historical sequence is not performed due to the I(·) operator.
This encourages the agent to only imitate its good historical explorations.
Direct nested-Wasserstein Self-Imitation Learning Direct Wasserstein self-imitation learning
(WSIL-D) weights the original rewards with outputs from the behavior policy for sequences in the
replay buffer B. The sequences from the replay buffer are directly used as pseudo-samples to update
the generator [31]. Similarly, define rns(Y s,Y ) ,

∑
j T
′
jrs(Y

s, Yj), with T′ = {T ′j} the optimal
weights. to be the nested-Wasserstein reward between the sequence Y s and ground-truth references
Y . The general objective (5) is then extended to be the objective for WSIL-D, as

JD(πθ) , EY s∼πθ,X [r(Y s)] + λEY b∼πB,X

[
rns(Y

b,Y )πθ(Y
b)
]
, (8)

where r is the original RL reward; rns is the nested-Wasserstein reward. Based on the objective of
(8), we update the generator with standard RL loss and the self-imitation loss alternatively, with a
hyperparameter λ that controls the update frequency:

∇θJD(πθ) ≈ −
K∑
k=1

[(r(Y sk )− b)∇θ log πθ(Y
s
k )]− λ

K′∑
j=1

[(
rns(Y

b
j ,Y )− bs

)
+
∇θ log πθ(Y

b
j )
]

(9)

where (·)+ = max(·, 0) and bs and b are the baselines to reduce the variance of gradient estimates.
In practice, (·)+ means that WSIL-D only imitates the sequences in the replay buffer with the higher
rewards. Intuitively, direct self-imitation implicitly imposes larger weights on good simulated data
for training, to exploit good historical explorations. The main difference between WSIL-D and its
indirect counterpart is that sequences from the replay buffer are not used to compute the self-imitation
rewards, but used to evaluate the policy. Intuitively, WSIL-D changes the data distribution to explore
the good history more efficiently.
Empirical estimation of nested-Wasserstein rewards Computing the exact nested-Wasserstein
distance is computationally intractable [2, 16, 46], and therefore we employ the recently proposed
IPOT algorithm [61] to obtain an efficient approximation of the Wasserstein reward. Specifically, IPOT
considers the following proximal gradient descent to solve the optimal transport matrix T via iterative
optimization, i.e., T(t+1) = arg minT∈Π(µ,ν)

{
〈T,C〉+ γ · DKL(T,T(t))

}
, where 1/γ > 0 is

the generalized step size and the generalized KL-divergence DKL(T,T(t)) =
∑
i,j Tij log

Tij

T
(t)
ij

−∑
i,j Tij +

∑
i,j T

(t)
ij is used as the proximity metric. Standard Sinkhorn iterations [12] are used to

solve the above sub-problem. The full approach is summarized as Algorithm 1 in Appendix A.

Exploration Efficiency The exploration space of MLE is the examples in the training set [54], i.e.,
no exploration is performed in supervised training. In contrast, standard policy optimization [43]
basically allows the whole exploration space. However, the exploration may become inefficient since
it may be too flexible, and some good sequences observed in history tend to be less explored and
imitated due to the sparse rewards. Our proposed WSIL aims to provide more efficient and systematic
exploration. It allows the whole-space exploration, but re-weights the exploration space to focus
more on the exploration which may provide better performance with the Wasserstein trust-region.
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MLE RL WSIL

Figure 3: Exploration space of different methods.
Circle: ground truth; Star: high-reward sequences.

Implementation Details A few key techniques
are required for successful model training. (i) The
reward from a greedy-decoding sentence is used
as the baseline [44] in conditional text generation;
in unconditional text generation, a constant base-
line is used. (ii) In unconditional text generation,
a variational autoencoder framework [26] is further adopted, where X is the target sentence itself
in the training, and random noise in the testing. (iii) A single large replay buffer is maintained
for unconditional generation, and multiple replay buffers are maintained for different conditions in
conditional generation. (iv) According to the theory of Wasserstein gradient flows [56], 1/λ can
be interpreted as a generalized decaying learning rate. With more explorations, λ becomes larger,
and the algorithm should focus more on the self-imitation learning, providing a guideline to balance
the standard RL training and self-imitation learning. More details are provided in Appendix A.
Practically, Wasserstein rewards provide weak supervision focusing on semantic matching, which is
reasonable since the historical high-reward sequences contain some noises.

