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Abstract

This paper studies a training method to jointly learn an energy-based model and
a flow-based model, in which the two models are iteratively updated based on a
shared adversarial value function. This joint training method has the following
traits. (1) The update of the energy-based model is based on noise contrastive
estimation, with the flow model serving as the noise distribution. (2) The update of
the flow model approximately minimizes the Jensen-Shannon divergence between
the flow model and the data distribution. (3) Unlike GAN which learns an implicit
probability distribution defined by a generator model, our method learns two
explicit probabilistic distributions on the data. We demonstrate the proposed
approach on 2D synthetic data and real image datasets.

1 Introduction

Recently flow-based models have gained popularity in generative modeling [3} 4, |19} 10, [1} 23} 140]]
and variational inference [18] 37, 20} [16| [14]. Unlike the generator model [18} 9] which defines a
probability density function implicitly through a low-dimensional hidden vector, a flow model defines
a normalized probability density explicitly, making it convenient for various tasks, including learning
and sampling. However, in order to achieve tractability, the flow models are forced to compose many
layers of transformations of rather unnatural forms. This is also the case with auto-regressive models
[35) 142} 38].

Besides flow models, there is yet another class of models that define explicit probability density
functions, albeit of unnormalized forms. These are the energy-based models (EBM) [27, 133} 15! 144,
43| 18,124,134, 15,16]. Originated from statistical mechanics, an energy-based model has an unnormalized
density that is the exponential of the negative energy function, so that instances of low energies have
higher probabilities. Due to the intractability of the normalizing constant, the energy-based model is
computationally challenged, since learning and sampling usually require expensive Markov Chain
Monte Carlo (MCMC) sampling. However, the energy function can be modeled by a relatively simple
network of a natural form, such as a convolutional network [26, [22]]. Moreover, the model has a direct
correspondence with the commonly used discriminative network, as a simple consequence of the
Bayes rule [2|[1325]], so that the learned network can be turned into a classifier, or the features of
the learned network can be used for downstream tasks such as classification.

Contrasting an EBM with a flow model, the former is on the side of representation where different
layers represent features of different complexities, whereas the latter is on the side of learned
computation, where each layer is like a step in the computation. The EBM is like an objective
function, a target distribution, an evaluator or a critic, whereas the flow model is like a finite step
iterative algorithm, a sampler or an actor. As a result, the EBM can be simpler and more flexible
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in form, and may capture the modes of the data distribution more accurately than the flow model,
provided that computation such as sampling is possible. In comparison, the flow model is capable of
direct generation via ancestral sampling, which is sorely lacking in EBM. It may thus be desirable to
train the two models jointly. This is the goal of this paper.

Our joint training method is inspired by the noise contrastive estimation (NCE) of [[11]], where an
EBM is learned discriminatively by classifying the real data and the data generated by a noise model.
See also [41, 113} 125] for a related introspective learning method.

In NCE, the noise model must have an explicit normalized density function. Moreover, it is desirable
for the noise distribution to be close to the data distribution for accurate estimation of EBM. However,
the noise distribution can be far away from the data distribution. The flow model can potentially
transform or transport the noise distribution to a distribution closer to the data distribution. With the
advent of strong flow models such as Glow [19], it is natural to recruit the flow model as the contrast
distribution for NCE learning of EBM.

However, even with the flow model pre-trained by maximum likelihood estimation (MLE) on the
data distribution, it may still not be strong enough as a contrast distribution, in the sense that the
synthesized examples generated by the pre-trained flow model may still be distinguished from the real
examples by a classifier based on an EBM. Thus, we want the flow model to be a stronger contrast or
a stronger training opponent for EBM. To achieve this goal, we can simply use the same objective
function of NCE, which is the log-likelihood of the logistic regression for classification. While
NCE updates the EBM by maximizing this objective function, we can also update the flow model
by minimizing the same objective function to make the classification task harder for EBM. Such
update of the flow model combines MLE and variational approximation, and may help correct the
over-dispersion of MLE. If the EBM is close to the data distribution, this amounts to minimizing the
Jensen-Shannon divergence (JSD) [9] between the data distribution and the flow model. In this sense,
the learning scheme relates to GAN closely. However, unlike GAN [9]] which learns a generator
model that defines an implicit probability density function via a low-dimensional latent vector, our
method learns two probabilistic models with explicit probability densities (a normalized one and an
unnormalized one).

