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1 Abstract

Information bottleneck (IB) principle [1] has become an important element in information-theoretic
analysis of deep models. Many state-of-the-art generative models of both Variational Autoencoder
(VAE) [2, 3] and Generative Adversarial Networks (GAN) [4] families use various bounds on mutual
information terms to introduce certain regularization constraints [5, 6, 7, 8, 9, 10]. Accordingly,
the main difference between these models consists in add regularization constraints and targeted
objectives.

In this work, we will consider the IB framework for three classes of models that include supervised,
unsupervised and adversarial generative models. We will apply a variational decomposition leading
a common structure and allowing easily establish connections between these models and analyze
underlying assumptions.

Based on these results, we focus our analysis on unsupervised setup and reconsider the VAE family.
In particular, we present a new interpretation of VAE family based on the IB framework using a
direct decomposition of mutual information terms and show some interesting connections to existing
methods such as VAE [2, 3], β−VAE [11], AAE [12], InfoVAE [5] and VAE/GAN [13]. Instead
of adding regularization constraints to an evidence lower bound (ELBO) [2, 3], which itself is a
lower bound, we show that many known methods can be considered as a product of variational
decomposition of mutual information terms in the IB framework. The proposed decomposition might
also contribute to the interpretability of generative models of both VAE and GAN families and create
a new insights to a generative compression [14, 15, 16, 17]. It can also be of interest for the analysis
of novelty detection based on one-class classifiers [18] with the IB based discriminators.

Notations: We will denote a joint generative distribution as pθ(x, z) = pθ(z)pθ(x|z), whereas
marginal pθ(z) is interpreted as a targeted distribution of latent space and marginal pθ(x) =
Epθ(z) [pθ(x|z)] =

∫
z
pθ(x|z)pθ(z)dz as a generated data distribution with a generative model

described by pθ(x|z). A joint data distribution qφ(x, z) = pD(x)qφ(z|x), where pD(x) denotes
an empirical data distribution and qφ(z|x) is an inference or encoding model and marginal qφ(z)
denotes a "true" or "aggregated" distribution of latent space data.

2 Information bottleneck for different models

In this section, we consider the IB framework and summarize some known results for supervised
and unsupervised models. Having introduced a common base, we will also extend these results to
generative adversarial models. Along this analysis, we will introduce several interesting bounds that
will be used to develop a proposed bounded IB auto-encoding.
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Figure 1: Labeling for supervised (a) and unsupervised (b) models. All data points are shown as
sequences of dimension n at the bottom part of plot.

2.1 Information bottleneck for supervised models

We consider a true joint distribution p(c,x) from which the training set {xm, cm}Nm=1 is sampled
from, where each data sample is x ∈ Rn, n denotes the dimensionality of data and N stands for
the number of training samples. We will use c ∈ M, withM = {1, · · · ,Mc}, to denote a class
label. We use a vector notation for c to highlight that each label can be encoded according to some
representation. The number of classes is denoted as Mc. The labeling of N sequences into Mc

classes is shown in Figure 1,a. It should be noted that many sequences might be assigned to the same
class according to a set of chosen common features. We use different colors to reflect this labeling.
At the same time, one can consider a "binning" organization principle shown in the bottom part of
Figure 1,a, where N training sequences are allocated into Mc bins representing Mc classes.

The supervised IB framework is considered based on Figure 2,a. A sample x from a class c is
generated by a mapping p(x, c) = p(c)p(x|c). The supervised IB can be formulated according to
[1] as:

min
φ:I(Z;C)≥Ic

Iφ(X;Z). (1)

The supervised IB framework assumes an existence of a parametrized probabilistic mapping qφ(z|x)
with a controllable set of parameters φ, where z is considered to be a latent or bottleneck represen-
tation with dimensionality and statistical properties different of those of x. It is assumed that three
concerned vectors form a Markov chain C→ X→ Z and the objective is to find such a mapping φ,
when z is a minimal sufficient statistic for task c. The term Iφ(X;Z) denotes the mutual information
between X and Z considering the above parametric mapping and I(Z;C) corresponds to the mutual
information between Z and C.

The main idea behind the supervised IB (1) consists in a search of parameters φ that ensures the
preservation of the information Ic about the class c in the latent or bottleneck representation z, while
filtering out all irrelevant information from x that corresponds to the minimisation of Iφ(X;Z) over
φ. It should be pointed out that the minimization of mutual information can be obtained in different
ways that include but are not limited to dimensionality reduction, compression that might include
both clustering and quantization, additional of noise or sparsification of z. All these techniques are
well known and often used in practical deep net mappers implementing qφ(z|x).
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Figure 2: Information bottleneck models: (a) supervised, (b) unsupervised and (c) adversarial
generative ones.

Tishby et. al. [19] also proposed the Langrangian of IB optimization (1) defined as:

LS(φ) = Iφ(X;Z)− βI(Z;C), (2)

where S stands for the supervised setup and β is a regularization parameter corresponding to Ic that
leads to an optimization formulation:

φ̂ = argmin
φ
LS(φ). (3)

In the following part, we will consider both terms of mutual information in (2) and establish some
useful bounds on them.