5 Related Work
Self-Imitation Learning Experience replay has been widely considered in RL. Deterministic pol-
icy gradient [51, 32] performs experience replay, but is limited to continuous control. Actor-critic
approaches [27] can also utilize a replay buffer to improve performance. Prioritized experience
replay [47] samples trajectories based on the time-difference error, and we adopt it in our implemen-
tation. These approaches indiscriminately buffer all experiences, while the approach proposed here
only buffers high-reward experience. Further, episodic control [29] can be regarded as an extreme
way of exploiting past experience, trying to reproduce its best past decisions, but retrieving states
leads to poor efficiency and generalization in testing. Self-imitation learning was first applied in Atari
games and Mujoco [38, 15], reporting performance improvement w.r.t. sparse rewards. Compared
with that work, our solution considers two novel self-imitation learning schemes in the context of
sequence generation.
RL for Sequence Generation RL techniques have been explored in detail for sequence generation.
For example, a Seq2Seq model can be trained by directly optimizing the BLEU/ROUGE scores
via policy gradient [43, 3]. Furthermore, Rennie, et al. [44] baselines the actor with the reward
of a greedy-decoding sequence for the REINFORCE method. Sequence generation with RL can
also adopt generative adversarial imitation learning and use a learned discriminator (or, critic) to
provide sequence-level guidance. By constructing different objectives, previous work [65, 33, 19, 13]
combine the policy-gradient algorithm with the original GAN training procedure. However, mode-
collapse problems make the training of these methods challenging. The soft-argmax trick is used in
[67, 22] instead of REINFORCE to get more-stable training, at the sacrifice of losing exploration.
These methods treat all explorations equivalently. Compared with them, we propose the use of self-
imitation learning, and maintain a replay buffer to exploit past good explorations. A memory buffer
is maintained in [31], where high-reward samples are used for program synthesis. The motivation is
similar to ours, but only direct self-imitation learning is considered in their case.
Optimal transport (OT) in NLP Optimal transport was first applied to NLP in [28], and proposed
the word mover’s distance (WMD); OT has also been employed to improve topic modeling [23]. The
transportation cost is usually defined as Euclidean distance, and OT distance is approximated by
solving a Kantorovich-Rubinstein dual [18] or a less-accurate lower bound [28]. Our work considers
nested-Wasserstein distance as rewards, presenting an efficient IPOT-based implementation for OT
distance approximation [8], and successfully using it to guide sequence generation.

6 Experiments
We evaluate the proposed method on both unconditional and conditional text-generation tasks on
standard benchmark datasets. Details of the datasets, experimental setup and model architectures are
provided in Appendix C, due to limited space. Code for all our experiments will be made publicly
available.

6.1 Unconditional Text Generation

We compare our approach with a number of related GAN models for unconditional text genera-
tion [19, 33, 65, 67]. Our implementation is developed based on the LeakGAN model, by incorpo-
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rating Wasserstein self-imitation learning. All baseline experiments are performed on the texygen
platform [68]. The corpus-level BLEU score is employed to quantitatively evaluate the generated
sentences. Specifically, we follow the strategy in [65, 19] and adopt the BLEU score, referenced
by test set (test-BLEU) and themselves (self-BLEU) to evaluate the quality of generated samples.
Test-BLEU evaluates the goodness of generated samples, and self-BLEU measures their diversity.
The BLEU scores for 1000 generated sentences are averaged to obtain the final score for each
model. A good generator should achieve both a high test-BLEU score and a low self-BLEU score.
Following previous work [19], we test the proposed method on the short and long text generation on
Image COCO and EMNLP2017 WMT News datasets. The BLEU scores with different methods are
provided in Tables 1 and 2. The example generated sentences are provided in Appendix G.