In the context of inverse reinforcement learning, [28]] proposes a guided policy search method, and
[6]] connects it to GAN. Our method is closely related to this method, where the energy function can
be viewed as the cost function, and the flow model can be viewed as the unrolled policy. In our work,
we follow NCE learning [[11}[30] of EBM, by treating the normalizing constant as a free parameter to
be updated together with the original parameters in gradient descent update in discriminative learning,
instead of estimating the normalizing constant by importance sampling which may be less reliable in
high dimensional situations. Moreover, the flow model is updated by the same objective function as
learning the EBM in an adversarial scheme.

The contributions of our paper are as follows. We explore a learning method that couples the learning
of EBM and the learning of the flow model using a shared objective function. It improves NCE
learning of EBM with a flow-transformed noise distribution, and it modifies the MLE learning of
the flow model to approximate JSD learning, which may help correct the over-dispersion of MLE.
Experiments on 2D synthetic data show that the learned EBM achieves accurate density estimation
with much simpler network structure than the flow model. On real image datasets, the features from
the learned EBM are useful for downstream classification task, and the learned flow model achieves
high synthesis quality, which is better than the same model trained by MLE.

2 Learning method

2.1 Energy-based model

Let x be the input signal, such as an image. We use pg(z) to denote the probability density function
of x with parameter 6. The energy-based model (EBM) is defined as follows [43]]:

po(z) = ﬁ explfo ()], (1)

where fy is defined by a bottom-up convolutional neural network whose parameters are denoted by 6.
The normalizing constant Z(0) = [ exp|[fy(z)|dz is analytically intractable. The model corresponds



to a classifier in the following sense. Suppose there are K categories pg, (x), for k = 1, ..., K. The
networks fy, (z) for k = 1, ..., K may share common lower layers, but with different heads. Let py,
be the prior probability of category k, for k = 1, ..., K. Then the posterior probability for classifying
x to the category k is a softmax multi-class classifier

exp(fo, («) + br)

P(k|x
(o) = S exp(fo, (x) + br)

2)
where by, = log(px) — log Z(0y,).

2.2 Noise contrastive estimation

Noise contrastive estimation (NCE) [[L1]] can be used to learn the EBM, by including the normal-
izing constant as another learnable parameter. Specifically, for an energy-based model py(z) =
ﬁ exp|fo(z)], we define pg(x) = exp[fo(x) — ¢], where ¢ = log Z(6), but is now treated as a free

parameter, and is included into 6. Suppose we observe training examples {z;,7 = 1, ...,n}, and we
have generated samples {Z;,% = 1, ...,n} from a noise distribution ¢(z). Then 6 can be estimated by
maximizing the following log-likelihood for logistic regression:

n
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which transforms the learning of EBM into a classification problem. The choice of the noise
distribution ¢(z) is a design issue. We expect ¢(z) to satisfy the following: (1) analytically tractable
expression of normalized density; (2) easy to draw samples from; (3) close to data distribution. In
practice, (3) is important for learning high dimensional distribution. If ¢(z) is not close to the data
distribution, the classification problem would be too easy and would not require py to learn much
about the structure of the data.

2.3 Joint learning method

A natural improvement to NCE is to transform the noise so that the resulting distribution is closer
to the data distribution. This is exactly what the flow model achieves. A flow model is of the form
x = go(z), where z ~ qo(z), which is a known noise distribution. g is a composition of a sequence
of invertible transformations, and « denotes the parameters. Let ¢, (x) be the probability density of x.
q., fulfills (1) and (2) of the requirements of NCE. However, in practice, we find that a pre-trained q,
such as learned by MLE, is not strong enough for learning EBM py in the sense that the synthesized
data from the MLE of ¢, can still be easily distinguished from the real data by an EBM. Thus, we
propose to iteratively train the EBM and flow model, in which case the flow model is adaptively
adjusted to become a stronger contrast distribution or a stronger training opponent for EBM. This is
achieved by a learning scheme similar to GAN, where py and g, play a minimax game with a unified
value function: min, maxy V' (6, o),

Do 3?1) ) . o qoé(ga(zi))
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where {z;,7 = 1,...,n} are observed samples, and {Z; = g, (z;),% = 1, ..., n} are negative samples
drawn from ¢, (x ) with z;i ~ qo(z) independently for i = 1, ..., n. We choose Glow [19] as the flow
model. The learning can either start from a randomly initialized Glow model or a pre-trained one by
MLE. Here we assume equal prior probabilities for observed samples and negative samples. It can be
easily modified to the situation where we assign a higher prior probability to the negative samples.

