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Abstract

This paper examines the performance of two Bayesian Neural Networks, namely
Monte-Carlo Dropout (MC-Dropout) and functional variational Bayesian Neural
Networks (fBNN). The former specifies the prior distribution on weights, and the
latter places the prior on stochastic processes (i.e., function space). We investigated
their sensitivity to the change of hyperparameters, training set composition, and
their ability to handle perturbed data. Their performances have been evaluated
through empirical studies on the regression tasks. Moreover, their ability to detect
out-of-distribution samples are examined.

1 Introduction

Deep neural network represents a parameterized function. The learning process is to obtain the point
estimation of the parameters of the network. Therefore, these models are unable to provide predictive
uncertainty estimates, which is crucial when they are deployed into the real world. The trained
models should be able to know what they do not know rather than making overly confident decisions.
Bayesian Neural Networks (BNN) combine the predictive performance of neural networks with the
uncertainty estimate of the Bayesian formalism. The difficulty of employing Bayesian formalism into
the neural network is the intractability of the posterior distribution. To clarify, let’s specify priors on
the weights of the neural network, p(w|a), where « represents the parameters of the prior. Let D be
the training set, then p(w|D, o) would be the posterior distribution. Due to the number of parameters
in DNNs, the posterior distribution is intractable. One approach is to approximate the posterior with a
family of distributions, (), so that we can sample from it more efficiently or calculate the posterior
analytically. Therefore, the goal is to find a member ¢(w; \) € @ which is closest to the true posterior.
Closeness is measured with Kullback-Leibler(X L) divergence between the variational posterior and
the true posterior:
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The issue with equation 1 is that the true posterior is unknown. However, we have access to the joint
probability distribution, p(w, D, «), which leads to the definition of Evidence Lower Bound (£ LBO).
Minimizing the ICL divergence is equivalent to maximizing the £ELBO:

ELBO) = /q(w; Mlog p(w, D, ) — log q(w; N)]dw 2)

There are different implementations and interpretations of BNNs. Some of these approaches are
summarized in Table Al and Figure 1. The methods are chronologically sorted to demonstrate the
technical trends in BNNs. Table Al provides some details on the selected BNNs in terms of the prior
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and posterior distributions, their loss functions and the optimization processes. Early works on BNNs
started by Neal and MacKay as they specified the prior distribution on weights, (Mackay, 1992), (Neal,
1992). Hinton and Van Camp (1993) added Gaussian noise to the weights to limit the amount of
information they contain and applied the Minimum Description Length (MDL) principle to allow very
noisy weights to be communicated efficiently. Later, Graves (2011) introduced a stochastic variational
method based on the MDL. Introduction of Variational Auto-Encoders (VAE), reparametrization
trick and dropout influenced the direction of BNNs, (Kingma and Welling, 2014), (Srivastava et al.,
2014), (Rezende et al., 2014), (Gregor et al., 2014). Blundell et al. (2015) introduced Bayes By
Backprop which uses the reparametrization trick to back propagate the gradients of the loss function to
update the fully factorized Gaussian approximation to the posterior distribution. Gal and Ghahramani
(2016) introduced MC-Dropout which applies dropout layer before every network unit in each layer.
This work later improved with Concrete dropout, (Gal et al., 2017). Noisy versions of the off-the-
shelf optimizers, Vprop, Noisy Adam and Noisy Natural Gradient, are also interpreted as BNNss,
(Khan et al., 2017), (Zhang et al., 2018).

More recently, some works place the prior distributions (implicit or explicit) on the function space.
Garnelo et al. (2018b) modeled conditional distribution with input data in Neural processes (NP)
and Conditional NP, (Garnelo et al., 2018a). Sun et al. (2019b) introduced functional variational
Bayesian Neural Networks (fBNN) which works with structured and implicit stochastic processes
as priors and uses Spectral Stein Gradient Estimator (SSGE) for the gradient estimations. The work
further developed into a method called infer-Net, (Shi et al., 2019). Gradient estimators for variational
inference like Stein Variational Gradient Descent and SSGE helped with the transition of placing the
priors on the function space, (Liu and Wang, 2016), (Shi et al., 2018).

In this paper, we take a closer look at two examples of BNNs: MC-Dropout, (Gal and Ghahramani,
2016), and fBNN, (Sun et al., 2019b). The former specifies the prior on weights and the latter
places the prior over the functions. We perform a series of experiments on these two BNNs to
investigate their generalization and sensitivity to hyperparameters, training set composition, and
perturbations. Moreover, we examined the performance of these two methods on the detection
of out-of-distribution samples. This paper is the extension and summarization of our technical
reports, (Fashandi, 2019a), Fashandi (2019b). We utilized the MC-dropout and fBNN Github
repositories, (Gal, 2018), (Sun et al., 2019a) for implementing the experiments. A slim version of LG
Electronics Auptimizer has been used for some of the experiments presented in this paper, (Liu et al.,
2019).

