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Abstract

Dynamical systems are the governing force behind many real world phenomena and
temporally correlated data. Recently, a number of neural network architectures have
been proposed to address inference for nonlinear dynamical systems. We introduce
two different methods based on normalizing flows for posterior inference in latent
non-linear dynamical systems. We also present gradient-based amortized posterior
inference approaches using the auto-encoding variational Bayes framework that
can be applied to a wide range of generative models with nonlinear dynamics.
We call our method Filtering Normalizing Flows (FNF). FNF performs favorably
against state-of-the-art inference methods in terms of accuracy of predictions and
quality of uncovered codes and dynamics on synthetic data.

1 Introduction

Dynamical systems are the governing force behind many real-world phenomena and temporal data.
For instance, in neuroscience, single single cell voltage recordings are modeled by a set of non-
linear differential equations that are variants of the classical Hodgkin-Huxley neuron model while
high-dimensional neural population activity are assumed to be noisy, redundant observations of
latent and low dimensional signals, often modeled using state-space-models [12]. In recent years, a
considerable number of generative models alongside inference algorithms have been proposed for
neural population modelling. Among these, are temporal structure models [[15} [17} 3]], switching
dynamical structure models [[13[10] and more recently neural network inspired generative models
[LL, 18} 2} [16, 4] that use auto-encoding variational Bayes (AEVB) [6] framework to amortize the
inference of posterior distributions of latent representations.

In this work we consider a family of state-space models expressed by the following generative process,
wherein, g, f are smooth differentiable functions, and I1(6) is a noise distribution (e.g. Gaussian or
Poisson respectively for continuous and discrete data) that is governed by parameters 6. The full joint
distribution, denoted by p(X, Z), can be readily computed. This family subsumes well-know models
such as Linear Dynamical System (LDS) and fLDS [1]].
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Normalizing flows[[14] are expressive neural network based density estimators and have gained
popularity recently. We propose two normalizing flows that are designed for the task of approximating
posteriors of the aforementioned models. Also, we introduce an AEVB method to condition the
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parameters of the flow on observations such that any latent state of the approximate posterior z;
would depend on a sequence of observations x;_;41 which is similar to particle filtering methods.
Therefore, we name our method, Filtering Normalizing Flows (FNF).

2 Normalizing Flows

Normalizing flows are bijective transformations f : R? — R¢ that act on the space of continuous
random variables in RY to generate complex distributions using change of variables theorem given by
equation[I|where z ~ p(z) is a random variable with know distribution and and f(z) = 2’ ~ ¢(2') is
the new random variable induced by f.
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A category of transformations that contains the real NVP, MAF and IAF[7]] have analytical inverses,
apply the first hand side of the equation to model and optimize likelihoods directly. Whereas, for
another category that includes planar flows the inverse is not analytically available. However, they can
be used to construct variational approximation families g, () to estimate E, (.)[L(2)] e.g. ELBO
through Monte Carlo samples of ¢. In variational setting, application of these expressive densities is
an attempt to decrease the gap between the variational objective and the log-likelihood and generally
learn more desirable models and approximations of their posteriors.

Despite the existence of a variety normalizing flows, the task of applying them to structured models
such as latent dynamical systems can be daunting. First, true posterior distributions of such models do
not exhibit arbitrary correlation among the latent state space variables. Additionally, conditioning the
latent states on observations is not straight forward since z;|z_; is dependent on the entire sequence
of observations x1.7. In section 3] we introduce two different transformations that condition latent
variables on observation such that z,|z_; is dependent on x1.; that we call filtering. Furthermore,
these models constrain the the flow such that the correlation in time induces smoothness in a way that
the distribution does not factorize the same way as the prior, like the deep Kalman filter (DKF).

3 Filtering Normalizing Flows

Available normalizing flows, e.g. planar flows, are capable of expressing any arbitrary correlation in
the space of z = 2,2 - - - zp € R?*7T when operating on the entire space. While we can apply any
such flow on the entire state space, doing so is computationally expensive and conditioning on obser-
vations for amortized inference is not trivial. Therefore, we seek to constrain the expressiveness of
our distribution globally while keeping it expressive enough locally so that the variational parameters
admit a trivial choice for conditioning on observations.

