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Abstract

We develop a generative model-based approach to Bayesian inverse problems,
such as image reconstruction from noisy and incomplete images. Our framework
addresses two common challenges of Bayesian reconstructions: 1) It makes use
of complex, data-driven priors that comprise all available information about the
uncorrupted data distribution. 2) It enables computationally tractable uncertainty
quantification in the form of posterior analysis in latent and data space. The method
is very efficient in that the generative model only has to be trained once on an
uncorrupted data set, after that, the procedure can be used for arbitrary corruption
types.

1 Introduction

Data reconstruction from corrupted data lies at the heart of Bayesian inverse problems. There are many
ways in which data can be corrupted, ranging from missing data (or masking) to noise and blurring. In
many cases the reconstructed data, e.g. an image, is high dimensional. Data reconstruction commonly
faces two challenges: 1) For most data it is difficult to find a prior that optimally represents our
knowledge of the uncorrupted data. Instead, priors are often chosen to impose certain regularity
conditions (e.g. maximum entropy, smoothness). 2) While it is usually tractable to find the maximum
of the posterior, i.e. the most probable underlying realization, a full uncertainty quantification of the
reconstruction is usually prohibitively expensive.

We propose to address these challenges with generative models, which provide a mapping from points
in a typically lower dimensional latent space to points in the high dimensional data space. As an
example of such a model we will be using a Variational AutoEncoder (VAE) (Kingma & Welling,
2013; Rezende et al., 2014). However, the use of a VAE is not a limitation of this method and other
generative models could be used instead. VAEs are designed to model the distribution pφ(x) of
high-dimensional input data, x, by introducing a mapping pφ(x|z) to a lower dimensional latent
representation, z. The latent space variables are enforced to follow a given prior distribution, p(z),
which is typically chosen to be a standard normal distribution.1

Given a generative model, the posterior of the latent variables for a given data realization can be
modeled with Bayes rule

pφ(z|x) ∝ pφ(x|z)p(z). (1)
This formulation allows to address both aforementioned problems: 1) The prior distribution, p(z),
reflects the distribution of the training data. 2) The representation of the posterior in the lower
dimensional latent space enables tractable posterior analysis. In particular it allows to examine and fit
the posterior distribution and draw samples from it. The samples can then be visualized in data space
by forward modeling with the generative model. This approach to uncertainty quantification is in the

1Other generative models might not fulfill this condition of a Gaussian latent space distribution. For our
method to work we only require the distribution of latent space variables to be fairly well behaved such that it
can be mapped to a Gaussian, e.g. with a bijective normalizing flow, as we explain later.
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spirit of commonly applied sampling approaches like Hamiltonian Monte Carlo (HMC) sampling.
In fact, it is the only way to reliably quantify uncertainty in high dimensional spaces, where often
already the covariance is too big to fit into memory. Quantifying uncertainty by means of the variance
instead of the covariance can be misleading in the presence of strong correlations between pixels,
which are typically expected for image data. In addition, neither variance nor covariance can be
used to fully characterize non-Gaussian distributions such as the multimodal distributions, which
are common for corrupted data. All of these properties (complex correlations, multimodality) are
captured in samples drawn from a sufficiently accurate fit to the posterior distribution in latent space.

In addition to addressing the problems of accurate priors and tractable posterior analysis, the suggested
approach is very efficient, because the generative model only has to be trained once on uncorrupted
data and can then be used for arbitrary types of data corruption.

2 Reconstruction and Uncertainty Quantification for Linear Inverse
Problems

In this work we consider linear inverse problems of the form y = Ax+n, where x is the signal to be
recovered, y are the observations, n ∼ N (0,σ2

data) represents Gaussian noise, and A is a corruption
operator (i.e. a masking operator for an inpainting problem, or a convolution by a blurring kernel for
a deconvolution problem).

