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1 Stochastic gradient estimation

The objective of many machine learning problems is to maximize the expected value of a cost
function f(x;φ) under a learned distribution p(x;θ). Learning the distributional parameters θ via
gradient based methods requires estimating the stochastic gradient:

∇θEp(x;θ) [f(x;φ)] . (1)
Computing the above gradient is difficult, since for many problems of interest the expectation is
intractable and the high dimensionality of x makes estimating integrals numerically ineffective.
This motivates the search for unbiased, low variance and computationally efficient Monte Carlo
stochastic gradient estimators. Currently, the most commonly used unbiased estimators in machine
learning are the score function (REINFORCE) [1, 2] and the pathwise (a.k.a. reparameterization) [3,
4, 5, 6] estimators. The pathwise estimator tends to have low variance, but requires the cost function
to be differentiable and the distribution p(x;θ) to be reparametrizable, while the score function
estimator is more widely applicable, but usually exhibits high variance. This motivates our search
for a generally applicable estimator with low variance, and thus we will focus on a third class of
estimators, the measure-valued derivatives.

2 Measure-valued derivatives

The measure-valued derivative estimator (also known as the weak derivative method) [7, 8] defines
a general, unbiased and low variance gradient estimator by exploiting a particular decomposition of
the gradient of a probability density with respect to its parameters. For a scalar parameter θi the
gradient∇θip(x;θ) decomposes into a difference of two densities multiplied by a constant [9]:

∇θip(x;θ) = cθip
+
i (x;θ)− cθip

−
i (x;θ). (2)

The decomposition of this form always exists, though it is not unique, and can be obtained using
Hahn-Jordan decomposition of a signed measure into two measures that have complementary sup-
port [10]. This property can be used to define a gradient estimator for each parameter θi:

∇θiEp(x;θ) [f(x)] =

∫
∇θip(x;θ)f(x)dx = cθi

(
Ep+i (x;θ) [f(x)]− Ep−i (x;θ) [f(x)]

)
(3)

where the expectations in Equation (3) can be estimated via Monte Carlo:

cθi
N

(
N∑
n=1

f(ẋ(n))−
N∑
n=1

f(ẍ(n))

)
; ẋ(n) ∼ p+

i (x;θ), ẍ(n) ∼ p−i (x;θ) (4)

Table 2 shows a set of measure-valued derivative triples (cθ, p+, p−) for common univariate distri-
butions.

The main assumptions made by the measure-valued estimator is that the integrals of p+, p− against
the desired cost functions converge. Since the measure-valued estimator makes no assumptions
about the differentiability of the cost, it is more widely applicable than the pathwise estimator.
∗Equal contribution.

4th workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada.



2.1 Fully factorized distribution

Let p(x;θ) =
∏D
i=1 p(xi|ψi), where D denotes the dimensionality of x, ψi are the parameters

affecting xi, with {ψi} forming a partition of θ. Given a scalar parameter θi ∈ ψi we can rewrite
the measure-valued derivative∇θip(x;θ) as follows:

∇θiEp(x;θ) [f(x)] =

∫
∇θi

D∏
j=1

p(xj |ψj)f(x)dx =

∫ D∏
j=1
j 6=i

p(xj |ψj)∇θip(xi|ψi)f(x)dx

= Ep(xj 6=i|ψj 6=i)
[
cθi

(
Ep+i (x;ψi)

[f(x)]− Ep−i (x;ψi)
[f(x)]

)]
(5)

Thus computing the measure-valued derivative of a fully factorized multivariate distribution only
requires knowing the measure-valued decomposition for the univariate factors. For example, for a
diagonal multivariate Gaussian we have ψi = {µi, σi}. Then, we can use Equation (5) and Table 2
to compute∇µiEpi(xi;ψi) [f(x)] and ∇σiEp(xi;ψi) [f(x)] for every dimension i.