2.1.1 Decomposition of the first term

The first mutual information term Iφ(X;Z) in (2) is defined as:

Iφ(X;Z) = Eqφ(z,x)

[
log

qφ(z,x)

qφ(z)pD(x)

]
= Eqφ(z,x)

[
log

qφ(z|x)
qφ(z)

]
= Hφ(Z)−Hφ(Z|X),

(4)

where pD(x) denotes the data distribution and Hφ(Z) = −Eqφ(z) [log qφ(z)] denotes the entropy
of distribution qφ(z) = EpD(x) [qφ(z|x)] and Hφ(Z|X) = −Eqφ(z,x) [log qφ(z|x)] denotes the
conditional entropy defined by qφ(z|x). In (4), we used the decomposition of the joint distribution
qφ(z,x) = qφ(z|x)pD(x). At the moment, we will not address technical details of computing qφ(z)
and focus on them along the unsupervised setup analysis.

2.1.2 Decomposition of the second term

The second mutual information term I(Z;C) in (2) can be defined via p(c|z) as:

I(Z;C) = Ep(c,z)
[
log

p(c, z)

p(c)p(z)

]
= Ep(c,z)

[
log

p(c|z)
p(c)

]
. (5)
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We show in Appendix A, that this mutual information can be lower bounded by I(Z;C) ≥
ISθ,φ(Z;C), where:

ISθ,φ(Z;C) , −Ep(c) [log p(c)] + Ep(c,x)
[
Eqφ(z|x) [log pθ(c|z)]

]
= H(C)−Hθ,φ(C|Z),

(6)

with H(C) = −Ep(c) [log p(c)] and Hθ,φ(C|Z) = −Ep(c,x)
[
Eqφ(z|x) [log pθ(c|z)]

]
.

Therefore, the corresponding IB Lagrangian is redefined as:

LS(φ,θ) = Iφ(X;Z)− βISθ,φ(Z;C), (7)

that leads to the optimization problem:

(θ̂, φ̂) = argmin
θ,φ

LS(φ,θ). (8)

Remark: since H(C) in (6) is constant and does not depend on the parameters θ,φ, the supervised
IB Lagrangian (7) can be rewritten in yet another commonly know form of supervised IB:

LS(φ,θ) ∝ Iφ(X;Z) + βHθ,φ(C|Z). (9)

In turns, it can be considered as finding a trade-off between the reduction of mutual information
between X and Z according to the first term and the prediction accuracy of class c based on z
according to the second term.

2.2 Information bottleneck for unsupervised models

In the case of unsupervised setup, the data samples are not labelled by the classes c. We will consider
a true data distribution pD(x) from which the training set {xm}Nm=1 is sampled from. The data
samples can be considered as belonging to a common class with the same label c = 1 as shown in
Figure 1,b. Each sequence x is indexed by its proper index m. It means that the mapping between m
and x is unique m↔ x in contrast to the supervised setup, where knowing c does not automatically
imply that one knows a sample x but rather a set or bin to which it belongs to.

Alternatively, one can interpret the unsupervised setup as the supervised one with Mc = N classes,
i.e., when each class is represented by just one sequence as shown in Figure 1b. Therefore, by the
direct analogy with the supervised setup, one can replace each class c by its proper representative
sequence x as depicted in Figure 2,b. Therefore, the generative process can be considered to start
directly from x as shown by a gray circle.

Thus, the unsupervised IB can be considered as a "compression" of x to z via the parametrized
mapping qφ(z|x) leading to a bottleneck representation z yet preserving a certain level of information
Ix in z about x. Accordingly, the unsupervised IB problem can be formulated as:

min
φ:I(Z;X)≥Ix

Iφ(X;Z), (10)

and in the Lagrangian formulation as a minimization of:

LU(φ) = Iφ(X;Z)− βI(Z;X), (11)

where we use the same β as for the supervised setup for the sake of simplicity and U denotes the
unsupervised case.

In the following sections, we will consider decompositions of both mutual information terms.

2.2.1 Decomposition of the first term

The first term Iφ(X;Z) in (11) can be defined similarly to the supervised case (4) using en-
tropies. The conditional entropy Hφ(Z|X) is computable, since qφ(z|x) is defined. How-
ever, the entropy Hφ(Z) = −Eqφ(z) [log qφ(z)] requires computation of marginal distribution
qφ(z) = EpD(x) [qφ(z|x)] that might be a computationally expensive task in practice. Therefore, we
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will proceed with a variational approximation of qφ(z) by a distribution pθ(z)3:

Iφ(X;Z) = Eqφ(z,x)

[
log

qφ(x, z)

qφ(z)pD(x)

]
= Eqφ(z,x)

[
log

qφ(z|x)
qφ(z)

pθ(z)

pθ(z)

]
= EpD(x) [DKL (qφ(z|X = x)‖pθ(z))]︸ ︷︷ ︸

A

−DKL (qφ(z)‖pθ(z))︸ ︷︷ ︸
B

,
(12)

where the term (A) denotes the KL-divergence EpD(x) [DKL (qφ(z|X = x)‖pθ(z))] =

Eqφ(z,x)

[
log

qφ(z|x)
pθ(z)

]
= EpD(x)

[
Eqφ(z|x)

[
log

qφ(z|x)
pθ(z)

]]
and the term (B) denotes the KL-

divergence DKL (qφ(z)‖pθ(z)) = Eqφ(z,x)

[
log

qφ(z)
pθ(z)

]
= Eqφ(z)

[
log

qφ(z)
pθ(z)

]
.