Method Test-BLEU-2 3 4 5 Self-BLEU-2 3 4
MLE [7] 0.902 0.706 0.470 0.392 0.787 0.646 0.485
SeqGAN [65] 0.820 0.604 0.361 0.211 0.807 0.577 0.278
RankGAN [33] 0.852 0.637 0.389 0.248 0.822 0.592 0.230
TextGAN [67] 0.910 0.728 0.484 0.306 0.806 0.548 0.217
LeakGAN [19] 0.922 0.797 0.602 0.416 0.912 0.825 0.689
WSIL-D (ours) 0.917 0.774 0.576 0.393 0.797 0.569 0.284
WSIL-I (ours) 0.922 0.778 0.576 0.396 0.813 0.600 0.326

Table 1: Test-BLEU (↑) and Self-BLEU (↓) scores on Image COCO.

Method Test-BLEU-2 3 4 5 Self-BLEU-2 3 4
MLE [7] 0.905 0.701 0.464 0.278 0.764 0.522 0.295
SeqGAN [65] 0.630 0.354 0.164 0.087 0.728 0.411 0.139
RankGAN [33] 0.723 0.440 0.210 0.107 0.672 0.346 0.119
TextGAN [67] 0.777 0.529 0.305 0.161 0.806 0.662 0.448
LeakGAN [19] 0.923 0.757 0.546 0.335 0.837 0.683 0.513
SIL-D (ours) 0.875 0.634 0.401 0.243 0.724 0.466 0.256
SIL-I (ours) 0.869 0.633 0.399 0.242 0.710 0.455 0.263
WSIL-D (ours) 0.931 0.736 0.503 0.317 0.795 0.553 0.299
WSIL-I (ours) 0.926 0.726 0.492 0.307 0.815 0.595 0.380

Table 2: Test-BLEU (↑) and Self-BLEU (↓) scores on EMNLP2017 WMT News.

Analysis Compared with other methods, LeakGAN, WSIL-D and WSIL-I achieve comparable
test-BLEU scores, demonstrating high-quality generated sentences. However, LeakGAN tends to
over-fit on training data, leading to much higher (worse) self-BLEU scores. Our proposed methods,
by contrast, show good diversity of the generated text with lower self-BLEU scores. Other baselines
obtain both low self-BLEU and test-BLEU scores, leading to more random generations.

Ablation Study We conduct ablation studies on long-text generation to investigate the improve-
ments brought by each part of WSIL. First, we test the benefits of using two types of self-imitation
schemes. We compare RL training with (i) self-imitation (SIL-D and SIL-I), where only a replay
buffer and conventional rewards are employed; and (ii) Wasserstein self-imitation (WSIL-D and
WSIL-I). Results are shown in Table 2. We observe that the self-imitation strategy, with specific replay
buffer construction, can alleviate the discrepancies between reward model bias and conventional
rewards (e.g., self-BLEU). Without Wasserstein rewards, we achieve lower self-BLEU at the sacrifice
of test-BLEU. When combining with Wasserstein rewards, WSIL-D and WSIL-I show superior
performance relative to the baselines. The randomly selected generated samples in Appendix D and
human evaluations further validate this.

Methods MLE [7] LeakGAN SIL-D SIL-I

Human scores 2.97±0.05 2.63±0.05 2.54±0.05 2.55±0.05

Methods Real WSIL-D WSIL-I -

Human scores 4.11±0.04 3.49±0.05 3.41±0.05 -

Table 3: Results of human evaluation.

Human Evaluation Simply relying on
the above metrics is not sufficient to evaluate
the proposed method [7]. Following previ-
ous work [19], we perform additional hu-
man evaluation on the EMNNLP2017 WMT
News dataset using Amazon Mechnical Turk.
Previous work has shown higher scores of
LeakGAN compared with other baselines, therefore we mainly focus on the comparison of our meth-
ods with LeakGAN. We randomly sampled 200 sentences from each model, and asked 5 different
workers to score each sentence on a scale of 1 to 5, considering its readability and meaning. Results
are shown in Table 3, which indicates better performance of the proposed WSIL.
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6.2 Conditional Text Generation
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Figure 4: CIDEr on the validation set.

