BatchEnsemble: Efficient Ensemble of Deep Neural
Networks via Rank-1 Perturbation

Yeming Wen'2:3% Dustin Tran®, Jimmy Ba'-2
!'University of Toronto, ?Vector Institute, 2Google Research, Brain Team

Abstract

Ensembles, where multiple neural networks are trained individually and their
predictions are averaged, have been shown to be widely successful for improving
both the accuracy and predictive uncertainty of single neural networks. However,
an ensemble’s cost for both training and testing increases linearly with the number
of networks.

In this paper, we propose BatchEnsemble, an ensemble method whose com-
putational and memory costs are significantly lower than typical ensembles.
BatchEnsemble achieves this by defining each weight matrix to be the Hadamard
product of a shared weight among all ensemble members and a rank-one matrix
per member. Unlike ensembles, BatchEnsemble is not only parallelizable across
devices, where one device trains one member, but also parallelizable within a
device, where multiple ensemble members are updated simultaneously for a given
mini-batch. BatchEnsemble yields competitive accuracy and uncertainties as typi-
cal ensembles; the speedup at test time is 3X and memory reduction is 3X at an
ensemble of size 4.

1 Introduction

Ensembling is one of the oldest tricks in machine learning literature [Hansen and Salamon, 1990].
By combining the outputs of several models, an ensemble can achieve better performance than any
of its members. Many researchers demonstrate that a good ensemble is one where the ensemble’s
members are both accurate and make independent errors [Perrone and Cooper, 1992, Maclin and
Opitz, 1999]. In neural networks, SGD [Bottou, 2003] and its variants [Kingma and Ba, 2014]
are the most common optimization algorithm. The random noise from sampling mini-batches of
data in SGD-like algorithms and random initialization of the deep neural networks, combined with
the fact that there is a wide variety of local minima solutions in high dimensional optimization
problem [Kawaguchi, 2016, Ge et al., 2015], results in the following observation: deep neural
networks trained with different random seeds can converge to very different local minima although
they share similar error rates. One of the consequence is that neural networks trained with different
random seeds will usually not make all the same errors on the test set, i.e. they may disagree on a
prediction given the same input even if the model has converged.

Ensembles of neural networks benefit from the above observation to achieve better performance
by averaging or majority voting on the output of each ensemble member [Xie et al., 2013, Huang
et al., 2017]. It is shown that ensembles of models perform at least as well as its individual members
and diverse ensemble members lead to better performance [Krogh and Vedelsby, 1995]. More
recently, Lakshminarayanan et al. [2017] showed that deep ensembles give reliable predictive un-
certainty estimates while remaining simple and scalable. A further study confirms that deep ensem-
bles generally achieves the best performance on out-of-distribution uncertainty benchmarks [Ova-
dia et al., 2019] compared to other methods such as MC-dropout [Gal and Ghahramani, 2015].

4th workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada.

*Partial work done as part of the Google Student Researcher Program. Email: ywen@cs.toronto.edu

Despite their success on benchmarks, ensembles

in practice are limited due to their expensive com- g 30 o= testing cost
putational and memory costs, which increase lin- 8 2 memory cost
early with the ensemble size in both trainingand =~ ~ " .
testing. Computation-wise, each ensemble mem- % 10 /
ber requires a separate neural network forward o L o

pass of its inputs. Memory-wise, each ensemble 0 5 10 15 20 25 30
member requires an independent copy of neural Ensemble size

network weights, each up to millions (sometimes

billions) of parameters. This memory requirement Figure 1: The test time cost (blue) and memory
also makes many tasks beyond supervised learning cost of BatchEnsemble (orange) w.r.t the ensem-
prohibitive. For example, in lifelong learning, a ble size. The result is relative to single model
natural idea is to use a separate ensemble member cost. Testing time cost and memory cost of naive
for each task, adaptively growing the total number ensemble are plotted in green.

of parameters by creating a new independent set

of weights for each new task. No previous work achieves competitive performance on lifelong
learning via ensemble methods, as memory is a major bottleneck.