In our Bayesian approach, we assume that the uncorrupted signal, x, is drawn from a latent variable
model, pφ(x|z)p(z), with normal Gaussian prior p(z) = N (0, I). While different likelihood models
could be used to describe pφ(x|z), we adopt a Gaussian model pφ(x|z) = N (gφ(z), σ2

model), where
gφ(z) is parameterized by a deep neural network. The variance σ2

model measures the modeling
error, i.e. the average discrepancy between an input image and its reconstruction after encoding
and decoding with the generative model. To get an estimate of the size of this modeling error we
suggest to measure its value after having trained the generative model or to leave it as a free, trainable
parameter during the training. The Gaussian choice for the likelihood of the generative model allows
us to easily combine it with the probability distribution of the noise in the corrupted data. We train
the generative model on uncorrupted data, x. Here, we use a vanilla VAE with mean-field Gaussian
posterior and train it under the Evidence Lower BOund (ELBO) (Kingma & Welling, 2013).

Once the generative model is trained, we can use it to expand the inverse problem formulation
y = A [gφ(z) + nmodel] + n, where we have replaced the signal, x, by its generative process
and added nmodel which accounts for the generator’s modeling error. Contrary to the previous
formulation, we have now stated the problem in terms of a variable, z, for which we have a
simple and adequate prior (i.e. a normal Gaussian), allowing us to apply the Bayesian approach
ln p(z|y) = ln p(z) + ln pφ(y|z)− ln p(y), where p(z|y) is the posterior distribution of the latent
variables for a given observation y. Note that this formulation does not use the encoder of the
generative model nor does it depend on the approximate posterior used in the VAE training.

To provide a concrete example, let us consider a problem combining missing data and Gaussian noise,
for which A is a binary masking matrix with entries equal to 1 if data is observed, 0 otherwise. The
expression for the log posterior becomes,

ln p(z|y) = −
∑

i, unmasked

[gφ(z)i − yi]2

2σ2
x,ii

−
∑
j

z2j
2

+ constants, (2)

where σ−2
x,ii = σ−2

model,ii + σ−2
data,ii. Note that this expression would change for different corruption

types, while the generative model would remain the same, i.e. it does not need to be retrained.

Despite the dimensionality reduction, the analysis of this posterior is still challenging: 1) It is often
multi-modal, because multiple solutions agree with the data. 2) Even in low dimensions, standard
methods such as MCMC can be prohibitively slow and may give incorrect results in multi-modal
situations (Wu et al., 2018). Here, we adopt the EL2O method (Seljak & Yu, 2019) to address these
challenges. EL2O replaces the true posterior, p(z|y) by a parameterized approximation, qθ(z), and
finds the optimal parameters, θ, by minimizing the L2 f-divergence between the two distributions.
This approach needs few sampling points, does not suffer from sampling noise, and can be orders of
magnitude faster than stochastic variational inference (SVI) (Seljak & Yu, 2019).
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In our examples, we use a mixture of multivariate Gaussians (GMM) as posterior approximation.
Under the assumption of well separated mixture components, the EL2O procedure for a GMM
involves the following 3 steps: 1) finding all relevant minima in the posterior by optimization,
2) fitting Gaussians around these minima by using the Laplace approximation, 3) improving the
probability distribution beyond the Gaussian approximation, if needed, 4) finding the relative weights
of these mixture components. Details on the EL2O procedure including equations are provided in
Appendix A. While in principle SVI could be used instead of the EL2O procedure, we find in our
examples that EL2O gives more accurate results and requires less tuning, while SVI is prone to
numerical instabilities when fitting a full rank Gaussian (see Appendix A.3 for a direct comparison
on an example).

3 Experiments

Figure 1: Left panel: Data imputation, denoising and deblurring examples. From top to bottom row
we show corrupted data, reconstructions obtained from forward modeling the latent space variables
at the deepest minimum of the negative log posterior (the MAP solutions) and the underlying true
images. Middle panel: Forward modeled samples of the example in the last column of the left panel
(drawn from the two component Gaussian mixture posterior shown in Figure 3). We get a mixture of
4’s and 9’s corresponding to the two posterior peaks. Right panel: samples overplotted with the mask
demonstrating that they are compatible with the input data within the errors of the generative model.