2 Background Information

This section describes the MC-dropout and fBNN methods in more details. The differences between
the two approaches make them proper candidates for our experiments. Gal and Ghahramani (2016)
used dropout in neural networks to build a BNN. They showed that a neural net with dropout applied
before every weight layer is equivalent to an approximation to a probabilistic deep Gaussian process.
During the test time, the weights are sampled 7" times and the first two moments of the outputs
represent the prediction and the uncertainty. Randomly drawn masked weights can be interpreted as a
function draw. The proper value of the dropout rate can be obtained with grid-search method. To
obtain the dropout probability, p, with a gradient-based method instead of the grid-search approach,
Gal et al. (2017) proposed the concrete dropout. MC-dropout is easy to utilize in any deep neural net
architecture and with any off-the-shelf gradient estimator.

fBNN performs variational inference on the distribution of functions, (Sun et al., 2019b). fBNN
is trained to produce the posterior distribution of functions with small KL divergence to the true
posterior over functions; refer to Table A1l for the formulation of fELBO, the loss function of fBNN.
The Spectral Stein Gradient Estimator (SSGE) is used for the gradient calculations, (Shi et al., 2018).
SSGE estimates the gradient function; therefore, the gradient estimation is not limited to the sample
points, and gradients can be estimated at both in-distribution samples and out-of-distribution samples.
In each iteration, log-likelihood gradients and KL gradients are estimated for a set of points called
measurement set, and the parameters of the fBNN are updated based on the gradients values at these
points. Measurement set contains a random subset of training data, Dg, and M independently drawn
point from a sampling distribution ¢, X . The reason to include X* into the measurement set is
not to overfit at the training points due to the presence of log-likelihood term in the objective. The
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Figure 1: Timeline of Bayesian Neural Networks. The list is not exhaustive. The blocks are color coded. BNNs
that put prior on weights are shown in . The techniques that influence the trends are shown in darker
gray. BNNs that put prior on functions are shown in red color.

priors to fBNN could be defined explicitly (e.g. Gaussian Processes) or implicitly (e.g., piecewise
linear or piecewise constant functions).

3 Sensitivity to Hyperparameters

In this section, we examine the sensitivity of MC-Dropout and fBNN to their hyperparameters.

Inspired by Novak et al. (2018), we performed a series of experiments to address the followings:

e How sensitive is the generalization error to the change of one hyperparameter?
e How sensitive is the generalization error to the hyperparameters in an unrestricted manner?
To address these questions, we trained models with different values of the hyperparameters on the

UCI-Boston housing dataset, (Dua and Graff, 2019). Table 1 and Table 2 list the hyperparameters
and their corresponding values. We kept the network architecture the same as the architectures used

in MC-Dropout and fBNN papers for this dataset, (Gal and Ghahramani, 2016), (Sun et al., 2019b).

The plots in Figure 2 and Figure 3 are to address the first question. Each plot shows the sensitivity of
the model w.r.t the change of one hyperparameter, written in the plot’s caption, called the variable
hyperparameter. Each point, p, on these plots represent two models, A and B. These models have
the same hyperparameters except for the variable hyperparameter (h 4 # hp). The point p on these
plots is of the form p = (G4, Gp), where Gx is the generalization error of model X, approximated
as follows:

g(f? Da T) = ‘gempirical(fa D) - gempirical (fa T)| (3)

f1is a trained model, £ is the empirical error, D, and T are training set and test set, respectively. The
points are color-coded based on the values of the variable hyperparameter. We expect to see the
points close to the identity line (i.e., x = y), which means that the change of one hyperparameter
does not affect the generalization error too much. Based on the values of hyperparameters reported in
Tables 1 and 2, there are 12096 and 1008 possible combinations of hypermeters for the fBNN and
MC-dropout models, respectively. We trained all the 1008 MC-dropout models and trained 1068
fBNN models. The hyperparameter combinations for fBNN were selected semi-randomly, as we
wanted to have some of the combinations that differ only in one hyperparameter.

