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Abstract

In clustering we normally output one cluster variable for each datapoint. However
it is not necessarily the case that there is only one way to partition a given dataset
into cluster components. For example, one could cluster objects by their colour, or
by their type. Different attributes form a hierarchy, and we could wish to cluster in
any of them. By disentangling the learnt latent representations of some dataset into
different layers for different attributes we can then cluster in those latent spaces.
We call this disentangled clustering. Extending Variational Ladder Autoencoders
(Zhao et al., 2017), we propose a clustering algorithm, VLAC, that outperforms
a Gaussian Mixture DGM in cluster accuracy over digit identity on the test set of
SVHN. We also demonstrate learning clusters jointly over numerous layers of the
hierarchy of latent variables for the data, and show component-wise generation
from this hierarchical model.

1 Introduction

What do we mean when we talk of clustering a set of images? We have data x ∈ D available at train
time. The model assigns some cluster variable y ∈ 1, ...,K to each datapoint x. We score our method
using some existing ground-truth label information t ∈ 1, ..., T that was not used when we applied
our clustering algorithm.

But plausibly there are different ways to cluster the same set of images, so it is limiting to insist a
priori that there is only one cluster variable y per datapoint and that the clustering algorithm must
successfully match that y to t over some dataset. Consider clustering images of digits. While it might
make sense to cluster them against the ground truth classes corresponding to what digit they represent,
one could conceivably cluster based on other aspects: What colour is the digit? What colour is the
background? What is the style of the typeface?

As we analyse more complex data, intuitively we can expect to find an increasing number of different
aspects on which one could plausibly cluster. To have one latent cluster variable capturing all the
different aspects, the number of cluster components needed would be the product of the number
of clusters for each aspect. For example, for digits, one might need a cluster component for each
combination of digit identity and colour.

Because having such a large number of cluster components would be unwieldy and unparsimonious,
we are interested in outputting a set of L cluster variables {y`}, one of which might correspond to a
particular given ground truth label and the others may capture other ways of clustering the data. This
broadened conception of clustering, which we call disentangled clustering, requires us to learn sets of
latent variables at different levels of the hierarchy of attributes so as to perform clustering over them.

So we wish for disentangled representations. Further we want these representations to be ordered in
some way. The Variational Ladder Autoencoder (VLAE) [1] provides this. It separates out subsets of
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latent variables of images via the degree of computation needed to map between each layer of latent
variable and the image: ‘high level’ and ‘low level’ aspects of the image have their associated latent
variables separated from each other by how expressive the mapping is between that latent variable
and the data.

We augment VLAEs so they can perform clustering at each layer, by introducing mixture distributions
for each subset of latent variables. We call this model Variational Ladder Autoencoder for Clustering
or VLAC. Like other deep generative models that are trained using amortised variational inference,
we produce recognition networks as inference artifacts that can be applied after training to new data.
This enable us to perform test set clustering.

We find that we can learn a clustering variable in the hierarchy that corresponds to the ground truth
for SVHN [2], and that we get better test set clustering accuracy than when using a single entangled
layer of latent variables in a Gaussian Mixture DGM [3, 4, 5].

2 Related Work

Our approach has some links to multi-view clustering [6, 7, 8, 9, 10, 11], where like in multi-view
learning one has a feature vector that is composed of distinct chunks of features each about some
different aspect of that datapoint. These subsets of features can then be each be used to produce
clustering assignments. Often the aim is to use these different sources of information to try to create
the same clustering assignments [6, 7].

However, unlike multi-view clustering, we do not have access to the already-chunked feature vector
that divides up the different aspects one could cluster over. And further, whereas in multi-view
clustering the different views are used to bolster one overall clustering assignment for each datapoint,
here want to cluster distinctly in each learnt set of latent variables.

Various deep learning-based algorithms have been proposed for clustering, including: Gaussian
Mixture DGMs [3, 4, 5], GM-VAE [12], VaDE [13], IMSAT [14], DEC [15] and ACOL-GAR [16].

Many recent papers on learning disentangled representations are based around achieving statistical
independence between the different dimensions of the latent variables in the aggregate posterior
q(z) =

∑|D|
i=1 qφ(z|xi). This then leads to simple generation of synthetic data by ancestral sampling,

where each dimension in the learnt latent variable then controls a single (often human interpretable)
aspect of the data. Examples of this include Factor VAE [17], β-TCVAE [18] and HFVAE [19].
These approaches do not learn hierarchies of disentangled factors, having only one stochastic layer,
and in their approach are orthogonal to the method of disentangling by degree of computation that is
used by VLAEs.