Our contribution: In this paper, we aim to address the computational and memory bottleneck by
building a more parameter efficient ensemble model: BatchEnsemble. We achieve this goal by
exploiting a novel ensemble weight generation mechanism: the weight of each ensemble member is
generated by the Hadamard product between: a. one shared weight among all ensemble members. b.
one rank-one matrix that varies among all members, which we refer to as fast weight in the following
sections. Figure 1 compares testing and memory cost between BatchEnsemble and naive ensemble.
Unlike typical ensembles, BatchEnsemble is mini-batch friendly, where it is not only parallelizable
across devices like typical ensembles but also parallelizable within a device. Moreover, it incurs only
minor memory overhead because a large number of weights are shared across ensemble members.

Empirically, we show that BatchEnsemble has the best trade-off among accuracy, running time, and
memory in terms of calibrated prediction on CIFAR-10 corruption dataset[Hendrycks and Dietterich,
2019]. BatchEnsemble also achieves comparable uncertainty evaluation to naive ensembles on
contextual bandits task.

Ensembles for Improved Uncertainty: Although deep neural networks achieve state-of-the-art
performance on a variety of benchmarks, their predictions are often poorly calibrated. Bayesian
neural networks [Hinton and Neal, 1995], which fit a distribution to the weights rather than a point
estimate, are often used to model uncertainty. However, they requires modifications to the traditional
neural network training scheme. Deep ensembles have been proposed as a simple and scalable
alternative, and have been shown to make well-calibrated uncertainty estimates [Lakshminarayanan
et al., 2017]. Several metrics had been proposed to measure the quality of uncertainty estimates.
In section 3.1, we use Expected Calibrated Error (ECE) [Guo et al., 2017, Naeini et al., 2015] as
an uncertainty metric to evaluate the performance of BatchEnsemble and other baseline methods.
Section 3.2 presents the results on contextual bandits benchmark [Riquelme et al., 2018], where
maximizing reward is of direct interest; this requires good uncertainty estimates in order to balance
exploration and exploitation.

2 Methods

2.1 BatchEnsemble

In this section, we introduce how to ensemble neural networks in an efficient way. Let W be the
weights in a neural network layer. Denote the input dimension as m and the output dimension as n,
ie. W € R™ ™. For ensemble, assuming the ensemble size is M and each ensemble member has
weight matrix ;. Each ensemble member owns a tuple of trainable vectors r; and s; which share
the same dimension as output and input (n and m) respectively, where ¢ ranges from 1 to M. Our
algorithm generates a family of ensemble weights 1W; by the following:

Wi = W o Fi7 where F»L == risz—'r7 (1)

For each training example in the mini-batch, it One shared .multiplied by .yields ensemble

—_ weight matrix independent rank weight matrices for

receives an ensemble Welght W?, by element_ (slow weight)... one fast weights... each member.
wise multiplying W, which we refer to as “slow PRl s
weights”, with a rank-one matrix F;, which we
refer to as “fast weights.” The subscript ¢ repre- o . = E Wi=Wors; T
sents the selection of ensemble member. Since
W is shared across ensemble members, we term T ris]
it as "shared weight" in the following paper. Fig- I s -1 0 1
ure 2 visualizes BatchEnsemble. w °

. . — Wy = W orgssT
Vectorization: We show how to make the above . = E
ensemble weight generation mechanism paral- rs a5

lelizable within a device, i.e., where one com-
putes a forward pass with respect to multiple Figure 2: An illustration on how to generate the
ensemble members in parallel. This is achieved ensemble weights for two ensemble members.

by the fact that manipulating the matrix compu-

tations for a mini-batch. Let z denote the activations of the incoming neurons in a neural network
layer. The next layer’s activations are given by:

v =6 (W @) @
=¢ ((W o risj)T xn> 3)
= ¢ (W' (znosi))or), 4)

where ¢ denotes the activation function and the subscript n represents the index in the mini-batch.
The output represents next layer’s activations from the i*" ensemble member. To vectorize these
computations, we define matrices R and .S whose rows consist of the vectors 7; and s; for all examples
in the mini-batch. The above equation is vectorized as:

Y =6 ((X 0 S)W)oR). 5)

where X is the mini-batch input. By computing Eqn. 5, we can obtain the next layer’s activations for
each ensemble member in a mini-batch friendly way. This allows us to take the full advantage of
GPU parallelism to implement ensemble efficiently. To match the input and the ensemble weight, we
can divide the input mini-batch into M sub-batches and each sub-batch receives ensemble weight
Wii={1,...,M}.