2.2.2 Decomposition of the second term

The second mutual information term I(Z;X) in (11) is defined as:

I(Z;X) = Ep(z,x)
[
log

p(x|z)
pD(x)

]
. (13)

To find a variational approximation to the unknown p(x|z), one can proceed in the same way as with
the supervised model. However, one can also directly obtain a variational lower bound on I(Z;X)
by assuming c ≡ x in (6). This leads to I(Z;X) ≥ IUθ,φ(Z;X), where:

IUθ,φ(Z;X) , −EpD(x) [log pD(x)] + EpD(x)

[
Eqφ(z|x) [log pθ(x|z)]

]
= HD(X)−Hθ,φ(X|Z),

(14)

with HD(X) = −EpD(x) [log pD(x)] and Hθ,φ(X|Z) = −EpD(x)

[
Eqφ(z|x) [log pθ(x|z)]

]
.

Therefore, the corresponding IB Lagrangian is defined as:

LU(φ,θ) = Iφ(X;Z)− βIUθ,φ(Z;X), (15)

thus leading to the minimization problem:

(θ̂, φ̂) = argmin
θ,φ

LU(φ,θ). (16)

In should be pointed out that similarly to the supervised case (9), the term HD(X) in (14) does not
depend on the encoder and decoder parameters φ,θ and can be skipped from the further consideration,
if one is only concerned about the reconstruction task.

Nevertheless, the same model can also be considered for a generative task, which will also be
considered below, when a trained encoder-decoder pair or just a sole decoder can be used for the
generation of new samples from the latent space distribution. For these reasons, it is of interest to
ensure that newly generated samples closely follow the statistics of original data. That is why one
can also consider a decomposition of (14) as:

IUθ,φ(Z;X) = EpD(x)

[
Epθ(z)

[
log

pθ(x|z)
pD(x)

]]
= EpD(x)

[
Epθ(z)

[
log

pθ(x|z)
pD(x)

pθ(x)

pθ(x)

]]
= −EpD(x) [log pθ(x)]− EpD(x)

[
log

pD(x)

pθ(x)

]
+ EpD(x)

[
Epθ(z) [log pθ(x|z)]

]
= H(pD(x); pθ(x))−DKL (pD(x)‖pθ(x)) + EpD(x)

[
Epθ(z) [log pθ(x|z)]

]
.

(17)

3Technically, the same factorization can be applied to the supervised counterpart (4). However, since in
practice it is rarely of interest to generate labels c from z, we only consider it in the scope of unsupervised
generative and compression models.
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where H(pD(x); pθ(x)) = −EpD(x) [log pθ(x)] denotes a cross-entropy. Since H(pD(x); pθ(x)) ≥
0, one can lower bound (17) as IUθ,φ(Z;X) ≥ IUL

θ,φ(Z;X), where4:

IUL

θ,φ(Z;X) , EpD(x)

[
Eqφ(z|x) [log pθ(x|z)]

]︸ ︷︷ ︸
C

−DKL (pD(x)‖pθ(x))︸ ︷︷ ︸
D

.
(18)

Remark: The term (D) in (18) can be implemented based on the density ratio estimation [20] that
will be addressed below. The term (C) can be defined explicitly using Gaussian or Laplacian priors. In
the Laplacian case, one can define pθ(x|z) ∝ exp(−λ‖x−gθ(z)‖1) with a scale parameter λ, which
leads to `1-norm, and gθ(z) denotes the decoder. It also corresponds to the model x = gθ(z) + ex,
where ex is a reconstruction error vector following the Laplacian pdf. Therefore, (18) reduces to:

IUL

θ,φ(Z;X) = −λEpD(x)

[
Eqφ(z|x) [‖x− gθ(z)‖1)]

]︸ ︷︷ ︸
C

−DKL (pD(x)‖pθ(x))︸ ︷︷ ︸
D

.
(19)

2.2.3 Comparison of supervised and unsupervised IB

Having considered the supervised and unsupervised IB formulations, it should be remarked several
differences.

The main origin of these differences is in the entropy of classes H(C) and entropy of data HD(X),
i.e., HD(X)� H(C). The supervised IB describing the classification task only needs to ensure that
the latent space data Z, representing the sufficient statistics for C, should preserve just log2(Mc) bits
to uniquely encode and recognize each class. In the unsupervised setup, the IB suggests to compress
X to the encoding representation Z such that each sequence X is uniquely decodable or identifiable
from Z. It means that the entropy of latent space should correspond to the entropy of observation
space, i.e., it should encode at least log2(N) bits to uniquely distinguish all N sequences, unless
some tolerance is allowed in terms of reconstruction error5.

Naturally, this difference also leads to different encoding strategies. In the supervised setup, all
common information within the same labeled class is "compressed" or disregarded and only the
"differences" between the classes are encoded. With the increase of the number of classes, the
differences might be minor that could be a potential source of vulnerability to adversarial attacks. An
"informed" attacker knowing how these features are selected, that can be learned having an access to
the same training data, might change only several of them to achieve a flipping between the classes.
In contrast, the entropy of latent data for the unsupervised setup should be considerably higher than
those for the supervised setup.

Finally, the nature of encoding is also different. In the unsupervised encoding, the classes are encoded
to satisfy the reconstruction on average, i.e., the sequences close in the observation space might be
close or even collude in the latent space, and the features of data contributing the most to the chosen
metric of fidelity are preserved while less significant features are compressed or disregarded. As
pointed above, all features that are irrelevant to a given classification task will be disregarded in the
supervised setup. Using different re-labeling, new class-relevant features will be extracted while
class irrelevant information will be filtered out. In the unsupervised case, there is no labeling and the
encoding solely depends on statistics of data.