Recent theoretical work has studied definitions of disentangling around symmetry groups [20] and the
effect of different priors in DGMs on their posterior representations [21]. In [21], different posited
varieties of disentangling (such as: the above idea of axis alignment of interpretable generative factors,
learning of sparse representations, or learning to cluster) arise from different priors in DGMs when
the ELBO has been augmented to contain a divergence between the aggregate posterior q(z) and the
prior p(z), that one aims to minimise.

While our model does not include this additional divergence in our objective, our approach is an
example of trying to obtain a particular variety of disentangling – here a hierarchy of layers of
variables that internally demonstrate clustering – through the interplay of a prior and a suitable
variational posterior.

Other works closely similar to ours include DGMs that attempt to learn the structure of network of
latent variables, given the data. For example, [22] learns a Bayesian non-parametric model, a nested
Chinese Restaurant Process [23], as the generative model for a VAE.

The work philosophically most similar to ours is [24], where the authors aim to learn a set of clustering
variables given the data, that like ours describe different aspects of the data.

Unlike these structure-learning approaches, we choose to constrain the structure of the hierarchy
of latent variables in the generative model to be much simpler – our discrete latent variables are all
independent in the generative model.
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Further, work in this area has often focused on learning not on raw image data but on features
extracted by some pre-trained method. A popular choice is the activations in the penultimate layer of
a deep net trained on Imagenet [25]. [22, 24] are examples of this. Unlike that work, our method trains
on raw image data directly. This is beneficial as it means the model has access to more information.
We are not constrained only to have access to the aspects of the data that have been picked out so as
to be useful for the task under which the feature extractor was trained. The features needed to classify
an image can even be optimised by throwing away information we might care about.

For instance, in training a classifier on SVHN, one could imagine that dropping (most) colour
information as quickly as possible might be worthwhile – if in the dataset there is no correlation
between colour and digit identity. The classification training objective would be telling us to view
colour information as noise on the signal we care about, and thus should play a minimal role in the
embedding we get in the final layer. Thus, we are interested in learning directly on raw image data.

3 VLAC: Variational Ladder Autoencoders for Clustering

VLAEs To gain a more expressive model over a vanilla VAE that has a single set of latent variables z
[26, 27], it is natural to consider having a hierarchy of latent variables z → z = {z`} for ` ∈ 1, ..., L
each with dimensionality dz` . The simplest VAE with a hierarchy of conditional stochastic variables
in the generative model is the Deep Latent Gaussian Model [27]. Here we have a Markov chain
in the generative model: pθ(x, z) = pθ(x|z1)

∏L−1
`=1 [pθ(z`|z`+1)]p(zL) Performing inference in

this model is challenging. The latent variables further from the data can fail to learn anything
informative [28, 1]: in the worst case a single-layer VAE can train in isolation within this hierarchical
model: each pθ(z`|z`+1) distribution can become a fixed distribution not depending on zi+1 such
that each KL divergence present in the objective between corresponding z` layers is driven to a
local minima. [1] gives a proof of this separation for the case where the model is perfectly trained
(KL(qφ(z, x)||pθ(x, z)) = 0).

The Variational Ladder Autoencoder (VLAE) [1] avoid this collapse in hierarchical VAEs. Here we
have a ‘flat hierarchy’ in z. Instead of having the set of z` variables conditioned on each other, the
prior for z = {z`} is a set of independent standard Gaussians: p(z) =

∏L
`=1N (z`|0, I), |z`| = dz` .

and inside the conditional distribution pθ(x|z) there is a ladder [29, 30, 28] over z` variables. This
separates out aspects of the data by the degree of computation needed to map between their latent
representation and x. Thus pθ(x|z) is defined implicitly by:

z̃L = fθL(zL) (1)

z̃` = fθ` (z`, z̃`+1) (2)

x ∼ p(x|fθ0 (z̃1)) (3)

for ` ∈ 1, ..., L− 1. The posterior follows a similar structure, but in reverse:

h` = gφ` (h`−1) (4)

z` ∼ N (z`|µφ` (h`), σ
φ
` (h`)) (5)

for ` ∈ 1, ..., L and where h0 = x.

VLAC: Variational Ladder Autoencoder for Clustering To enable us to cluster, we alter the
generative model above so we have a mixture distribution in z`: pθ(x, z) → pθ(x, z,y) =

p(x|z)
∏L
`=1 pθ(z`|y`)p(y`). p(z`|y`) = N (z`|µy` , σy`) and p(y`) = Cat(1/K`). Where

K = {K`} is the vector of the dimensionalities of our discrete variables {y`}. Our varia-
tional posterior is now qφ(z,y|x). We choose to factorise this as qφ(z|y, x)qφ(y|x). Each
of these is a product over our L layers. qφ(y|x) =

∏L
`=1 qφ(y`|x), qφ(y`|x) = Cat(πφ` (x)).

qφ(z|y, x) =
∏L
`=1 qφ(z`|x, {yi}i≤`), and so the new counterparts to Eqs (4-5) are:

h1 = gφ1 (x) (6)

h` = gφ` (h`−1, y`−1) for ` > 1 (7)

z` ∼ N (z`|µφ` (h`, y`), σ
φ
` (h`, y`)) (8)

3



See Figure 1 for a graphical representation of this model for L = 2. After training the qφ(y`|x)
networks are inference artifacts that can be applied to new datapoints.