The objective function can be interpreted from the following perspectives:

(1) Noise contrastive estimation for EBM. The update of § can be seen as noise contrastive estimation
of pg(z), but with a flow-transformed noise distribution ¢,,(x) which is adaptively updated. The train-
ing is essentially a logistic regression. However, unlike regular logistic regression for classification,
for each x; or &;, we must include log g, (x;) or log ¢, (Z;) as an example-dependent bias term. This
forces py(x) to replicate g, () in addition to distinguishing between paata and g4 (), so that pg(z;)
is in general greater than g, (z;), and py(Z;) is in general less than ¢, (Z;).



(2) Minimization of Jensen-Shannon divergence for the flow model. If py(z) is close to the data
distribution, then the update of « is approximately minimizing the Jensen-Shannon divergence
between the flow model g, and data distribution pqata:

JSD(Qu deata) = KL(pdata”(pdata + Qa)/Q) + KL(an (pdata + Qa)/2)~ 5
The learning gradient of o follows the gradient of
—Ep,., 108((Po + 4a)/2)] + KL(gal|(Po + ¢a)/2)- (6)

The gradient of the first term resembles MLE learning, which forces g, to cover the modes of data
distribution, which tends to make the learned model over-dispersed. The gradient of the second term
is similar to reverse Kullback-Leibler divergence between ¢, and py, which forces g, to chase the
modes of py [31L[7]. This may help correct the over-dispersion of MLE.

(3) Connection with GAN. Our learning scheme is similar to GAN. In GAN, the discriminator D and
generator GG play a minimax game:

minmax V (G, D) = ; log[D(z;)] + Z; log[1 — D(G(2))). (7)

The discriminator D(z) is learning the ratio pgata(z)/(Pdata(x) + pe(x)), which is about the
difference between pqata and pg [6l]. However, in our method, the ratio is explicitly modeled by pg
and q,. pg must contain all the learned knowledge in g, in addition to the difference between pgata
and ¢,. In the end, we learn two explicit probability distributions py and ¢, as approximations to

Pdata-

3 Experiments

For joint learning, we adaptively adjust the numbers of updates for EBM and Glow: we first update
EBM for a few iterations until the classification accuracy is above 0.5, and then we update Glow until
the classification accuracy is below 0.5. We use Adam [17] optimizer with 0.001 learning rate for
EBM and Adamax [17] optimizer with 0.00001 learning rate for Glow. Mini-batch size is 200 for 2D
data and 64 for real datasets.

3.1 Density estimation on 2D synthetic data

We first demonstrate our method on 2-dimensional data. Figure [I]shows the result that starts from
a randomly intialized Glow. The learned EBM can fit multi-modal distributions accurately, which
performs better than Glow either learned by joint learning or by MLE. Notably, the EBM uses a much
simpler network structure than Glow: for Glow we use 10 affine coupling layers, which amount to 30
fully-connected layers, while the energy-based model is defined by a 4 layer fully-connected network
with the same width as Glow. Another interesting finding is that the EBM can fit the distributions
well, even if the flow model is not a perfect contrast distribution.

Observed Glow (MLE) Glow (ours) EBM (ours)

—— Ours, rand
Ours, trained
—— NCE

Mean squared error of log-density

2000 wo w0 w0 10000
Number of training batches

Figure 1: Comparison of trained EBM and Figure 2: Density estimation accuracy in
Glow models on 2-dimensional distribu- 2D.
tions.



For the mixture of Gaussians, as depicted in the first row of Figure[I] we can compare the estimated
density by the learned models with the ground truth. Figure 2]shows the mean squared error of the
estimated log-density over numbers of updates of EBM. We show the results for joint learning either
starting from a randomly initialized Glow (Ours, rand) or a pre-trained Glow model by MLE (Ours,
trained), and compare with the original NCE where the noise distribution is a Gaussian distribution.
The learning starting from a randomly initialized Glow converges in less iterations, and both settings
of joint learning achieve a lower error rate compared to the original NCE.