To demonstrate the methodology, we consider several examples of data corruption on the MNIST
dataset (Lecun et al., 1998). We begin by training a VAE on the uncorrupted training set following
a setting similar to (Gritsenko et al., 2019) with both encoder, fψ, and decoder, gφ, parameterized
as a sequence of 4 fully-connected ResNet blocks, each block containing 2 fully-connected layers
with size 512 and LeakyRelu activation. The encoder reduces the dimensionality to 10. We minimize
the loss using ADAM (Kingma & Ba, 2014) with default parameters, a batch size of 1024, and a
decreasing learning rate starting at 0.001.

Figure 2: Forward modeled
samples from the prior be-
fore (left) and after (right) aug-
menting the forward model
with a normalizing flow.

Training a VAE with the ELBO as objective function is not guaran-
teed to result in an encoded distribution that perfectly matches the
prior. This manifests itself in poor sample qualities when forward
modeling samples drawn from the prior distribution. A number of
approaches have been suggested to improve on this; most of them
modify the objective function (Makhzani et al., 2015; Mescheder
et al., 2017; Tolstikhin et al., 2017; Ulyanov et al., 2017; Beitler
et al., 2018). Here we choose a simple, different approach: to en-
sure that the prior is well described by a unit variance Gaussian, we
augment the forward model by a normalizing flow (specifically, we
use a RealNVP (Dinh et al., 2016)). The normalizing flow is trained
to map the latent space distribution of the VAE to a standard normal distribution. The full forward
model, i.e. the mapping from latent space to data space then simply becomes a successive application
of the generator of the normalizing flow followed by the generator of the VAE. The entire procedure
is also illustrated in Appendix B. In Figure 2 we show how the samples from the generative model
improve after this augmentation. Adding an additional flow model might not be required for all data
sets and generative models. If it is required can be judged from the sample quality. In our example,
the latent space distribution is already close to a Gaussian. In this case, a RealNVP with eight affine
coupling layers, each with hidden layers consisting of [512,512] units, is sufficient to achieve almost
perfect samples.
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Figure 3: Samples from a
Gaussian mixture model fitted
to the latent space posterior of
the example in the last column
of the left panel of Figure 1.
We plot a projection of the 10
dimensional latent space to 2
dimensions.

We then use our reconstruction technique on corrupted images pro-
duced from the MNIST test data, shown in the top row of the left
panel in Figure 1. In the first we randomly remove 95% of the
pixels (Dalca et al., 2019), in the second we mask half of the image
and add noise with σn=0.5 to the other half, in the third we blur the
image by convolution with a Gaussian kernel. In the last example
we apply a broad mask, such that different digits (4s and 9s) are
compatible with the data.

To reconstruct the images, we perform the posterior analysis outlined
in the previous section. We first use optimization to find all local
minima of the negative log posterior: we start from different random
positions drawn from the prior and use the ADAM optimizer to
descend to the local minima. We stop our search once we find
that the minimization procedure repeatedly converges to the same
minima, typically after ~10 minimizations. We plot reconstructions
from the lowest minimum in the middle row of the left panel of
Figure 1 and the true input image for comparison below them. An
example of a latent space posterior is shown in Figure 3: there are

two posterior peaks that dominate the posterior mass, with the first one containing 25% and the
second one containing 75% of the posterior mass.

We represent uncertainty quantification in data space by drawing samples from the latent space
posterior, and evaluating them in data space using the generator. In the example of the masked 4 there
is a range of possible solutions allowed given the broad and bi-modal posterior (Figure 3): some
of the drawn digits are closer to a 4 while others are closer to a 9. We plot unmasked and masked
samples in the two right panels of Figure 1 to show that the unmasked data is reproduced within the
errors. We provide code to reproduce our experiments in a public github repository �.