Equation (5) reveals the downside of measure-valued gradient estimation: for each dimension of θ,
we need to evaluate the cost function twice, leading to total of 2N |θ| cost function evaluations, as
opposed to N cost function evaluations for the score function and pathwise estimators.

2.2 Variance reduction via coupling

The variance of the measure-valued derivative estimator is:

Vp(x;θ)[∇θf(x)] = Vp+(x;θ)[f(x)] + Vp−(x;θ)[f(x)]− 2Covp+(x′;θ)p−(x;θ)[f(x
′), f(x)]. (6)

We can see that ‘coupling’ the random variables so that f(x′) and f(x) are positively correlated,
decreases the variance of the gradient estimator. The most common coupling scheme involves shar-
ing the underlying source of randomness by sampling the variables ẋ and ẍ using common random
numbers [7].

Example of using coupling for measure-valued gradient estimation and plots showcasing its effect
on gradient variance can be found in Appendix A.

3 Experiments

Bayesian logistic regression defines a probabilistic model for a target y ∈ {0, 1} given features
x ∈ RD using a set of parameters w. Using a Gaussian prior on the parameters and a Bernoulli
likelihood, the probabilistic model is:

p(w) = N (w|0, I); p(yi|xi,w) = σ(x>i w)yi(1− σ(x>i w))1−yi , (7)

where σ(z) = (1 + exp(−z))−1 is the logistic function. We maximize the variational lower
bound [11, 12] to learn the parameters of the posterior distribution q(w;θ) = N (w|µ,Σ):

I∑
i=1

Eq(w|µ,Σ)

[
yi log σ(x

>
i w) + (1− yi) log(1− σ(x>i w))

]
−KL [q(w|µ,Σ)‖p(w)] , (8)

with i = 1, . . . , I indexing the training points. The objective function we use is a Monte Carlo
estimator of eqn. (8):

I

B

B∑
i=1

1

N

N∑
n=1

[
ydi log σ(x

>
diŵ

(n)) + (1− ydi) log(1− σ(x
>
diŵ

(n)))
]
−KL [N (w|µ,Σ)‖N (w|0, I)] ;

ŵ(n) ∼ N (w|µ,Σ), di ∼ {1, . . . , I}

where B is the data batch size, I is the size of the full data set, N is the number of samples taken
from the posterior distribution to evaluate the Monte Carlo gradient, and the posterior covariance
is a diagonal matrix Σ = diag(s). We use the UCI Women’s Breast Cancer dataset [13], which
has I = 569 data points and D = 31 features. We compute the Kullback-Leibler (KL) divergence
between the variational posterior q and the prior distribution p analytically and always use coupling
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Figure 1: Comparison between the score function, measure-valued and pathwise estimators with
initial learning rate 10−3, B = 32, N = 50. Gradient estimator variance for the mean
Vq(w|µ,s)[∇µf(w)] and log-standard deviation Vq(w|µ,s)[∇log sf(w)] is averaged over parameter
dimensions.
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Figure 2: Comparison between the score function estimator and measure-valued estimators with the
same number of function evaluations, with initial learning rate 10−3, B = 32. For the measure-
valued estimator N = 1, while for the score function estimator N = 4D = 124. Gradient estimator
variance for the mean Vq(w|µ,s)[∇µf(w)] and log-standard deviation Vq(w|µ,s)[∇log sf(w)], aver-
aged over parameter dimensions.

when estimating the measure-valued gradients. We train the models with stochastic gradient ascent,
using the cosine learning rate decay schedule [14]. For evaluation, we use the entire dataset and
1000 posterior samples.