2.3 A link to generative adversarial models

The generative adversarial models can be considered as in Figure 2c, i.e., the latent representation z
of these models is not derived from the input of the network. Instead, it is assumed that the randomly
assigned pairs {xm, zm}Nm=1 are generated from pD(x) and pθ(z).

Hence, the samples z are not produced by mapping pD(x) via qφ(z|x) but directly from z ∼ pθ(z)
and thus the term Iφ(X;Z) = 0. Therefore, the unsupervised setup (15) reduces to the minimization

4The cross-entropy computation requires knowledge of model pθ(x), whereas the KL-divergence is based
on the ratio of two distributions and can be computed without an explicit knowledge of distributions but only
from the training samples. For this reason, we proceed further with the KL-term.

5The total number of samples in the training set is upper limited by 2nH(X) under the i.i.d. assumption,
whereas the training set is assumed to contain only N sequences.
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of:
θ̂ = min

θ
LG(θ), (20)

where LG(θ) = −βIGθ (Z;X) and:

IGθ (Z;X) , EpD(x)

[
Epθ(z)

[
log

pθ(x|z)
pD(x)

]]
, (21)

corresponds IUθ,φ(Z;X) in (15) due to the fact that the sole link between Z and X is via pθ(x|z) and
the latent vectors are generated from pθ(z) and there is no dependence on φ.

Equivalently, the minimization problem (20) can be reformulated as:

θ̂ = max
θ

IGθ (Z;X). (22)

Accordingly, using the factorization with respect to the marginal distribution of generated data pθ(x)
similarly to the unsupervised case (17), one can define IGθ (Z;X) as:

IGθ (Z;X) , EpD(x)

[
Epθ(z)

[
log

pθ(x|z)
pD(x)

]]
= EpD(x)

[
Epθ(z)

[
log

pθ(x|z)
pD(x)

pθ(x)

pθ(x)

]]
= −EpD(x) [log pθ(x)]− EpD(x)

[
log

pD(x)

pθ(x)

]
+ EpD(x)

[
Epθ(z) [log pθ(x|z)]

]
= H(pD(x); pθ(x))−DKL (pD(x)‖pθ(x)) + EpD(x)

[
Epθ(z) [log pθ(x|z)]

]
.

(23)

Since H(pD(x); pθ(x)) ≥ 0, one can lower bound (23) as IGθ (Z;X) ≥ IGL

θ (Z;X) where:

IGL

θ (Z;X) , −DKL (pD(x)‖pθ(x)) + EpD(x)

[
Epθ(z) [log pθ(x|z)]

]
. (24)

Similarly to (19), one can further develop (24) using pθ(x|z) ∝ exp(−λ‖x− gθ(z)‖1) with a scale
parameter λ that results in:

θ̂ = max
θ

IGL

θ (Z;X) = min
θ
DKL (pD(x)‖pθ(x)) + λEpD(x)

[
Epθ(z) [‖x− gθ(z)‖1)]

]
. (25)

Remark : Vanilla GANs use only an approximation to the first term for the generator optimization.
However, GANs might face a mode collapse and the likelihood term can at least theoretically
regularize it.

3 Bounded information bottleneck AE formulation

Having considered the unsupervised and adversarial generative models, we can proceed with the
formulation of a new auto-encoding framework. More particularly, we will use the results (12) and
(18) to propose a new type of unsupervised auto-encoder that combines the elements of VAE and
GAN families and is built on the IB principle. We will refer to this auto-encoder as a bounded
information bottleneck AE (BIB-AE) and link it to the VAE family of auto-encoders, generative
compression and one-class classification. It should also be pointed out that the BIB-AE framework
is rather considered as a conceptual generalization then as practical implementation. However, we
will comment how to implement the BIB-AE components in practice using known techniques of
KL-divergence approximation.

The BIB-AE Lagrangian is based on (15) and is defined as:

LBIB−AE(θ,φ) = Iφ(X;Z)− βIUL

θ,φ(Z;X), (26)
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Figure 3: Generalized diagram of BIB-AE.

where Iφ(X;Z) and IUL

θ,φ(Z;X) correspond to (12) and (18) that we summarize below for the
convenience of analysis:

Iφ(X;Z) = EpD(x) [DKL (qφ(z|X = x)‖pθ(z))]︸ ︷︷ ︸
A

−DKL (qφ(z)‖pθ(z))︸ ︷︷ ︸
B

,
(27)

IUL

θ,φ(Z;X) = EpD(x)

[
Eqφ(z|x) [log pθ(x|z)]

]︸ ︷︷ ︸
C

−DKL (pD(x)‖pθ(x))︸ ︷︷ ︸
D

.
(28)

The BIB-AE parameters are found according to the following minimization problem:

(θ̂, φ̂) = argmin
θ,φ

LBIB−AE(θ,φ). (29)

The diagram explaining the BIB-AE setup is shown in Figure 3. The reconstruction fidelity is ensured
jointly by the terms (C) and (D), while the minimization of mutual information between X and Z is
guided by the targeted distribution of the latent space pθ(z) according to the terms (A) and (B). The
"stochasticity" of the encoder will determine to which extend the mappings of data points from the
observation space will "overlap" in the latent space yet satisfying the correspondence between the
marginal posterior and the prior.