3.1 Time Autoregressive

Consider the function f : R?? — R2¢ with a set of parameters denoted by ¢ that transforms a consec-
utive a pair of latent states 2;, 2,41 and in doing so it correlates them with each other. We propose
a flow that applies f sequentially to pairs zi.2,22.3, .. ., Z7—1.7 With parameters ¢, ¢s ... Ppr_1
respectively. In doing so, we hope to correlate all the latent variables in a smooth way with respect to
time. Furthermore, as we see in section[z_f]this choice allows us to condition our latent trajectories on
the observation in a straightforward way to achieve our filtering goal.

Zi:t—1
Fyu(z) = [f«ﬁ(ztv Zt+1)] 2)

Ziy2:T

of

0zZ¢:t+1

OF 4,
o0z

Ty—1yxd(—1) _ ’ af,

0z;.
Ty(r—t—1)xd(T—t—1) G



G(zir; 01, 01-1) =F4p ,7-10---0Fy, 1 0---0Fy4 1(z1.7) “4)

The composite flow G that is described by equation ] subsumes the family of factorized models of
form ¢, (z) Hthz qt(z¢|z¢—1) if f(2¢,2¢11) = 24, f(2¢41) Which contains the prior of the generative
model. In this work we let f(.) be multi-layer planar flows f(z.¢11) = Z.401 + Wh(Wl 2401 + b)
which are appropriate choice for achieving expressiveness in low dimensionality of subspaces z¢.; 1.
For example, the choice of a single layer planar flow with time variant parameters {u;, w;, b; } gives
us the recurrent solutions to the result of the transformation and the the probability that it induces on
z1.7 in forms of equations [5|and 5]
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3.2 Time Inverse Autoregressive

We also propose a second class of transformations described by equation 5| for achieving filtering
property and constraining the resulting distribution for time-series data. This transformation is a
combination of a fully connected layer and a skip layer where the weights of the fully connected
layer form a lower/upper triangular matrix whose inverse is block-bi-diagonal. The rationale for
this choice is threefold. First, the Jacobian is lower triangular, therefore, its determinant can be
computed efficiently. Second, the inverse of A need not be computed for the forward transform
since it can be solved efficiently and similarly it does not appear in log probability computation
using determinant identity |I + A~!| = |A + I|/|A|. Finally, this transformation imposes strong
constraint on the correlation of the state space variables. This can be viewed as a nonlinear analogue
of a Gaussian LDS’s posterior samples being reparameterized by affine transformation of an inverse
block-bi-diagonal matrix that is Cholesky factor of a block-tri-diagonal precision matrix of the true
posterior.
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In equation v = h/(A~'z + b), where h(-) is a smooth nonlinearity and h/(-) is its derivative.
Unlike the previous method, we apply multiple layers of this transformation to construct expressive
variational densities. We call this transformation an inverse filtering normalizing flow IFNF.

4 Auto-Encoding Variational Bayes

AEVB [6] is a variational framework for training deep generative models of type pg(x,z) where
there is a latent component z. This method has been applied to many different settings including
dynamical systems. AEVB optimizes the log likelihood Ex~ pata[pe(x)] of the model, which is an



intractable marginal distribution, through optimizing a lower bound on it defined by equation [§]that
requires introduction of g4 (z|x) a variational approximation to true posterior pg(z|x).
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Furthermore, AEVB computes unbiased estimates of gradient of this objective with respect to the
variational and model parameters 6, ¢ through reparameterization trick described by equation[9] This
is achieved if samples from the variational distribution can be expressed as reparameterization of
some noise samples. In other words z = f(¢; ¢) ~ q4(z) where € ~ p.(e) is noise.
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ELBO is not a tight bound on the log likelihood because the family of the variational distributions
do not contain the true posterior of the models in many cases. Normalizing flows are introduced to
increase expressiveness of ¢4(z|x) and therefore hoping to tighten the gap and train better models
[14].

Our strategy in tackling the task of inference for dynamical systems is to rely on approximate
evidence potentials coming from observations at each time steps denoted by qéo) (z¢|x¢). While these
potentials can be described by normalizing flows themselves we simply use diagonal Gaussians
qéo) (z¢|x¢) = N(2¢|pg(x¢),04(x¢)). Our goal is to train our normalizing flows to mix local

potentials with our prior and capture the true posterior better and ultimately learn a better model
because of the expressiveness that our normalizing flows lend to our variational approximation.

