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Abstract

Variational inference is a popular approach for approximate Bayesian inference
that is particulary promising for highly parameterized models such as deep neural
networks. A key challenge of variational inference is to approximate the poste-
rior over model parameters with a distribution that is simpler and tractable yet
sufficiently expressive. In this work, we propose a method for training highly
flexible variational distributions by starting with a coarse approximation and iter-
atively refining it. Each refinement step makes cheap, local adjustments and only
requires optimization of simple variational families. We demonstrate theoretically
that our method always improves a bound on the approximation (the Evidence
Lower BOund) and observe this empirically across a variety of benchmark tasks.
In experiments, our method consistently outperforms recent variational inference
methods for deep learning in terms of log-likelihood and the ELBO.

1 Introduction

Exact Bayesian inference is intractable in general for neural networks. To model epistemic uncer-
tainty, variational inference (VI) instead approximates the true posterior with a simpler distribution.
The most widely used one for neural networks is the mean-field approximation, where the posterior
is represented using an independent Gaussian distribution over all the weights.

Variational inference is appealing since it reduces the problem of inference to an optimization prob-
lem, minimizing the discrepancy between the true posterior and the variational posterior. The key
challenge, however, is the task of training expressive posterior approximations that can capture the
true posterior without significantly increasing the computational costs. This paper describes a novel
method for training highly flexible posterior approximations that do not pose a significant overhead,
when compared with mean-field variational inference.

The idea is to start with a mean-field variational approximation q(w) and iteratively refine it. The
method is a novel variant of the auxiliary variable approaches to VI (Agakov & Barber, 2004; Ran-
ganath et al., 2016). We augment the model parameters w using a number of auxiliary variables ak

∗Work done as a Google Brain intern.

4th workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada.



N

x

w

y

N

x

y

a1 a3

w w=a1+a2+a3

a2

w

a1
a1+a2

Figure 1: (Left) The supervised learning model and augmented model respectively where w is ex-
pressed as a sum of independent auxiliary variables. (Right) Illustration of the refining algorithm.
In each iteration the value of an auxiliary variable is fixed and the posterior is locally adjusted. In
the final iteration, a sample is drawn from w. Through the iterations, the variational distribution is
able to well approximate the true posterior in a small region.

(Figure 1 shows the corresponding graphical models) for k = 1, . . . ,K that leave the marginal dis-
tribution of the parameters unchanged. In each iteration, we sample the value of an auxiliary variable
according to the current variational approximation q(ak) and refine the approximation by condition-
ing it on the newly sampled value q(w) ≈ p(w|x, y, a1:k). Each refinement step makes cheap, local
adjustments to the variational posterior in the region of the sampled auxiliary variables. At the end,
we draw one sample from the refined q(w). The refinement iterations have to be repeated for each
posterior sample. The algorithm results in samples from a highly complex distribution, starting from
a simple mean-field approximation. While the distribution of the samples is difficult to quantify, it is
not limited to factorized, uni-modal forms, and we show that the procedure is guaranteed to improve
the resulting ELBO.

2 Methods

Variational Inference Variational inference attempts to approximate the true posterior p(w|x, y)
with an approximate posterior qφ(w), typically from a simple family of distributions, for exam-
ple independent Gaussians over the weights i.e. the mean-field approximation. To ensure that the
approximate posterior is close to the true posterior, the parameters of qφ(w), φ are optimized to max-
imize the Evidence Lower Bound (ELBO), which is a lower bound to the log marginal likelihood:

log p(y|x) = DKL

(
qφ(w)

∥∥ p(w|x, y))︸ ︷︷ ︸
≥0

+L(φ) ≥ L(φ) = Eqφ
[
log p(y|x,w)

]
−DKL

(
qφ(w)

∥∥ p(w)) ,
(1)

since the KL-divergence is non-negative.

For a new input x′, the predictive distribution p(y′|x′) can be approximated by stochastically draw-
ing a small number (around M ≤ 10) of sample model parameters and averaging their prediction in
an ensemble model:

w1:M ∼ qφ(w), p(y′|x′) ≈ 1

M

M∑
i=1

p(y′|x′, wi) . (2)

Refining the posterior The main issue with variational inference is the inflexibility of the poste-
rior approximation. Our idea is to refine the posterior approximation through iterative optimization.
Since only a small number of samples (M ≤ 10) are drawn for prediction, it is feasible to train a
detailed posterior in the regions of these samples while relying on a coarse-grained approximation
further away.

More precisely, we augment the graphical model with a finite number of auxiliary variables a1:K
as shown on Figure 1. The constraints are that (x, y) must be conditionally independent of the
auxiliary variables given w and that they must not affect the prior distribution p(w). This is im-
portant in justifying the use of the initial variational approximation. While we are focusing on one
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specific definition of the auxiliary variables, additive auxiliary variables, note that all of our results
straight-forwardly generalize to arbitrary joint distributions p(w, a1:K) that meet the constraints
above. Given a Gaussian prior N (0, σ2

w) over w, we express w as a sum of independent auxiliary
variables

w =

K∑
i=1

ai, with p(ai) = N (0, σ2
ai) for i = 1, . . . ,K , (3)

while ensuring that
∑K
i=1 σ

2
ai = σ2

w so that the prior p(w) = N (0, σ2
w) is unchanged.