More particularly, as shown in Figure 4, the data distribution pD(x) is mapped to the latent space
marginal distribution qφ(z) via the stochastic mapping qφ(z|x). According to the variational ap-
proach, the targeted distribution of latent space is pθ(z) and the encoder tries to optimize the
parameters of encoder φ according to (29) to meet both the constraints on the latent space and the
reconstruction fidelity by satisfying the targeted βIUL

θ,φ(Z;X). One can imagine several forms of
stochastic encoding: (i) z = fφ(x) + ε, where ε follows the distribution defying the properties of
conditional distribution qφ(z|x), (ii) z = fφ(x+ ε) or (iii) z = fφ([x, ε]). However, in practice de-
pending on a chosen way of computing KL-divergence, one might be interested in a tractable density.
In this case, the encoding of the first type is used as for example in the VAE family. Disregarding a
particular form of randomness injecting mechanism, the green circles in the latent space of Figure 4
denote the resulting stochastic mappings of each point from the observable space.

4 Connections to the prior art AEs

4.1 Generative models of VAE family

VAE [2, 3] Lagrangian is defined as:
LVAE(θ,φ) = EpD(x) [DKL(qφ(z|X = x)‖pθ(z))]− EpD(x)

[
Eqφ(z|x) [log pθ(x|z)]

]
, (30)
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bottom of figure.
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+ + +…

⇒

EpD(x) DKL qφ(z | X = x)‖pθ(z)( )⎡
⎣⎢

⎤
⎦⎥  =

qφ(z x1)

pθ(z)

qφ(z x2)

pθ(z)

qφ(z xN )

pθ(z) pθ(z)

⇒

DKL qφ(z)‖pθ(z)( )

qφ(z)

qφ(z x1)

pθ(z)

qφ(z x2)

pθ(z)

qφ(z xN )

pθ(z) pθ(z)

⇒ qφ(z)

DKL qφ(z)‖pθ(z)( )

VAE

AAE stochastic

AAE determinisitc

Figure 5: Schematic visualization of latent space for VAE and AAE.
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and contains only 2 terms (A) and (C) in (26) with β = 1. It can be shown that the VAE is
based on an upper bound on Iφ(X;Z) ≤ IUφ (X;Z) = EpD(x) [DKL (qφ(z|X = x)‖pθ(z))], since
DKL (qφ(z)‖pθ(z)) ≥ 0. Similarly, since DKL (pD(x)‖pθ(x)) ≥ 0, and denoting IVAE

θ,φ (Z;X) =

EpD(x)

[
Eqφ(z|x) [log pθ(x|z)]

]
, one obtains IVAE

θ,φ (Z;X) ≥ IUL

θ,φ(Z;X).

The VAE encoder can be considered as a stochastic mapping with a particular form of parametrization
[2] z = µ(x) + σ(x) � ε, where µ(x) and σ(x) are outputs of the network fφ(x) and ε is
assumed to be a zero mean unit variance vector, i.e., ε ∼ N (0, I), and � denotes element wise
product. As a result, the conditional distribution of Z given an input variable X follows a Gaussian
distribution qφ(z|x) = N (µ(x), diag(σ(x))). The VAE also assumes a prior on the latent space to
be pθ(z) = N (0, I). Under these conditions the KL-term (A) can be computed analytically.

It should be pointed out that the VAE encoder maps a point from the observation space into a
probabilistic output of Gaussian cloud with mean µ(x) and "ellipsoid" orientation determined by the
diagonal covariance matrix diag(σ(x)). This is schematically shown in a form of green ellipsoids
for different samples xi, i = 1, · · · , N , in the latent space according to Figure 5. Moreover, since
the targeted marginal prior is pθ(z) = N (0, I), and the KL term for all mappings of x’s via qφ(z|x)
should match this pθ(z) in EpD(x) [DKL (qφ(z|x)‖pθ(z))], the encoder optimized in such a way will
target to make the mean of all mappings close to zero and whiten the ellipsoids.

Without a special guidance, these mappings will converge to the zero mean unit variance Gaussian
marginal shape under asymptomatically many input mappings. Obviously, there is a little control on
this process but the final goal of stochastic minimization of the upper bound on the mutual information
Iφ(X;Z) considered as a "compression" is achieved according to the IB framework.

β-VAE [11] is linked to (26) in the same way as the VAE but with a varying relaxation parameter β:

Lβ−VAE(θ,φ) = EpD(x) [DKL(qφ(z|X = x)‖pθ(z))]− βEpD(x)

[
Eqφ(z|x) [log pθ(x|z)]

]
. (31)

The main advantage of β-VAE over VAE is a possibility to relax the described above stochastic
"compression" via mapping everything to a big Gaussian "heap" by applying the relaxation parameter
β that might give more preference to the reconstruction cost. By increasing β, one might achieve a
sort of "disentangliation", yet weakly controllable by one global parameter, by allowing Gaussian
clouds in the latent space to be far away from each other by less satisfying the KL-term constraint
to fit the marginally Gaussian distribution. The semantically similar inputs might be mapped closer
thus creating a sort of clusters that might be interpreted as a disentangled representation. Surely, it is
only an interpretation of such a relaxed stochastic mapping and the process of "semantic clustering"
highly depends on statistics of data. It seems to be quite difficult to achieve a semantically meaningful
encoding and interepretability of the latent space without either at least some weak supervision or
specially constructed latent space.