Figure 1 shows that the measure-valued estimator achieves the same variance as the pathwise es-
timator, without making use of the gradient of the cost function. The measure-valued estimator
outperforms the score function estimator, even when that estimator uses a moving average baseline
for variance reduction. This does come at a cost: the measure-valued estimator uses 2|θ| = 4D×
more function evaluations. To control for this difference in cost, we also perform a comparison in
which both methods make the same number of function evaluations (using 4D× more samples for
the score function estimator) and show the results in Figure 2. In this setting, the vanilla score func-
tion still exhibits higher variance than the measure-valued estimator, but the score function estimator
with a moving average baseline, which is a simple and efficient variance reduction method, performs
best.

Non-differentiable cost function
To assess the variance properties of the measure-valued estimator in a non-differentiable cost func-
tion setting, we compare it with the score function estimator using the following modified objective:

1

I

(
I∑
i=1

Eq(w|µ,Σ)

[
1− 2|yi − bσ(x>i w)e|

]
−KL [N (w|µ,Σ)‖N (w|0, I)]

)
(9)

where bxe denotes the nearest integer to x.

Figure 3 shows that in this setting, if we do not control for the difference in the computation cost of
the estimators, the measure-valued estimator outperforms the score function estimator and exhibits
lower variance. However, when we do control for the number of cost function evaluations, the score
function with a moving average baseline exhibits lower variance than the measure-valued estimator,
as shown in Figure 4.

Benchmarks
We complement the performance comparison of the score function estimator and the measure-valued
estimator by comparing the average time to compute a gradient update for Bayesian Logistic Re-
gression with the different gradient estimators in Table 1.
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Figure 3: Comparison between the score function and measure-valued estimators for a non-
differentiable loss function. The start learning rate is 10−1, B = 32, N = 50. Gradient esti-
mator variance for the mean Vq(w|µ,s)[∇µf(w)] and log-standard deviation Vq(w|µ,s)[∇log sf(w)]
is averaged over parameter dimensions.
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Figure 4: Comparison between the score function estimator and measure-valued for a non-
differentiable loss function and the same number of function evaluations controlled between dif-
ferent estimators. For the measure-valued estimator N = 1, while for score function estimator,
N = 4D = 124. The start learning rate is 10−1, B = 32. Gradient estimator variance of the mean
Vq(w|µ,s)[∇µf(w)] and log-standard deviation Vq(w|µ,s)[∇log sf(w)], averaged over parameter di-
mensions.

4 Discussion

We highlighted the principles behind measure-valued gradient estimation and investigated its appli-
cability in Bayesian approximate inference. Our experiments show that measure-valued gradients
exhibit low variance, but at a high computational cost. The general applicability, low variance and
robustness of measure-valued gradient estimation motivates us to further search for its compelling
applications in machine learning, as well as methods to reduce its high computational cost.
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Estimator Number of samples N Update time (ms)

Score function (MA) 124 0.76 ± 0.03
Measure-valued 1 0.87 ± 0.05
Pathwise 1 0.4 ± 0.03

Table 1: Benchmark results. The results are computed on a Nvidia V100 GPU. B = 32.
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Supplementary material

A Variance reduction via coupling

Example (Weibull-Weibull Coupling). Consider Gaussian measures N (x|µ, σ2) in the setting of
equation (1) and the task of computing the gradient with respect to the mean µ. The measure-valued
gradient, using Table 2, is given by the triple (1/σ√2π; θ + σW(2, 0.5), θ − σW(2, 0.5)) whereW is
the Weibull distribution; see Table 3 for the distribution density. We can apply coupling by reusing
the Weibull samples when computing the positive and negative terms of the estimator. Figure 5
shows that using Weibull-Weibull coupling does not always reduce the variance of the measure-
valued estimator; depending on the cost function, coupling can increase variance. 2

Example (Maxwell-Gaussian Coupling). Consider Gaussian measuresN (x|µ, σ2) in the setting of
equation (1) and the task of computing the gradient with respect to the standard deviation σ. The
measure-valued gradient, using Table 2, is given by the triple

(
1
σ ;M(x|µ, σ2),N (x|µ, σ2)