While theoretically it is possible to mix local potentials without any further conditioning on the
observations x; : T given the right invertible transformation, because of the limitations of the
normalizing flows in general, we condition our normalizing flows on the observations as a proxy to
gain more expressiveness. In the case of FNF time variant parameters ¢ (x;, X;41) are conditioned
on pairs of consequitive observations through a neural network. In the case of IFNF, similarly we the
parameters conditioned according to Dy (x¢), Ls(Xt, Xt+1), bt(Xt), ¢:(x¢). In our experiments we
let the parameters of the flows to share networks with the local potential functions.

5 Experimental Results

In this section we compare the performance of our proposed method to that of fLDS and DKF which
are two of the most widely used inference algorithms for latent dynamics models. We demonstrate
through these experiments FNF/IFNF performs favourably against the state of the art in training
deep dynamical systems while disentagling the dynamics from the nonlinear embeddings. For all
the experiments we use DKF to refer to the inference network described in [8]] as STLR that uses
a bidirectional RNN for conditioning the factorized recognition model on the entire sequence of
observations.

One quantitative way to asses the fit of state space models are forward extrapolations of the trained
model given hold out observations. In order to do so we use the trained g4(z|x) to sample L

inferred trajectories z(ll)T given held out observations. This is followed by evolving zgf), the last

states, according to the trained dynamics model py(x,2z) K steps forward to obtain L trajectories
in the observation space denoted by )Acg{)T 4 k- The metric that we use for the divergence of the
forward extrapolation samples from true observations is described by [I0} Lower divergence metrics
show better extrapolations and indicate that the low-dimensional embedding of the emission model
is disentangled from the dynamics of the transition model. Also, qualitatively we inspect these
extrapolations and compare them with the model samples.
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We monitor and compare the rate of convergence of the evidence lower bound and its value to
compare the fit of the models since higher ELBO potentially indicates higher log likelihoods for data.



5.1 Latent Lorenz System

The Lorenz system is a classical nonlinear differential equation in 3 independent variables.
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This is a well studied system with chaotic solutions that serves to clearly demonstrate FNF’s advantage
for inferring nonlinear dynamics. We generated Euler discretized numerical solutions for a stochastic
Lorenz system (Gaussian additive noise of (0, 0.1) at each step) from randomly generated initial
solutions with parameters o = 10, 8 = %, p = 28. For the purpose of this experiment we generate
100 trials where T = 60,z € R3,x; = f(z;) +¢ € R where f is a single Layer MLP with softplus
non-linearity with a skip layer connection to create smooth nonlinear expansions into observation
space where € ~ N(0,0.2). We train our models on %80 of the trails and report result on %20
validation set. We train only on 40 time steps and hold out 20 time steps at the end for comparing
to extrapolations. We emphasize that stochastic noise exists in both the latent state-space evolution
and the observation space. Figure[I|demonstrates how FNF is capable of learning complex nonlinear
dynamics as well as non-linear embeddings by comparing kMSE of all methods and the quality of
their extrapolations. As is demonstrated by figure[T] fLDS is not equipped with learning nonlinear
dynamics and the extrapolations quickly diverge from the true values. DKF and FNF on the other
hand are capable approximating and generalizing the non-linear dynamics and the embeddings. While
this is the case, FNF outperforms DKF at this task since the extrapolations are qualitatively and
quantitatively closer to the true values.
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Figure 1: Visualization of and observation trajectories for Lorenz system and performances
on them. (top) Respectively, true, FNF, IFNF, DKF, and fL.DS reconstructions of the validation set
(blue) and stochastic extrapolations into the future time steps (orange) for the true values orange is the
hold out. (bottom right) kMSE of extrapolations using recovered latent state only. This demonstrate
how well FNF disentangles hidden dynamics from embeddings. (bottom left) Rate of convergence
of models are on par with each other, however FNF attains higher Bounds that could potentially
translate into higher evidence values.