Video Captioning We conduct experiments on the MSR-
VTT dataset [62] for video captioning. The MSR-VTT is a
large-scale video dataset, consisting of 20 video categories.
The dataset was split into 6513 and 3487 clips in the train-
ing and testing sets. Each video is annotated with about 20
captions. For each video, we sample at 3 fps and extract
Inception-v4 [53] features from these sampled frames. We
report BLEU-4 [39], CIDEr [55], and METEOR [5] scores.
Results are summarized in Table 5. Consistent improvements
are observed with the WSIL framework. WSIL-D performs
slightly better than WSIL-I, both yielding much higher opti-
mized CIDEr and METEOR scores than SCST. This indicates that Wasserstein self-imitation can
improve the semantic matching between generated sentences and their references, while achieving
reasonable exact-matching-based metric scores.

Method BLEU-4 METEOR ROUGE-L CIDEr
ED-LG [64] 35.2 25.2 - -
SA-LSTM [62] 36.6 25.9 - -
SCST [40] 40.5 28.4 61.4 51.7
MBP [59] 41.3 28.7 61.7 48.0
OUR IMPLEMENTATIONS

MLE 39.2 27.8 59.8 46.6
MIXER [43] 40.2 27.9 60.8 50.3
SCST [44] 40.7 27.9 61.6 51.3
WSIL-D 42.5 29.0 62.4 52.1
WSIL-I 41.6 28.4 62.0 52.2

Table 4: Video captioning results on MSR-VTT.

Method BLEU-4 METEOR ROUGE-L CIDEr
Show & Tell [57] 27.7 23.7 - 85.5
OT [9] 31.0 24.6 - 94.7
Adaptive [36] 33.2 26.6 - 108.5
Top-Down [1] 33.3 26.3 55.3 111.4

OUR IMPLEMENTATIONS
MLE 28.8 24.4 52.0 91.3
MIXER [43] 30.8 24.7 52.9 101.2
SCST [44] 32.1 25.4 53.9 105.5
WSIL-D 31.8 25.7 54.0 107.4
WSIL-I 32.0 25.6 53.9 107.6

Table 5: Image captioning results on COCO.
Image Captioning We consider image captioning using the COCO dataset [34], with Karpathy’s
split [25]. We follow the implementation of the SCST approach [44], and use extracted image
tags [14] as image features (encoder). We report BLEU-k (k from 1 to 4) [39], CIDEr [55], and
METEOR [5] scores. Results are summarized in Table 4. Compared with the XE baseline, RL-based
methods significantly increase the overall performance under all evaluation metrics. We choose
CIDEr as the optimizing metric, since it performs best [44]. Our proposed WSIL shows improvement
on every metric compared with the SCST baseline, and WSIL-D performs slightly better than WSIL-I
in most metrics. Examples of generated captions are provided in Appendix E.

Model Acc(%) BLEU Human
CVAE [49] 73.9 20.7 7.8
Controllable [22] 86.7 58.4 -
Back-Translation [42] 91.2 2.8 2.0
DeleteAndRetrieval [30] 88.9 36.8 14.7

Baseline 90.5 50.4 20.1
WSIL-D 90.7 51.9 22.3
WSIL-I 91.5 52.0 25.6

Table 6: Style transfer results on test
dataset with human references.

Non-parallel Style Transfer Different from the caption-
ing tasks, and for style transfer pair-wise information
should be inferred from the training data, which becomes
more challenging. We use the same data and split method
described in [49]. The accuracy of transferred sentences is
evaluated by a pretrained CNN classifier, which achieves
an accuracy of 97.4% on the validation set. We also re-
port the BLEU scores with original sentences (BLEU) and
human references (Human) [30], to evaluate the content
preservation and fluency of transferred sentences. Results
are shown in Table 6. WSIL-I and WSIL-D boost the performance compared with the baseline;
WSIL-I performs best, since it can explicitly create good transferring pairs in the self-imitation, while
WSIL-D pays more attention to successfully transferred sentences.

7 Conclusions

We have proposed a novel Wasserstein self-imitation learning framework for sequence generation, to
alleviate the sparse-rewards problem of RL methods and model-training bias imposed by conventional
rewards. This has been done by encouraging self imitation and semantic matching. Two novel training
schemes have been presented, directly or indirectly exploiting past good generated sequences. Further,
our method can be approximately interpreted as policy optimization with Wasserstein trust-regions.
Experiments on unconditional and conditional text generation demonstrate consistent performance
improvement over strong baselines. For future work, the proposed method has the potential to be
applied on other sequence-generation tasks, such as program synthesis [31].
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