Ensembling During Testing: In our experiments, we take the average of predictions of each en-
semble member. Suppose the test batch size is B and there are M ensemble members. To achieve
an efficient implementation, one repeats the input mini-batch M times, which leads to an effective
batch size B - M. This enables all ensemble members to compute the output of the same B input
data points in a single forward pass. It eliminates the need to calculate the output of each ensemble
member sequentially and therefore reduces the ensemble’s computational cost.

2.2 Computational Cost

The only extra computation in BatchEnsemble over a single neural network is the Hadamard product,
which is cheap compared to matrix multiplication. Thus, BatchEnsemble incurs almost no additional
computational overhead (Figure 1).” One limitation of BatchEnsemble is that if we keep the mini-
batch size the same as single model training, each ensemble member gets only a portion of input
data. In practice, the above issue can be remedied by increasing the batch size so that each ensemble
member receives the same amount of data as ordinary single model training. Since BatchEnsemble is
parallelizable within a device, increasing the batch size incurs almost no computational overhead
in both training and testing stages on the hardware that can fully utilize large batch size. Moreover,
when increasing the batch size reaches its diminishing return regime, BatchEnsemble can still take
advantage from even larger batch size by increasing the ensemble size.

The only memory overhead in BatchEnsemble is the set of vectors, {r1,...,7n} and {s1,...,Sm},
which are cheap to store compared to the weight matrices. By eliminating the need to store full weight

In Figure 1, note the computational overhead of BatchEnsemble at the ensemble size 1 indicates the
additional cost of Hadamard products.

matrices of each ensemble member, BatchEnsemble has almost no additional memory cost. For
example, BatchEnsemble of ResNet-32 of size 4 incurs 10% more parameters while naive ensemble
incurs 4X more.

3 Experiments

3.1 Predictive Uncertainty

We first evaluate evaluates the predictive uncer- (a) Histogram of the predictive entropy on test exam-
tainty of BatchEnsemble on out-of-distribution ~ples from known classes, CIFAR-10 (left) and unknown
tasks and ECE loss. It is known that deep neu- classes, CIFAR-100 (right).

ral networks tend to make over-confident pre- 25
12.5 :

dictions even if the prediction is wrong or the : — Single — single
input comes from unseen classes. Ensembles 10.0 NaiveE 2.0 WefivelE

. . .. —— BatchE —— BatchE
of models can give better uncertainty prediction .5 15

when the test data is out of the distribution of
training data. To measure the uncertainty on 5.0
the prediction, we calculate the predictive en-
tropy of single neural network, naive ensembles,
and BatchEnsemble. The result is presented 00
in Figure 3a. As we expected, single model
produces over-confident predictions on unseen H (log(p(ylz)))

e>.<amples, Whe.reas ensembling methogls CXhl.blt (b) Expected Calibration Error. Ensemble of size 4.
higher uncertainty on unseen classes, including [ower ECE reflects better calibration.

both BatchEnsemble and naive ensemble. It

1.0

2.5 0.5

0.0
0.0 0.5 0 1 2

suggests that BatchEnsemble doesn’t inherit the MC-drop BatchE NaiveE Single

gleessired uncertainty modelling of naive ensem- C10 289 237 230 327
' C100 8.99 8.89 6.82 9.28