AAE [12] can be defined according to the equivalent Lagrangian cost:

LAAE(θ,φ) = DKL(qφ(z)‖pθ(z))− βEpD(x)

[
Eqφ(z|x) [log pθ(x|z)]

]
, (32)

where we do not explicitly consider the technical details of KL-divergence approximation and
computation whereas one can use adversarial discriminator for this purpose or the maximum mean
discrepancy (MMD) [21] based discriminator.

It should be pointed out that (32) contains the term (C) which origin can be explained in the same way
as for the VAE. Despite of the fact that the term (B) indeed appears in (32) with the opposite sign, it
cannot be interpreted either as an upper bound on Iφ(X;Z) similarly to the VAE or as a lower bound.
The goal of AAE is to minimize the reconstruction loss or to maximize the log-likelihood by ensuring
that the latent space marginal distribution qφ(z) matches the prior pθ(z). The latter corresponds to
the minimization of DKL (qφ(z)‖pθ(z)).
It is interesting to point out that the original AAE paper considers as a potential encoding all options
that include: a deterministic encoding, i.e., z = fφ(x), as well as the considered in section 3
stochastic encodings. A nice flexibility of AAE comes from a possibility to match the observed
marginal distribution qφ(z) to a desired targeted distribution pθ(z) without the need to have explicitly
defined distributions in contrast to the VAE.

An actual implementation of AAE is based on the deterministic encoding. We can imagine this sort
of mapping by considering Figure 5. A point of the observation space is mapped just to one point in
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the latent space. Under the deterministic encoder the mutual information Iφ(X;Z) = Hφ(Z) since
Hφ(Z|X) = 06.

That is why the ability to compress the observation space to the latent space or to generate from
the latent space comes from the relationship between the entropy of observation space distribution
pD(x) and targeted latent space distribution pθ(z). If the entropy of the observation space is large,
i.e., the data are on a complex distributed manifold with a large variance, and the latent space is
characterized by a small variance, many samples from the observation space will be mapped very
closely to meet the KL-term constraint on the marginal latent space distribution. Naturally, it is a
form of "deterministic" compression leading to the reduction of entropy by a "collusion" of many
samples from the observation space in the latent space. It should be noticed that in this case, the
centroids typically used in quantization based compression are not even used. At the same time, the
"continuity" of latent space filling is determined by the randomness of pD(x) with respect to pθ(z).
If for some reason pθ(z) is chosen to be relatively "broad", it is not excluded that one might observe
some "holes" in the latent space as a result of such a mapping.

Nevertheless, as shown in Figure 4, one can impose any constraint on pθ(z) like Gaussian, Laplacian
or even sparsifying prior. Moreover, one can predefine some centroids or clusters and target that the
closest samples in the observation space to be mapped into the same centroids. In this sense, the
AAE can also implement a form of deterministic compression by clustering.

At the same time, one can relax the quantization requirement to map an input to exactly one closest
centroid and instead to envision some relaxation within the allowed KL-term. These options are not
directly implemented in the AAE but can be envisioned. We mention and consider them in view of a
link to InfoVAE and generative compression that will be addressed in the next section.

InfoVAE [5] consists of 3 terms obtained by adding the regularisation term Iφ(X;Z) to an alternative
form of the VAE. Since this original way of deriving InfoVAE is not straightforward and does not
naturally comes from the IB framework, we will show that the InfoVAE has its BIB-AE counterpart
with the terms (A), (B) and (C) and can be defined according to the Lagrangian7:

LInfoVAE(θ,φ) = EpD(x) [DKL (qφ(z|X = x)‖pθ(z))]−DKL(qφ(z)‖pθ(z))
− βEpD(x)

[
Eqφ(z|x) [log pθ(x|z)]

]
.

(33)

In fact, the terms (A) and (B) correspond to Iφ(X;Z) while the term (C) corresponds to IVAE
θ,φ (Z;X).

Besides, it should also be pointed out that in the original paper [5] the above three terms have not
been used jointly in the reported simulations. Instead, the original InfoVAE uses 2 terms depending
on the VAE form, i.e., the terms (A) and (C), or the terms (B) and (C), i.e., the AAE form.

The InfoVAE can also be considered as yet another form of compression by the minimization of
Iφ(X;Z). Since it contains both KL-terms (A) and (B) in Iφ(X;Z), the encoder can minimize
Iφ(X;Z) by seeking an equality between the terms (A) and (B) since both terms are non-negative.
One can consider the presence of term (B) with the regularization parameter β as a regularization
of VAE term (A). As a result, it will relax the condition to map all conditional distributions to one
Gaussian heap how it is done in the VAE case.

Having considered all these connections, it should be pointed out that the interpretability of the latent
space in all considered methods is a quite complex task unless special supervised constraints are
imposed how it was finally suggested in a semi-supervised AAE framework. For this reason, we will
also consider other possibilities of controllable latent space encoding and generation using generative
compression. However, it should be noted that the initial goal of this type of encoding has different
roots and requires the selection of optimal distribution to meet a rate-distortion trade-off.

GANs [4]: not pretending to consider the whole GAN family, we can mention that the IB considered
for the generative adversarial models in section 2.3 makes it possible to link GAN with BIB-AE.
Considering the generation from the targeted latent space distribution pθ(z) via the generator pθ(x|z)

6One can use a variational decomposition Hφ(Z) = −Eqφ(z)

[
log qφ(z)

pθ(z)
pθ(z)

]
= H(qφ(z); pθ(z)) −

DKL(qφ(z)‖pθ(z)). Thus, if one wants to reduce the entropy of latent space to the entropy Hθ(Z) of targeted
distribution pθ(z), one should ensure that the encoder targets qφ(z)→ pθ(z) leading to H(qφ(z); pθ(z))→
Hθ(Z). Therefore, the term (B) in the AAE follows from the minimization of DKL (qφ(z)‖pθ(z)).