Locally refining the approximate posterior refers to iteratively sampling the values to the auxiliary
variables and then approximating the posterior conditional on the sampled values i.e. qφk(w) ap-
proximates p(w|x, y, a1:k) for iterations k = 1, . . . ,K. Starting from the the initial mean field
approximation qφ(w), sample the value of a1 from qφ(a1) =

∫
p(a1|w)qφ(w) dx, then optimize

the approximation to the conditional posterior: qφ1
(w) ≈ p(w|x, y, a1). This procedure is then

iteratively repeated for a2:K . In iteration k,

1) ai ∼
∫
p(ai|a1:k−1, w)qφk−1

(w) dw 2) φk = argminDKL

(
qφk(w)

∥∥ p(w|x, y, a1:k)) .
(4)

Analogously to variational inference, the KL divergence is minimized through the opti-
mization of the conditional ELBO in each iteration: L|a1:k(φk) = Eqφk

[
log p(y|x,w)

]
−

DKL(qφi(w) ‖ p(w|a1:k)). In order to get independent samples from the variational posterior,
we have to repeat the iterative refinement for each ensemble member w1:M .

Theoretical justification Our theoretical claims are twofold. Firstly, that through this procedure,
we are optimizing a lower bound to the ELBO and secondly, that the refinement cannot result in a
worse posterior approximation than the initial mean-field approximation that we start with (in the
ELBO sense). That is

ELBOref ≥ ELBOaux ≥ ELBOinit , (5)
where ELBOref denotes the ELBO of the refined posterior, ELBOaux refers to the objective that the
refinement process is optimizing and ELBOinit is the ELBO of the initial variational approximation.

The former, ELBOref ≥ ELBOaux, can be shown analogously to Ranganath et al. (2016) while the
latter, ELBOaux ≥ ELBOinit, holds because it can be ensured that the refinement steps do not result
in a local optima worse than the initial variational approximation.

3 Experiments

To quantify the benefits of the refinement, we conducted experiments on a selection of regression
and classification benchmarks using Bayesian neural networks as the underlying model. We com-
pared the marginal log-likelihood and the ELBO to the baseline models: Deep Ensembles (Lak-
shminarayanan et al., 2017) and Multiplicative Normalizing Flows (Louizos & Welling, 2017) and
Variational Inference trained for 30000 iterations using Adam.

Refinement In the experiments, we refineM = 10 ensemble members, each withK = 5 auxiliary
variables. The means on their prior distributions are fixed at 0., and their variances form a geometric
series (each auxiliary variable reduces the variance of the prior by a factor of 0.7, which roughly
halves its standard deviation): σ2

a1 = 0.7σ2
w, σ2

a2 = 0.21σ2
w, σ2

a3 = 0.063σ2
w, σ2

a4 = 0.0189σ2
w, and

σ2
a5 = 0.0081σ2

w. σw was tuned with empirical Bayes. In each refinement iteration, we optimized
the posterior with Adam for 200 iterations.
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Deep Ensemble MNF VI Refined VI
MLL& Acc MLL & Acc MLL & Acc ELBO MLL & Acc ELBO

boston housing -9.136 (5.719) -2.920 (0.133) -2.874 (0.151) -668.272 (7.647) -2.851 (0.185) ≥ -630.379 (7.716)
concrete strength -4.062 (0.130) -3.202 (0.055) -3.138 (0.063) -3248.137 (68.575) -3.131 (0.062) ≥ -3071.124 (64.046)
naval propulsion 3.995 (0.013) 3.473 (0.007) 5.969 (0.245) 53440.701 (2047.340) 6.128 (0.171) ≥ 54882.656 (1228.361)
energy efficiency -0.666 (0.058) -0.756 (0.054) -0.749 (0.068) -1296.721 (66.310) -0.707 (0.094) ≥ -1192.337 (62.089)
yacht hydrodynamics -0.984 (0.104) -1.339 (0.170) -1.749 (0.232) -928.758 (112.928) -1.626 (0.231) ≥ -790.052 (84.716)
kin8nm 1.135 (0.012) 1.125 (0.022) 1.066 (0.019) 6071.268 (61.758) 1.069 (0.018) ≥ 6172.709 (67.659)
power plant -3.935 (0.140) -2.835 (0.033) -2.826 (0.020) -22496.579 (130.487) -2.820 (0.024) ≥ -22368.965 (85.308)
protein structure -3.687 (0.013) -2.928 (0.007) -2.926 (0.010) -108806.007 (174.522) -2.923 (0.009) ≥ -108597.593 (158.482)
wine -0.968 (0.079) -0.963 (0.027) -0.973 (0.054) -1346.130 (18.004) -0.968 (0.056) ≥ -1311.898 (17.487)

mnist -0.017 (0.001) -0.034 (0.002) -0.032 (0.001) -7618.533 (47.589) -0.025 (0.001) ≥ -6310.824 (42.357)
99.4% (0.0) 99.1% (0.1) 99.1% (0.1) 99.2% (0.0)

fashion mnist -0.201 (0.002) -0.255 (0.004) -0.255 (0.003) -22830.330 (232.654) -0.241 (0.004) ≥ -20438.955 (79.672)
93.1% (0.1) 90.7% (0.2) 90.7% (0.1) 91.3% (0.2)

cifar10 -0.791 (0.009) -0.795 (0.013) -0.815 (0.004) -57257.887 (299.570) -0.768 (0.007) ≥ -50989.217 (238.976)
76.3% (0.3) 72.8% (0.6) 72.3% (0.5) 73.5% (0.5)

Table 1: Results on the UCI regression benchmarks with a single hidden layer containing 50 units
and on image classification datasets using the LeNet-5 convolutional architecture. Metrics: marginal
log-likelihood (MLL), Accuracy (where applicable) and the evidence lower bound (ELBO). The
mean values and standard deviations are shown in the table.
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