3.2 Learning on real image datasets

We conduct experiments on the Street View House Numbers (SVHN) [32] and CIFAR-10 [21]]
datasets. We start the learning from a pre-trained Glow model by MLE for the sake of efficiency.
Again for EBM, we use a simple network with 4 convolutional layers, and we follow the architecture
of [[19]] for Glow model, which has a more complex architecture than EBM. See supplementary [A]
for detailed model architectures. Figure [3]shows synthesized examples from learned Glow models.
As shown in Table[] the generated samples from Glow are improved, in terms of Fréchet Inception
Distance (FID) with Inception V3 [39], and also outperform DCGAN [36]. In Table 2} we
report the average negative log-likelihood (bits per dimension) on the testing data of SVHN. The
log-likelihood of the learned EBM is based on the estimated normalizing constant and should be
taken with a grain of salt. The learned flow model has slightly lower log-likelihood (higher bits per
dimension) than MLE, but has better synthesis quality.

Test accuracy

—e— Ours
—— Supervised
—— Random Init.

5 s 7 ) 5
loge of # labeled examples

Figure 3: Synthesized examples from Glow after learn-  Fjgure 4: Classification accuracy as a
ing. SVHN on the left, CIFAR-10 on the right. function of number of labeled examples,

learned on SVHN.

To further explore if the EBM learns useful features, we extract the top layer feature maps from the
EBM learned from SVHN, and train a linear classifier on top of it by a certain amount of labeled
images from the training dataset. In Figure[d] we plot the classification accuracy as a function of the
number of labeled examples. We compare our method with the supervised classification method
trained on the labeled examples. We also show the Random Init. setting where a linear classifier
is trained on the top layer feature maps of an EBM that is randomly initialized and stays frozen.
We observe that our method outperforms the supervised classification method when the number of
training images is small.

Table 1: FID score for generated samples Table 2: Bits per dimension on testing data
Dataset DCGAN Glow (MLE) Glow (Ours) Dataset Glow (MLE) Glow (Ours) EBM (Ours)
SVHN 21.40 41.70 20.19 SVHN 2.17 2.25 2.15
CIFAR-10 37.70 45.99 37.30 CIFAR-10 3.35 3.45 3.27

4 Conclusion

In this paper, we study a learning method that couples the learning of an energy-based model with
the learning of a flow-based model. The method can be considered an improved version of noise



contrastive estimation where the noise is transformed by a flow model to make its distribution closer
to the data distribution and to make it a stronger contrast to the energy-based model.

In our future work, we shall generalize the flow contrastive estimation to K -categories for K > 2, and
we shall apply the learning method to supervised learning from small labeled data and semi-supervised
learning from big unlabeled data and small labeled data. Recently with the generalized method
for semi-supervised learning, we achieve results comparable to the start-of-the-art semi-supervised
learning methods. Moreover, we intend to generalize the joint learning method by combining the
energy-based model with other normalized probabilistic models, such as auto-regressive models.
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A Model architectures

For Glow model, we follow the setting of [19]]. The architecture has multi-scales with levels L. Within
each level, there are K flow blocks. Each block has three convolutional layers (or fully-connected
layers) with ReLU activation after the first two layers and a width of W channels. Table [3|summarizes
the hyperparameters for different datasets.

Table 3: Hyperparameters for Glow architecture
Dataset Levels L Blocks per level K Width W  Layer type Coupling

2D data 1 10 128 fc affine
SVHN 3 8 512 conv additive
CIFAR-10 3 32 512 conv additive

Table @] summarizes the EBM architecture. The slope of all leaky ReLU (IReLU) [29] functions are
set to 0.2.

Table 4: EBM architectures
2D data SVHN / CIFAR-10

fc. 128 IReLU 4 x 4 conv. 64 IReLU, stride 2
fc. 128 IReLU 4 x 4 conv. 128 IReLU, stride 2
fc. 128 IReLU 4 x 4 conv. 256 1ReL U, stride 2
fc. 1 4 x 4 conv. 1, stride 1




B Synthesis comparison

In Figures [5] and [f] we display the synthesized examples from Glow trained by MLE and joint
learning.

3 I
Figure 5: Synthesis examples from Glow learned from SVHN. Left panel is by MLE. Right panel is
by our joint learning.
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Figure 6: Synthesis examples from Glow learned from CIFAR-10. Left panel is by MLE. Right panel
is by our joint learning.
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