Additionally, we calculate the Expected Calibra-
tion Error [Naeini et al., 2015] (ECE) of single
model, naive ensemble and BatchEnsemble on both CIFAR-10 and CIFAR-100 in Table 3b. To
calculate ECE, we group model predictions into M interval bins based on the predictive confidence
(each bin has size ﬁ). Let B,,, denote the set of samples whose predictive probability falls into the

interval (7L, 2] for m € {1,... M}. Let acc(B,,) and conf(B,,) be the averaged accuracy and

averaged confidence of the examples in the bin B,,,. The ECE can de defined as the following,
o~ [Bul
ECE = Z:l Tm|acc(Bm) — conf(B,,)| (6)

where n is the number of samples. ECE as a criteria of model calibration, measures the difference in
expectation between confidence and accuracy [Guo et al., 2017]. It shows that BatchEnsemble makes
more calibrated prediction compared to single neural networks.

We also evaluate the calibration of different mehtods on recently proposed CIFAR-10 corruption
dataset [Hendrycks and Dietterich, 2019]. The dataset consists of over 30 types of corruptions to the
images. It is commonly used to benchmark a wide range of methods on calibrated prediction [Ovadia
et al., 2019]. To the best of our knowledge, dropout ensemble is the state-of-the-art memory efficient
ensemble method. Thus, in our paper, we compare BatchEnsemble to dropout ensemble in this
section. Naive ensemble is also plotted as an upper bound of our method. As showed in Figure 4,
BatchEnsemble achieves better calibration than dropout as the skew intensity increases. Moreover,
dropout ensemble requires multiple forward passes to get the best performance. Ovadia et al. [2019]
used sample size 128 while we found no significant difference between sample size 128 and 8. Note
that even the sample size is 8, it is 8X more expensive than BatchEnsemble in the testing time cost.
Finally, we showed that combining BatchEnsemble and dropout ensemble leads to better calibration.
It is competitive to naive ensemble while keeping memory consumption efficient. It is also an
evidence that BatchEnsemble is an orthogonal method to dropout ensemble.

1.0-

0.9-
0.8-
20.7-
e
S 0.6-
3
<054 Method
0.4- Vanilla [/ Dropout_8
v .
4 5

Ensemble [BEdrop_8

0-31 BatchEnsemble

0.2-

1 2 3
Skew intensity

0.6-
Method
0.5- _ Vanilla [Dropout_8
Ensemble [BEdrop_8
0.4- BatchEnsemble
w
O 0.3-
w
0.2-
0.1-
0.0- ' ' i
4 5

Skew intensity

Figure 4: Calibration on CIFAR-10 corruptions: boxplots showing a comparison of ECE under
all types of corruptions on CIFAR-10. Each box shows the quartiles summarizing the results
across all types of skew while the error bars indicate the min and max across different skew types.
Ensemble/BatchEnsemble: Naive/Batch ensemble of 4 ResNet32x4 models. Dropout8: Dropout
ensemble with sample size 8. BEdrop8: BatchEnsemble of 4 models + Dropout ensemble with
sample size 8.

3.2 Contextual Bandits

We evaluate our BatchEnsemble method on the recently proposed bandits benchmark [Riquelme
et al., 2018]. Bandit data comes from different empirical problems that highlight several aspects of
decision making. No single algorithm can outperform every other algorithm on every bandit problem.
Thus, average performance of the algorithm over different dataset is used to evaluate the quality of
uncertainty estimation. Thompson sampling [Thompson, 1933] is used in bandits problem to keep
a model posterior distribution and select a greedy action according to the posterior of the model.
Therefore, the key factor to achieve good performance in bandits problem with Thompson sampling
is to learn a reliable uncertainty model. The uncertainty of ensembles can be represented by the
variance of prediction over ensemble members. In our experiment, Thomson sampling samples from
the policy given by one of the ensemble member. The fact that Dropout which is an implicit ensemble
method achieves competitive performance on bandits problem suggests that ensemble can be used as
uncertainty modelling. As the result in Table 1 showed, Both BatchEnsemble with ensemble size 4
and 8 outperform Dropout in terms of average performance.