Related work: Deep learning approaches to inverse problems (e.g. Dong et al., 2015; Jin et al.,
2016; Putzky & Welling, 2017; Ulyanov et al., 2017), can return high quality point estimates, but
usually do not provide uncertainty estimates, which are crucial to many applications (e.g, medical
imaging or scientific applications). Data imputation with VAEs was initially suggested by Rezende
et al. (2014) and further refined by Mattei & Frellsen (2018a,b). These methods rely on expensive
sampling to marginalize over z and evaluate p(x|y). An approach similar to this work was recently
developed by Wu et al. (2018), but uses SVI for fitting the posterior model, which can be orders of
magnitude slower than the EL2O procedure used in this work. An alternative approach to uncertainty
quantification based on learning to sample from the posterior with a W-GAN was proposed by Adler
& Öktem (2018). Their approach requires retraining for different corruption types, and should be
affected by the well known limitations of GANs (training instability and mode collapse).

4 Conclusions

Uncertainty quantification of complex and strongly corrupted data can be challenging, and Bayesian
posterior analysis is an approach that can quantify complex posterior distributions such as multimodal
solutions. It requires a reliable prior distribution in latent space, which can be obtained using
generative models such as a VAE. Posterior analysis with MCMC is often too slow and can be trapped
in a single mode. We propose a fast alternative based on the L2 f-divergence that gives high quality
posteriors in latent space and in data space.
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A Details on the Posterior Analysis

A.1 The EL2O procedure

EL2O (Seljak & Yu, 2019) is an efficient and numerically stable procedure for fitting a parameterized
distribution qθ(z) to another distribution p(z), when we can evaluate p(z) for a given z, but do not
have access to the analytical form of the distribution. In its most general form EL2O determines the
parameters, θ, of qθ by minimizing the following objective function,

EL2O = argmin
θ

Ep̃
{
N−1

nmax∑
n=0

∑
i1,...,in

αn [∇nz ln qθ(z)−∇nz ln p(z)]
2
}
, (3)

where the expectation value is taken by averaging over samples from an arbitrary distribution p̃
(ideally p̃ is chosen to be close to the real distribution p(z)), N is the number of terms included, and
the factor αn can be used to give different weight to different derivative orders. The sum over indices
i1, ..in should be symmetrized to avoid double counting.

Setting nmax = 2, Eq. 3 becomes

EL2O = N−1
M argmin

θ
Ep̃
{ M∑
i,j<i

[
∇zi∇zj ln qθ(z)−∇zi∇zj ln p(z)

]2
+

M∑
i=1

[∇zi ln qθ(z)−∇zi ln p(z)]
2

+ [ln qθ(z)− ln p(z)− ln p̄]
2
}
, (4)

with NM = M(M + 3)/2 + 1. Note that we have added a normalization, ln p̄, in the last term to
account for the fact that p(z) might not be properly normalized. The last term is only required if
the correct normalization for qθ has to be determined, e.g. if qθ is a mixture of Gaussians and their
relative weights have to be found.

Specializing to the Gaussian case, qθ(z) = N (z;µ,Σ), we have θ = (µ,Σ). For Nk random
sampling points, zk, the EL2O is minimized by setting

Σ−1 ≈ −N−1
k

Nk∑
k=1

∇z∇z ln p(zk), (5)

and

µ ≈ N−1
k

Nk∑
k=1

[Σ∇z ln p(zk) + zk] . (6)

This results in a first estimate of qθ, which can be used to draw new samples, zk, for which the
fitting procedure can be repeated, etc. EL2O and variational inference by minimization of the
KL-divergence, KL(q|p), converge to the same result in the high sample limit, if p̃ = q. However,
EL2O has the advantage of lower sampling noise: the presence of zk in the last equation guarantees
that there is no sampling noise. This term is missing in stochastic KL minimization (Opper &
Archambeau, 2009).
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We can further accelerate the convergence by choosing the initial sampling points wisely, e.g. for a
unimodal distribution, one can first find the maximum, z̃, of p(z) through gradient descent. If one
chooses zk = z̃, EL2O simplifies to the well known Laplace approximation.