)
, where

M is the double-sided Maxwell distribution with location µ and scale σ2, and N is the Gaussian
distribution with mean µ and scale σ; see Table 3 for the densities for these distributions. We can
couple the Gaussian and the Maxwell distribution by exploiting their corresponding sampling paths
with a common random number: if we can generate samples ε̇ ∼ M(0, 1), then, by first sampling
from the Uniform distribution u̇ ∼ U [0, 1] and reusing the Maxwell samples, we can generate
N (0, 1) distributed samples ε̈ via ε̈ = ε̇u̇. Then, we can perform a location-scale transform to
obtain the desired Maxwell and Normal samples: ẋ = µ + σε̇, ẍ = µ + σε̈. The distributions
are coupled because they use the same underlying Maxwell-distributed variates [15]. The variance
reduction effect of Maxwell-Gaussian coupling for the measure-valued gradient estimator can be
seen in Figure 6. 2

Measure-valued Measure-valued + coupling Value of the cost Derivative of the cost
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Figure 5: The effect of Weibull-Weibull coupling on the variance of the stochastic estimates of the
measure-valued estimator for ∇µEN (x|µ,σ2) [f(x; k)] for µ = σ = 1 as a function of k. Left:
f(x; k) = (x− k)2; right: f(x; k) = exp(−kx2). The graphs in the bottom row show the function
(solid) and its gradient (dashed). The estimator variance for each cost function is computed using
numerical integration.

B Measure-valued triples for common distributions

Table 2 shows a set of measure-valued derivative triples for common univariate distributions, and
table 3 provides the definition of the distributions that were mentioned within the paper.
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Measure-valued Measure-valued + coupling Value of the cost Derivative of the cost
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Figure 6: The effect of Maxwell-Gaussian coupling on the variance of the stochastic estimates of
the measure-valued estimator for ∇σEN (x|µ,σ2) [f(x; k)] for µ = σ = 1 as a function of k. Left:
f(x; k) = (x− k)2; right: f(x; k) = exp(−kx2). The graphs in the bottom row show the function
(solid) and its gradient (dashed). The estimator variance for each cost function is computed using
numerical integration.

Table 2: Measure-valued derivative triples (cθ, p+, p−) of common distributions; we use N for the
Gaussian density,W for the Weibull, G for the Gamma, E for the exponential, Er for the Erlang,M
the double-sided Maxwell, and P for the Poisson. See Table 3 for the forms of these distributions.

Distribution pθ(x) Constant cθ Positive part p+(x) Negative part p−(x)

Bernoulli(θ) 1 δ1 δ0
Poisson(θ) 1 P(θ) + 1 P(θ)
Normal(θ, σ) 1/σ

√
2π θ + σW(2, 0.5) θ − σW(2, 0.5)

Normal(µ, θ2) 1/θ M(µ, θ2) N (µ, θ2)
Exponential(θ) 1/θ E(θ) θ−1Er(2)
Gamma(a, θ) a/θ G(a, θ) G(a+ 1, θ)
Weibull(α, θ) 1/θ W(α, θ) G(2, θ)1/α

Table 3: List of distributions and their densities.
Name Domain Notation Probability Density/Mass Function

Gaussian R N (x|µ, σ2) 1√
2πσ2

exp
(
− 1

2

(
x−µ
σ

)2)
Double-sided Maxwell R M(x|µ, σ2) 1

σ3
√

2π
(x− µ)2 exp

(
− (x−µ)2

2σ2

)
Weibull R+ W(x|α, β, µ) αβ(x− µ)α−1 exp(−β(x− µ)α)1{x≥0}

Poisson Z P(x|θ) exp(−θ)
∑∞
j=0

θj

j! δj

Erlang R+ Er(x|θ, λ) λθxθ−1 exp(−λx)
(θ−1)!

Gamma R+ G(x|α, β) βα

Γ(α)x
α−1 exp(−xβ)1{x≥0}

Exponential R+ E(x|λ) G(1, λ)
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