4 Conclusion

We introduce BatchEnsemble, an efficient method for ensembling deep neural networks in a mini-
batch friendly way. We show that BatchEnsemble has significantly less memory and computational
cost (including training and testing) than naive ensemble. Moreover, we showed that BatchEnsemble
produces comparable uncertainty estimation to naive ensemble—demonstrating that the slow and fast
weight parameterization is sufficient for expressivity.

Table 1: Contextual bandits regret. Results are relative to the cumulative regret of the Uniform
algorithm. We report the mean and standard error of the mean over 30 trials. Ensemble size with 4, 8.

M.RANK M.VALUE MUSHROOM STATLOG FINANCIAL JESTER WHEEL
NaiveEnsemble4 5.30 34.64 1344 +383 710115 1131+148 7273 £632 68.63+21.97
NaiveEnsemble8 6.50 34.91 13.59+3.13 7.15+£098 11.64+ 157 73.54+6.14 68.63+19.32
BatchEnsemble4 6.30 34.52 1522+£521 11.53+£5.06 1024 +£2.66 7265627 62.94£26.12
BatchEnsemble8 5.70 33.95 1348+336 985+3.67 13.17+2.87 71.84+647 61.41+26.18
BBAlphaDiv 14.80 80.01 58.14+4.13 69.78+633 8559 +4.61 89.04+436 97.51£10.95
BBB 12.20 44.35 2348 +£5.11 2325+5.18 3354+836 7651+6.27 64.99 +28.53
Dropout 8.20 36.73 1505+823 931£3.19 1353+298 71.90+6.31 73.86+2248
LinFullPost 9.40 49.60 9742+452 19.00+1.03 1024+0.92 78.40+4.85 42.94+12.68
MultitaskGP 5.90 34.59 1287+470 8.04+£377 850+£0.80 74.03+£596 69.52+ 1855
NeuralLinear 10.40 35.61 1549+477 1351£130 1758+ 1.37 8291 +£355 4856+ 11.84
ParamNoise 10.40 36.84 1645+ 645 13.13+£337 1489+272 75244+6.57 64474985
RMS 9.40 39.18 1631+ 6.13 1044 £5.02 11.75+£2.64 7338+4.70 84.02 £24.67

Uniform Sampling 16.00 100.00 100.00 100.00 100.00 100.00 100.00

References

Léon Bottou. Stochastic learning. In Summer School on Machine Learning, pages 146—168. Springer,
2003.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In ICML, 2015.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Conference on Learning Theory, pages 797-842, 2015.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In ICML, 2017.

Lars Kai Hansen and Péter Salamon. Neural network ensembles. /IEEE Trans. Pattern Anal. Mach.
Intell., 12:993-1001, 1990.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=HJz6tiCq¥m.

Geoffrey E. Hinton and Radford M. Neal. Bayesian learning for neural networks. 1995.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
Snapshot ensembles: Train 1, get m for free. CoRR, abs/1704.00109, 2017.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in neural information
processing systems, pages 586-594, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active learning.
In Advances in neural information processing systems, pages 231-238, 1995.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In NIPS, 2017.

Richard Maclin and David W. Opitz. Popular ensemble methods: An empirical study. J. Artif. Intell.
Res., 11:169-198, 1999.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated prob-
abilities using bayesian binning. Proceedings of the ... AAAI Conference on Artificial Intelligence.
AAAI Conference on Artificial Intelligence, 2015:2901-2907, 2015.

https://openreview.net/forum?id=HJz6tiCqYm

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua V. Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. ArXiv, abs/1906.02530, 2019.

Michael P. Perrone and Leon N. Cooper. When networks disagree: Ensemble methods for hybrid
neural networks. 1992.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown. 2018.

W.R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3—4):285—294, 1933.

Jingjing Xie, Bing Xu, and Chuang Zhang. Horizontal and vertical ensemble with deep representation
for classification. CoRR, abs/1306.2759, 2013.

	Introduction
	Methods
	BatchEnsemble
	Computational Cost

	Experiments
	Predictive Uncertainty
	Contextual Bandits

	Conclusion