Since we expect the posterior of corrupted data to be generally multimodal, we use EL2O to fit
a Gaussian mixture model (GMM), qθ =

∑
i wiqiθ =

∑
i wiN (z; Σi,µi). Assuming that the

distribution p(z) has well separated maxima, z̃i, finding the parameters of the GMM proceeds
similarly as for the single Gaussian case. In fact, we can simply fit Gaussians as outlined above
around the maxima. In addition, we need to determine their relative weights, wi. The additional
constraint comes from the last term in Eq. 4 (which was not required to find the parameters of the
single Gaussian). We see that EL2O gets minimized if we set

ln(wi) = − ln qi(z̃) + ln p(z̃) + ln p̄, (7)

and require
∑
i wi = 1.

A.2 Posterior Analysis in Practice

We use the fitting procedure outlined in the previous section for the examples shown in the main text.
First, we determine all the relevant minima by running several gradient descents with decreasing
learning rate from random starting points that we draw from the prior distribution. Each minimization
only takes of the order of 10 seconds and we find that we rarely need to start from more than 10
different starting points to find all the relevant minima. Once the gradient descent has converged, we
check the Hessian, −∇z∇z ln p(z), at the endpoint for positive definiteness. This step ensures that
we do not mistake saddle points as minima. We have found that the minimization is less likely to
get stuck at points other than actual minima if we apply an annealing scheme in which we initially
downweight the likelihood compared to prior. An example of the outcomes of twenty minmizations
from different starting points for the example of the masked 4 (last column in Figure 1), which has
the most complex posterior of all our examples, is shown in Figure 4.

Figure 4: Outcomes (negative log posterior) of
20 minimizations starting from 20 different, ran-
dom starting points, ordered by their negative log
posterior value. The two dominating minima (c.p.
Fig. 3) are found reliably. The other minima are
found to contribute negligibly to the total poste-
rior mass (The EL2O prcedure assigns them a very
small weight, c.p. Eq. 7).

We can clearly see that the minimization reliably
finds one of the two deepest minima. Note that
following EL2O the relative importance of min-
ima (their relative weights) does depend their
posterior mass, which is determined by both
their depth and width. A deep, but very local
minimum might have less posterior mass than
a shallower, wide minimum. Our minimization
procedure is unlikely to miss wide minima and
in all examples, we find that the forward mod-
eled lowest minimum is always very close to the
input, suggesting that it is the global minimum.

After minimization and discarding all points
with non-positive definite Hessian, we iden-
tify separate minima, z̃i, by comparing
their distance in latent space |z̃in−z̃jn | (per
latent space dimension n) to their width
(the width is estimated from the variance,
σ2
in

=∇zn∇zn ln p(z̃i), at the respective min-
ima). Having identified all separate minima,
we fit Gaussian around them and determine their
relative weights with Eq. 7.

A.3 EL2O versus stochastic variational inference (SVI)

We compare different posterior fitting procedures for the second example in Figure 1, for which we
found the posterior to be to good approximation unimodal. In this case, EL2O reduces to finding the
minimum and fitting a full rank Gaussian by means of the Laplace approximation. For comparison,
we also fit Gaussians with diagonal (mean field approximation) and full rank covariance to the
posterior by stochastically minimizing the evidence lower bound (ELBO) (Kucukelbir et al., 2017).
For EL2O we run 10 minimization starting from random starting points, each taking about 10 seconds.
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Figure 5: Comparison of different posterior fitting procedures on the example of the noisy, half
masked four. In the two images on the left, we show the true underlying image and the input data,
which has been corrupted by adding white noise and a mask covering half of the image. In the right
three images we show the maxima of the fitted Gaussians forward modeled to data space, starting
with the EL2O estimate (MAP solution), followed by the mean field VI estimate and the full rank VI
estimate on the right. The visual quality of the VI estimates is slightly inferior to the EL2O estimate,
reflecting the fact that their maxima do not coincide with the global maximum (c.p. Fig. 6).