Based on the plots shown in Figures 2 and 3, fBNN and MC-dropout behave differently to the change
of hyperparameters. For some of fBNN’s hyperparameters, we see the clusters of points. For instance,
in Figure 3-(a or c¢), we see single color clusters. Although the points are close to the identity line,
different pairs of variable hyperparameter form separate clusters, which suggests that the models are
sensitive to the different values of that particular hyperparameter. We also plotted the violin plots
of the absolute difference of generalization errors between the models that only differ in one hyper
parameters (ie., S = & va |Ga, — G, |). Figure 4-(a,b) show the average sensitivity for different
hyperparameters of MC-dropout and fBNN models. Please note that the plots shows the sensitivity to
each hyperparameter in isolation.
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Table 1: FBNN hypermarametrs and their corresponding values

fBNN, (Sun et al., 2019b)

Hyperparameter Values Description

Injected noise 0.001, 0.01, 0.1 Injected noise for Gaussian process priors

Number of random measurement points 10, 50, 100, 150 In each training iteration, measurement points include a mini-batch, D g, from training data and
random points ,X 57, from a distribution.

Learning rate 0.001,0.005,0.01 Learning rate of the optimizer

Eigen threshold 0.8,0.9,0.99 This is a hyperparameter of SSGE. It is a threshold on the magnitude of eigenvalues, (Shi et al.,
2018).

Train samples 10, 50, 100,150 Number of samples from the posterior distribution during the training

Test samples 10, 50, 100, 150 Number of samples from the posterior distribution during the testing

Composition of training set (split number) 0,...,6 7-fold cross validation

Table 2: MC-dropout hypermarametrs and their corresponding values

MC-Dropout, (Gal and Ghahramani, 2016)

Hyperparameter Values Description

Learning rate 0.001, 0.005, 0.01 Learning rate of the optimizer

Dropout rate 0.005, 0.01, 0.05,0.1

Regularization rate, 7 0.1,0.15,0.2

Test samples 10, 50, 100, 10000 Number of samples from the posterior distribution during the testing
Composition of training set (split number) 0,...,6 7-fold cross validation

To address the second question, we not only look at how the points spread from the unity line but also
we consider their spread along the x or y-axis. As we would like to see the points close to the unity
line and gathered around a point, rather than spreading along the unity line. We calculated the average
generalization error for all the models we trained for each of the experiments. Gme = 0.2140.13 and

G rBNN = 1.43 = 1.18. If we look at the change to the hyperparameters in an unrestricted manner,
fBNN shows higher sensitivity to its hyperparameters for these sets of experiments. Moreover, on
average the fBNN models showed higher generalization error compared to MC-dropout models.

4 More Experiments

In this section, we address the sensitivity of MC-dropout and fBNN models to the network architecture,
data perturbations, and composition of the training set. We selected a set of values for the number
of layers, number of neurons, and weight of the noise for these experiments. For the training set
composition related experiments, we used 7-fold cross validation. The split number refers to each of
the 7 runs. We trained 168 fBNN models and the same number of MC-Dropout models based on the
values presented in Table 3. The task is the regression task on the UCI-Boston housing dataset. The
results are described in the following subsections. For the networks’ hyperparameters, we used the
default values in their referenced implementations, (Gal and Ghahramani, 2016), (Sun et al., 2019b).

4.1 Sensitivity to Network Architecture

We organized the results in similar plots as discussed before; Refer to Figure 5. Based on the plots
presented in Figure 4-(c), fBNN shows higher sensitivity to the network architecture than MC-dropout.
Addressing the generalization ability of BNNs in networks with different capacities would be an
interesting investigation. As addressed in the conventional deep learning models, even very high
capacity networks do not suffer from over-fitting and maintain their generalization abilities. It is

Table 3: Details of the experiments related to the network architecture and perturbation

(Hyper)parameters Values Description

Number of layers 1,2 Number of fully conncected layers
Number of neurons 100, 200, 300 Number of neurons in each layer
Sinusoidal noise weight,.A 0.0,0.1,0.5,0.7

Composition of training set (split number) 0,...,6 7-fold cross validation
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Figure 4: Average sensitivity (average difference in the generalization error) to the change of one hyperparameter, ar-
chitecture, weight of the perturbation and training set composition. Split_number shows the sensitivity to the training set
composition and n_rand is the number of random measurement points.

expected that BNNss achieve higher generalization abilities. It would be interesting to perform similar
experiments presented in (Neyshabur et al., 2019) on different BNN implementation, as well.

4.2 Sensitivity to Data Perturbation and Training Set Composition

To explore the sensitivity of the two BNNss to the perturbations, we considered applying Sinusoidal
and Gaussian perturbations to the data (to both inputs and output values). The Sinusoidal noise is
defined as follows: & = x + Asin(27r), where &, € R"™ are the perturbed data and original data,
respectively. A € (0,1] is a constant, and » € R"™, r; € [0, 1], Yang et al. (2015). The Gaussian
perturbation is the defined by: & = =+ AN (0, .A), where the mean value is zero and standard deviation
is A. We call A the weight of perturbation in both cases.