7The original InvoVAE contains different multipliers in front of KL-terms.
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one uses (24) that corresponds to the terms (D) and (C) in (28), respectively. Therefore, the BIB-AE
is linked to GANs via the IB framework.

It should be remarked that the original GAN does not include the likelihood term (C). However,
according to the BIB-AE analysis, this regularizer naturally follows from the IB framework. It is
interesting to mention that Rosca et. al. [22] have considered this option as a potential solution to the
GAN mode collapse problem.

VAE/GAN [13]: an option to use jointly the VAE represented by term (A) and (C) and the GAN
represented by term (D) was envisioned in VAE/GAN model. An equivalent VAE/GAN Lagrangian
is formulated as:

LVAE/GAN(θ,φ) = EpD(x) [DKL(qφ(z|X = x)‖pθ(z))]− βEpD(x)

[
Eqφ(z|x) [log pθ(x|z)]

]
+ βDKL (pD(x)‖pθ(x)) .

(34)
In the original paper, the log-likelihood term was replaced by a special metric in the latent space8.

In conclusion, many existing variations of VAE and GAN families can be considered directly from
the BIB-AE framework perspectives. The main difference between these approaches, where either
the VAE based on ELBO or GAN are taken as a basis and then some regularization terms are added,
and the proposed one is in a fact that we proceed directly with the IB formulation and impose the
corresponding bounds on the mutual information components of the IB.

Extending the same methodology, next we consider a compression formulation of IB from the
Shannon’s rate-distortion perspectives and link it with generative models.

4.2 Shannon’s rate-distortion and generative compression AEs
In the previous analysis, the targeted latent space distribution was assumed to be any manifold
specified by pθ(z). However, if one wants additionally to have a latent space with a bounded rate
below the entropy Hθ(Z) = −Epθ(z)[log pθ(z)], i.e., targeting some compression, yet providing the
best reconstruction and possibly generation from the latent space samples, it is of interest to link the
considered analysis to the Shannon’s rate-distortion theory.

Since the latent space of compression AE should be limited to some rate RQ, we will assume that
the latent space consists of a codebook C = {c1, c2, · · · , cL}, containing the codewords ci ∈ Rnz

of dimension nz with probabilities {pj}Lj=1 such that RQ = −
∑L
j=1 pj log pj . The codewords of

C can be considered as realizations or centroids generated from pθ(z) that makes it conceptually
similar to the AAE. This is conceptually shown in Figure 4 as "compressed" latent space.

At the same time, an essential simplification comes from the fact that the encoder is deterministic
and maps the input to one of the above centroids. This can be achieved by a vector quantizer
ẑ = Q(fφ(x)) := argmin1≤j≤L ||fφ(x) − cj ||2, where fφ(x) denotes a deterministic encoder
and Q(.) a vector quantizer (VQ). Hence, the distribution of the quantized latent space is pθ(ẑ) =∑L
j=1 pjδ(ẑ− cj) that defines the rate RQ.

Shannon’s rate-distortion [23] can be expressed as a special case of (26) with (27) and (28):

LShannon−AE(θ,φ) = IQφ (X; Ẑ)− βIUL

θ,φ(Ẑ;X). (35)

It is easy to show that Iφ(X; Ẑ) = IQφ (X; Ẑ) = Hφ(Ẑ) due to the deterministic encoding with
quantization, while IUL

θ,φ(Ẑ;X) is reduced to the term (C) that under the deterministic decoding
further reduces to EpD(x) [log pθ(x|ẑ)]. This term corresponds to the reconstruction distortion that
is often expressed as the `2-norm that in turns corresponds to the Shannon’s lower bound on rate-
distortion function. Therefore, the classical compression schemes satisfy the trade-off between the rate
IQφ (X; Ẑ) = RQ and distortion EpD(x) [log(−pθ(x|ẑ))] = D. Finally, the latent space distribution
pθ(ẑ) is optimized to ensure the achievability of rate-distortion limit. This is a fundamental difference
with the AAE, where the latent space distribution is chosen in advance for the technical reasons.

It is important to note that the Shannon’s rate distortion framework in the considered interpretation
is closely linked with the AAE, when the targeted distribution latent space is represented by the

8One can use both encoded-reconstructed samples and samples generated from pθ(z) in the third term for
the adversarial discrimination.
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compression codebook Figure 5. The difference is in the practical implementation. The VQ imple-
mentation assumes a hard assignment of the input to one of centroids9, whereas the AAE proceeds
with the optimization of the KL-term to fit the targeted latent space distribution. It means that some
deviation from the centroids is still possible. However, in both cases to proceed with the generation
from the latent compressed space, one needs to ensure a proper randomness. Otherwise, the space of
reconstructed signals will correspond to the number of centroids in the latent space. For this reason,
we will consider a generative compression and link it with the IB framework.