5.2 Rotating MNIST Images

In this task we showcase the ability of our method on synthetic task with and implicit underlying
dynamics. Our synthetic dataset consists of 3500 randomly sampled MNIST digits that are binarized



and partitioned into 3000/500 for training/testing. Each image is rotated by o ~ N'(d - cv, 2) degrees
for 20 times where d is the value of the digit corresponding to the image and o = 18 is the base
rotation value. This way digit O rotates by noise and digit 9 rotates by 360 degrees and there digits in
between proportional to their value. Beside the test set, we hold out 5 frames from each observation
sequence to compare against forward extrapolations of the trained models. In this task we use a
slightly different metric for the extrapolations which is the average likelihood of pixels under forecast
samples given by equation[TT]
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This dataset is constructed to demonstrated how our model/inference is capable of recovering
meaningful dynamics that translate into meaningful forward samples from the observations. We
use two layer MLP with ReL.U activation and 20 hidden units with skip layer connection for our
transition model. The emission model is fixed across models with ta Bernoulli with rates conditioned
on the latent states through MLP with ReLU activation and 50 hidden units for the emission model.
The RNNs in DKF use 20 hidden units. Dimensionality of latent state space is set to 10 across all
models. The recognition network of fLDS and FNF models use 2 layer MLP with ReL U activation.
For FFNF IFNF we respectively use 5 and 3 layers of normalizing flow transformations that share
parameters with the recognition network.
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Figure 2: Visualization of reconstructions and forward extrapolations for rotating MNIST
images. (top) 10 sequences of digits of test set being reconstructed and forward extrapolated (after
solid yellow line). This demostrates how dynamics of rotation and latent representation of digits are
separated since each digit has different rotaion value. Top row is true values and following that is
respectively FNF, IFNF, and DKF. (bottom left) Inferred latent trajectory of digits for each model
each color shows a different digit. O is blue and 1 is orange. (bottom right) ELBO of different
models.



6 Related Work

Inference for state-space models that have underlying non-linearites is getting growing amounts of
attention and some methods have been proposed for this task. Specially, since the introduction of
AEVB|6] and its widespread success, many of these approaches have followed variational framework,
and so does ours. The black box variational method that was introduced in [1] and extended to
Poisson discrete observations in [2]], known respectively as fLDS and PfLDS, consider a subset of the
general class of latent dynamical systems with linear evolution in state space and nonlinear emissions.
In other words, z;|z;—1 ~ N (Az;_1, Q) governs latent state evolution. The variation approximation
that fLDS uses is the result of mixing local independent Gaussian potentials ¢, (z¢|x¢) with the prior
of the model p(z;.7), the result of which is a Gaussian with a block-tri-diagonal precision matrix.
Generalization of this method is offered by SVAE [5] which leverages message passing algorithm for
graphical models with conjugate priors along with AEVB inference framework to mix local neural
network potentials with a structured prior distribution. The conjugacy requirement of PGM inference
limits the type of generative models allowed by this method to LDS, switching LDS, etc.

fLDS method is expanded by VIND [4]] to use time variant linear dynamics to approximate non-linear
dynamics. Learning the locally linear parameters are achieved through fixed point iterations. However,
this method uses a Gaussian approximation that in non-linear dynamics regime can highly suffer
from underestimation of variance that affect the fit of the model.

Deep Kalman Filter DKF and other structured inference networks [8] were proposed for inference
for dynamical systems with non-linear transitions in the latent state space in the form of Gated
Recurrent Units (GRU) with time variant noise. The variational posterior approximation is described

by factorization ¢4(z|x) = HZ;I q(2z¢|z¢—1,%1.+) which is conditioned on the observations either
using MLP or RNN functions to filter/smooth. Among limitation of this model is using time
invariant diagonal Gaussian noise and the challenges of training RNN and how slowly they propagate
information for smoothing/filtering purposes.

In a slightly different approach of [9}[11] have taken a slightly different approach by using a optimizing
a tighter bound on evidence of the generative model. They achieve this by conditioning a Sequential
Monte Carlo (SMC) sampler on observations to simultaneously estimate the partition function that
gives a better bound on log-likelihood and amortizing the posterior inference. However, due to
re-sampling step in SMC gradients cannot be reparameterized and biased gradient estimates are used
for optimization that poses variety of challenges. Also, this approach has the same problems as tighter
lower bound approaches.

Finally, LFADS [16] proposes a sophisticated, bidirectional RNN architecture with neuroscience
applications in mind, especially spike trains. The transition in this method functions are deterministic
meaning that the underlying dynamics is not stochastic, rather it is superimposed with noise that does
not affect the evolution.
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