Thus the ELBO for our model is:

L(x) = Ez∼q log pθ(x|z)−
L∑
`=1

Ey∼q KL(qφ(z`|x, {yi}i≤`)||p(z`|y`))−
L∑
`=1

KL(qφ(y`|x)||p(y`))

(9)

If all K` = 1 then VLAC reduces to a VLAE. It is not necessary to have K` > 1 for all layers in
VLAC.
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Figure 1: VLAC with L = 2

Evaluation Metric Following [13, 31, 16]
we use cluster accuracy (ACC), also known
as cluster purity, to evaulate our models:

ACC = max
P∈P

∑|D|
i=1 I[ti = Pyi]

|D|
(10)

where P is a T × K rectangular permu-
tation matrix that attributes each y to a
ground truth class t.

4 Experiments

We trained our model with L = 4 and
convolutional g and deconvolutional f net-
works. p(x|fθ0 (z̃1)) was a Gaussian distri-
bution with fixed variance. For full imple-

mentation details, see the code at1. We used CONCRETE sampling/the Gumbel-Softmax Trick
[32, 33] to estimate stochastically the expectations over discrete variables, rather than exactly
marginalise them out. This avoids us having to calculate numerous forward passes through the
model.

We apply our model to SVHN [2], as it gives variations in style of one type of object while also
having distinct ground-truth class structure (here t indexes digit identity) that we can benchmark
against.

When running our implementation of a VLAE over SVHN we observed that the 3rd layer was
associated most clearly with variation in digit identity. In our experiments we ran VLAC with
K = Kone = [1, 1, 50, 1] and Ktwo = [1, 5, 50, 1]. We evaluate the cluster accuracy of y3 over the
test set, taking as our predictions the argmax of the posterior qφ(y3|x).
In addition to published baseline results, we also compared against a single-z-layer Gaussian mixture
DGM [3, 4] with an encoder-decoder structure matching that of the sub-networks needed for the 3rd
layer of VLAC with K3 = 50.

We also perform class-conditional generation from the layers with K` > 1, sampling from each
cluster component p(z`|y`). See Figure 3.

5 Dicussion

Our model does not achieve state of the art clustering for SVHN. However, we can see that from
the Kone results that clustering inside a ladder of stochastic variables is better than an equivalent
GM-DGM baseline. And as VLAC with Ktwo gets better test set accuracy than VLAC with Kone,
we see that having a hierarchy of clusters increases performance further still.

From Figures 2 & 3 we can see that our model does separate out class information: class variation is
mostly associated with one layer (as in a vanilla VLAE) and cluster components within that layer
generally correspond to particular ground truth classes. Figure 3a shows that the model has also

1https://github.com/MatthewWilletts/VLAC
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Table 1: Test set cluster accuracy on SVHN for our approach and baselines.
Model Cluster Accuracy

VLAC with Kone 0.351± 0.038
VLAC with Ktwo 0.378± 0.022

Equivalent GM-DGM with |K| = 50 0.252± 0.004

IMSAT [14] 0.573± 0.040
DEC [15] 0.560± 0.016

ACOL-GAR [16] 0.768± 0.013

(a) ` = 1 (b) ` = 2 (c) ` = 3 (d) ` = 4

Figure 2: Decoder means when resampling the latent representation of a datapoint in each layer of
VLAC with Ktwo. For each layer, sample from the marginal pθ(z`) =

∑K`

i pθ(z`|yi`)p(yi`) while
keeping all other layers fixed.

(a) ` = 2 (b) ` = 3

Figure 3: Decoder means when sampling from VLAC with Ktwo from layers with K` > 1. Sample
from pθ(z`|y`) for each cluster component y` for one layer while keeping all other layers fixed with
one sample from their priors. One column per cluster component.

discovered clusters describing the colour temperature of the image. Overall we are pleased to have
demonstrated the benefits of clustering in disentangled spaces, and hope that this inspires more
research both into how to cluster datasets over different aspects of the data and how disentangling
can be used to improve performance of various classical machine learning tasks when working with
images.
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A Sampling from the prior of our GM-DGM

Comparing Figure 4 to Figure 3, we see that the GM-DGM encoding in z entangles class, colour and
style information, unlike VLAC.

Figure 4: Decoder means when sampling from the latent layer of GM-DGM with |K| = 50, sampling
from pθ(z|y) for each cluster component y.
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