Generative compression [14, 15, 16, 17] can be considered as an "extension" of Shannon’s rate
distortion with the Lagrangian:

LGC−AE(θ,φ) = IQφ (X; Ẑ)− βIUL

θ,φ(Ẑ+U;X). (36)

The first term is the same as in the classical compression setup, while the second one contains a
stochastic component achieved by the addition of the permutation U ∼ pu(u) to the centroids10. At
the same time, it contains both equivalent terms (C) and (D) in (28). In practice, the KL-divergence is
lower bounded by f -divergence that is implemented in a form of adversarial loss based on a density
ratio estimation [24, 25] or its Wasserstein’s counterpart [26]. In the original generative compression
papers, the origin of the f -divergence term interpreted as a perceptual loss was only explained from
the heuristic point of view to make highly compressed fragments of images under a low compression
rate to look more naturally but not necessarily to be close to the original fragments. However, we can
trace the origin of this term as an outcome of the IB factorization.

4.3 Novelty detection AEs
The novelty detection problem aims at detecting outliers with respect to some manifold represented
by the training data set. It assumed that similarly to the unsupervised setup, the training set consisting
of N samples is given. One can use different techniques to measure the relevance of a test sample to
the training set or even to train a one class classifier for this purpose.

Alternatively, one can consider a novelty detection problem from the position of unsupervised IB
framework in the BIB-AE formulation. It is interesting to note that [18] proposed the architecture
similar to the BIB-AE presented in Figure 3 and trained with the terms (B), (C) and (D) for the
novelty detection. The AE trained in this way might use several metrics such as output of term (D) to
detect outliers. This also corresponds to a one-class classification problem. Therefore, the mechanism
of novelty detection can be seen from the perspective of using the BIB-AE architecture.

5 Conclusions
In this paper, we considered the IB for several practical tasks covering supervised, unsupervised,
generative adversarial, generative compressive and novelty detection models. We show that the IB for
all these models reduces to four terms in the Lagrangian cost. We call this formulation as BIB-AE.
This formulation is closely linked with many models ranging from the VAE to VAE/GAN.

Besides this remarkable similarity, we note that this connection is seen via the IB framework with
application of variational approach to the decomposition of mutual information terms in contrast to the
VAE family that is based on various attempts to regularize the ELBO. As a result, the interpretability
of obtained results and connection between methods leads to different conclusions.

Along the same line, we consider the new framework of generative compression in a close link to
the IB framework whereas the original works on the generative compression considered it from the
"perceptual" perspectives by adding the regularizer similar to the ELBO.

Finally, we also show that the novelty detection problem in the recent interpretability of AE encoding
with the adversarial loss can be linked to the BIB-AE interpretation. Altogether the performed
analysis gives new insights on the connections between different problems and methods and creates
an interesting basis for the interpretability of the latent space.
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Appendix A

In this part, we derive a lower bound on I(Z;C). According to the definition (5), this mutual
information can be further decomposed as:

I(Z;C) = Ep(c,z)
[
log

p(c|z)
p(c)

]
= −Ep(c) [log p(c)] + Ep(c,z) [log p(c|z)] .

(37)

The first term of this decomposition corresponds to the entropy of classes H(C) = −Ep(c) [log p(c)].

We consider the second term since the transition probability p(c|z) is unknown. At the same time, it
can be written as:

Ep(c,z) [log p(c|z)] =
∫
c

∫
z

p(c, z) log p(c|z) dc dz. (38)

The expectation is with respect to the joint distribution p(c, z) that can also be defined via the
marginalization p(c, z) =

∫
x
p(c, z,x)dx =

∫
x
p(c,x)qφ(z|x)dx. Therefore, combing these results,

one can obtain:

Ep(c,z) [log p(c|z)] =
∫
c

∫
z

∫
x

p(c,x)qφ(z|x) log p(c|z) dc dz dx

= Ep(c,x)
[
Eqφ(z|x) [log p(c|z)]

]
.

(39)

To overcome the problem of unknown p(c|z), we will apply a variational distribution pθ(c|z)
parametrized via a set of parameters θ to approximate p(c|z). This can be considered as a bypass
network and formulated as:

Ep(c,z) [log p(c|z)] = Ep(c,x)
[
Eqφ(z|x)

[
log p(c|z)pθ(c|z)

pθ(c|z)

]]
= Ep(c,x)

[
Eqφ(z|x) [log pθ(c|z)]

]
+ Ep(c,z)

[
log

p(c|z)
pθ(c|z)

]
,

(40)

where in the second term we used the expectation defined in (39).

At the same time, we can re-write p(c, z) = p(z)p(c|z) that leads to11:

Ep(c,z)
[
log

p(c|z)
pθ(c|z)

]
= Ep(z)

[
Ep(c|z)

[
log

p(c|z)
pθ(c|z)

]]
= Ep(z) [DKL (p(c|Z = z)‖pθ(c|Z = z))] = DKL (p(c|z)‖pθ(c|z)) .

(41)

Since the KL-divergence DKL (p(c|z)‖pθ(c|z)) ≥ 0, we can lower bound (40) as:

Ep(c,z) [log p(c|z)] ≥ Ep(c,x)
[
Eqφ(z|x) [log pθ(c|z)]

]
. (42)

Therefore, the mutual information (37) can be lower bounded as I(Z;C) ≥ ISθ,φ(Z;C), where we
define a lower bound as:

ISθ,φ(Z;C) , H(C) + Ep(c,x)
[
Eqφ(z|x) [log pθ(c|z)]

]
= H(C)−Hθ,φ(C|Z),

(43)

where Hθ,φ(C|Z) = −Ep(c,x)
[
Eqφ(z|x) [log pθ(c|z)]

]
.
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