To closely investigate how fBNN and MC-dropout models learn in a noisy environment, we performed
a series of experiments on a toy example presented in (Sun et al., 2019b). Figures 7 and 8 shows
samples from 3 = 23 with added Sinusoidal and Gaussian noise to the training data, with a different
value of A in each plot. The network architecture for both BNNs is one hidden layer of 50 neurons.
The blue regions show the uncertainty up to +3.75 times the standard deviation. The training data
partitioned the input space into different regions: outer partitions, inner partition, and partitions with
training samples.

fBNN model shows higher uncertainty in the inner region than the MC-dropout model. The uncer-
tainty values in the outer regions are higher for MC-dropout model than fBNN model. It seems that
MC-dropout treats the inner partition differently that the outer partitions. This observation needs
further analysis, and it would be an interesting investigation specially when we move to a higher
dimensional space. Novak et al. (2018) demonstrated that conventional (i.e., non-Bayesian) trained
neural networks behave differently on and off the data manifold. Those studies are in-line with our



experiments and the predicted uncertainty values in both BNNs. Around the training data, fBNN
shows higher confidence than MC-Dropout which results in a less accurate predicted mean function
in the presence of lower signal to noise ratio; e.g., compare figure 7-(c and e) with figure 8-(c and e).
This issue could be due to the presence of the log-likelihood term in the fBNN’s objective function
and due to updating the objective function based on the gradient values in a finite measurement set.
Refer to section 2 for more details. We also perturbed the UCI-Boston housing data with Sinusoidal
noise and plot the generalization errors of the models that only differ in the amount of perturbations;
Refer to Figure 6-(a and c).

Similar plots are shown for the different split number (i.e., cross-validation folds). Each point shows
the generalization errors of two models with the same hyperparameters, except different training set
subset (i.e., fold). The points are color-coded. It is interesting to see that points with different colors
are more separated in fBNN than MC-Dropout models. Compare Figure 6-(b) and Figure 6-(d). This
shows the higher sensitivity of the fBNN models to the training set composition. Again, perhaps it
is related to the loss function formulation. To further investigate the sensitivity to the training set
composition, we summarized the sensitivity to the training set composition of all the experiments in
Figure 4-(d).

5 Out-of-distribution Samples

One application of the uncertainty measurements in BNNs is the detection of out-of-
distribution (OOD) samples. We expect to see a highly uncertain output for an OOD sample. To
empirically investigate the performance of MC-Dropout and fBNN, we chose sets of two different
regression databases from UCI-datasets (Dua and Graff, 2019), with the same number of input
features; one as in-distribution data and the other one as an out-of-distribution data. We trained the
BNNSs on concrete dataset, (Yeh, 1998). The out-of-distribution dataset is Energy efficiency Data
Set, (Tsanas and Xifara, 2012). We only considered the heating load output of this dataset, as the
training set has only one output value. Figure 9 shows the average uncertainty for the in-distribution
test data and out-of-distribution test data during the training process. We trained the networks for
10 runs. The uncertainty value of a test sample is measured with the variance of the multiple (=100
draws) predictions for the test sample. The average of these uncertainty values for the test sets for
each run are plotted in Figure 9. As expected, the uncertainty values of the OOD samples are higher
than the in-distribution test samples for both implementations. It is interesting to note that for all the
10 runs the MC-dropout uncertainty values for the OOD samples are higher (~ order of 10) than the
fBNN models. Another interesting observation is that for one of the MC-dropout runs the average
uncertainty values of OOD samples were initially close to the in-distribution test samples, but the gap
increased as the training continued; See Figure 9-(b).

6 Conclusion

In this paper, we examined two implementations of BNNs. The nature of gradient estimation, loss
function, prior specification, and posterior approximation were different in the two selected BNN
implementations. We designed the set of experiments to compare the sensitivity and generalization
abilities of them. Overall, we concluded that MC-dropout showed lower generalization error in these
experiments than fBNN. It was less sensitive to its hyperparameters, the data perturbation, and the
training set composition. Perhaps, the formulation of the loss function of fBNN plays a role in this, as
the KL-term measured in fELBO is based on the finite measurement sets. This set contains randomly
drawn samples in addition to the subset of the training set to overcome the over fitting to the training
points. However, the finite nature of this set affects the generalization ability of the network in our
experiments. Moreover, we showcased the quality of their predictive uncertainty in out-of-distribution
samples.
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A Bayesian Neural Networks
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in the field. Please note that the list is not exhaustive.
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