Out of these ten minimizations, 4 converge to the deepest minimum, and we find that the contribution
of the other local minima to the posterior is suppressed. We compute the curvature at the global
minimum by automated differentiation and use its inverse as an estimate of the covariance of our
Gaussian fit. For the stochastic VI estimate we minimize the ELBO using the ADAM optimizer
with decreasing learning rate. We draw 512 samples from the approximate posterior to estimate the
gradient in each step (we see a clear trend of improved results with increased number of samples).
We find that we need of the order of 8000 steps for the ELBO to converge, taking between 130 (mean
field) and 170 (full rank) seconds, making it in both cases slower than running 10 minimizations for
the EL2O estimate. Despite using the Cholesky decomposition and ensuring that the diagonal is
positive with a softplus transform, we find that we have to add a small constant offset to the diagonal
of the estimated covariance to make the minimization of the ELBO numerically stable. We plot the
outcomes of these fits in Figure 6. The red line shows the true negative log posterior probed along
one specific latent space dimension (keeping the other dimensions fixed at the position of the global
minimum), the other lines show the respective estimates from the fitted posteriors, qθ(z), restricted
to the same dimension. We use the value of the true negative log posterior evaluated at the mean of
the fitted posterior as anchor point for the fits (which is why the minima of the SVI estimates do not
need to lie on the red line). The minima of the negative log posteriors fitted with the ELBO objective
do not coincide with the true mininum. The reconstructions from these points have less similarity
with the truth than the MAP estimate (Fig. 5), the fact that they still look similar to the MAP solution
is probably owed to the relative simplicity of the posterior shape, but could become more problematic
for other posterior shapes.
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Figure 6: A comparison of posterior fits obtained with different fitting procedures to the true posterior.
We show 3 randomly chosen latent space directions of the 10 dimensional latent space and plot the
negative log posterior. We find that minimizing the ELBO requires more fine tuning than minimizing
the EL2O objective, while not leading to fitted posterior modes that coincide with the true global
mode.

B A detailed description of the forward model

As described in the main text, we start by training the encoder and decoder of a VAE under the
evidence lower bound (Figure 7), assuming a Gaussian likelihood. The modeling error of this VAE
can be estimated from the root mean squared (rms) difference between the input and the reconstruction
or by allowing the variance of the likelihood to be a trainable variable and using its value at the end of
training as an estimate. To ensure that the latent space distribution is well described by the prior, we
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Figure 7: As a first step we train a vanilla VAE with Gaussian likelihood on uncorrupted training data.

add an additional component to the forward model: We first encode the data with the VAE encoder.
We then fit a bijective normalizing flow, bθ, to map this distribution to a normal distribution (Figure 8).
After having trained both the VAE and the normalizing flow, we build our complete forward model (

Figure 8: In a second step a bijective normalizing flow is fitted to map the distribution of the encoded
training data to a normal distribution.

Figure 9): The hidden variable z is passed through the bijective flow and the decoder of the VAE to
produce a realization of the uncorrupted data x. This data is then corrupted by the operatorA and a
realization of the measurement noise is added. This produces a realization of noisy corrupted data.

Figure 9: The full forward model consists out of the normalizing flow, the decoder of the VAE, the
corruption operator and measurement noise.

9


	Introduction
	Reconstruction and Uncertainty Quantification for Linear Inverse Problems
	Experiments
	Conclusions
	Details on the Posterior Analysis
	The EL2O procedure
	Posterior Analysis in Practice
	 EL2O versus stochastic variational inference (SVI)

	A detailed description of the forward model

