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Abstract

We propose to extend Latent Variable Models with a simple idea: learn to encode
not only samples but also transformations of such samples. This means that the
latent space is not only populated by embeddings but also by higher order objects
that map between these embeddings. We show how a hierarchical graphical model
can be utilized to enforce desirable algebraic properties of such latent mappings.
These mappings in turn structure the latent space and hence can have a core impact
on downstream tasks that are solved in the latent space. We demonstrate this
impact on a set of experiments and also show that the representation of these latent
mappings reflects interpretable properties.

1 Introduction

A core appeal of unsupervised learning is its potentially important role for supervised [21, 2, 11] as
well as reinforcement learning [23, 17, 7, 8]. It is supposed to make approaches in these two areas
more sample efficient and also to improve their overall robustness as well as generalization charac-
teristics [12]. From a probabilistic perspective, standard unsupervised learning aims at modeling a
distribution over X C RP, given a finite set of (i.i.d) observations X = {x;|x; € X}",. Latent
variable models are an approach for this task. For these type of models p(x) is considered to be the
result of a generative process comprising of a prior 7(z) over a latent variable z,z € Z C R% d < D,
and a conditional likelihood pg(x|z). While there is an impressive amount of progress and new ideas
in the area of latent variable models over the last couple of years [6, 13, 3, 25, 1, 4, 19], it is still
difficult to make such low-dimensional structures both theoretically as well as practically tangible.
Apart from a set of i.i.d samples what else is there that could describe such an underlying structure?

Structural properties of a set X’ can often be characterized through mappings between elements of X,
in general k-ary functions f : X x X x ... X — X. If one accepts that such higher-order objects
are expressive ways to represent various kinds of structural properties of X" than it is a reasonable
assumption that these objects should also be considered in the latent space of latent variable models.
Mathematically speaking one is interested in morphisms between X and Z. To the best of our
knowledge such an idea has not been considered so far for latent variable models (see our remarks
concerning related work in Section 4 about models for sequential data). In the following we will
describe a possible method to integrate latent mappings into a specific latent variable model, derive
a training algorithm for this new approach and discuss practical aspects to successfully realize this
approach, including empirical results on some widely used datasets. In order to avoid getting lost
in the fine details of mathematical complexities we will limit our further discussion of mappings
to simple Endomorphisms, i.e. functions f of the form f : X — X. These will be denoted
transformations in the rest of the text. Mathematically, we assume that transformations over X’ form
a group G under function composition o. That is, there exists an identity transformation fiq(x) = x,
x € X, function composition is associative and every f € G has an inverse f~' € G such that
fo f~' = fiq. Clearly, for many real-world datasets the last two properties often are not strictly
fulfilled. Yet, having such a rich structure simplifies the task to come up with a practical realization
of the general idea described previously. In Section 4 we will briefly describe how these assumptions
can be relaxed in a straight forward manner.
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Figure 1: (a) Examples (per row) for sampled triplets: The image in the middle is transformed with a random
transformation (left image) and its inverse (right). (b) Our model. A latent sample z is transformed into two
views, z1 and zz. The identity transformation maps z to zg. These latent representations are then mapped in the
usual way to the observation space. (c) If no latent transformation exists, the suggested model collapses to a
standard VAE. (d) A standard VAE.

2 Approach

It is not immediately obvious how transformations can be integrated into a latent variable model. One
question is representing such transformations. In observation space it may be self-evident to use a
representation of transformations that is associated with the domain of &X'. For example, for images
one may be tempted to represent transformations as affine matrices. But this could lead to models
that are tied to specific data domains. Additionally there are transformations that can not be captured
in a parametric way in the observation space, e.g. mapping an image to its segmented version or
mapping an image to a sub-sampled version represented through a graph structure 2. A more flexible
approach is to represent transformations in observation space in an implicit way through tuples of
samples and their respectively transformed versions. Because we assume that transformations have
always inverses, we will represent a transformation f on X through a triplet: some sample x € X, its
transformed version f(x) and the result of the inverse transformation f~!(x) (see Fig. 1(a)). What
about the latent space Z? From a probabilistic perspective, the latent variable z is a random variable,
so the associated latent transformations should be represented by a distribution over functions, i.e.
stochastic processes. An expressive way to represent these is by a learnable function parameterized
through a random variable [5].

Model. Our model is an extension of the Variational Autoencoder (VAE) framework [16, 22]. In
fact, using the ideas presented in the previous paragraphs, our suggestion resembles a hierarchical
variant of a VAE, albeit with specific semantics of the hierarchy. Let x € X be some observed sample
and let f be some arbitrarily chosen transformation on X. Then x; = f(x) and x2 = f~!(x). In
Fig. 1(b) we depict a graphical model that describes the generative process for the triplet (x, X1, Xz2)
utilizing a latent transformation represented by the random variable 7. We denote this model
the transformation-aware VAE, or Tyag for short. Eq. 1 describes the equivalent probabilistic
factorization of the joint distribution p(x, X1, X2, 2, Zo, 21, 22, T):

Po(x|20)po (x1|21)ps (x2|22)7y (202, Tra)ry (21]2, T)ry (22]2, T~ )m(2)m(T) (1)

The proposed model is build in a way that fulfills the previously presented characteristics of transfor-
mations also for the latent space Z: we postulate the existence of an identity mapping (7i3) and we
enforce that every transformation 7" has an inverse 7~ . What this notation means is that for some
given T’ the transformation 7, (-, T') has the uniquely determined inverse transformation r, (-, 7 1),
i.e. T—1 is used as a short-hand notation here. Because 7' is a random variable, it has, like z, a prior
distribution. Note that the model collapses to a standard VAE if the set of transformations is empty —
in this case the only admissible transformation is Tiq, see Fig. 1(c).

In order to arrive at a tractable training procedure for this model through a lower bound on
log p(x,x1, X2), we approximate the posterior distribution as:

Q(Ta Z,79,71, Z2|X, X1, Xz) ~ qE(T|Z17 ZZ)qw(Z‘zlv Z2)(]¢(Z0|X)q¢(Z1|X1)q¢(Zz|X2) (2)

These are examples of transformations that do not have a well-defined inverse.



Because it is not clear how to model g¢(T") as a parametric distribution, we decided to utilize an
implicit distribution for it. This means we can derive a lower bound as follows:

log p(x, x1,X2) 2Eq, (20/x) 108 Po(X|20)] = Eq, (a01x) [P [60(20|%), 7 (202, Tia)]]
+Eq, (21]x1) 108 Po(x1|21)] — D [g4(21[%x1), 7x (212, T')]
+Eq, (22]x2) 108 po(x2(22)] — D [q(22[x2), 7y (22]2, T~ )]
=D [qy(2|21,22), 7(2)]

3)

where D [x,y] = Eq, (2]21,22)q, (21 ]x1)q, (z2]x2) 1087 — log y] and T" is computed by g¢ (7). While
the algebraic properties of the latent mapping allowed us to derive the above model, several details
are missing for running experiments. In order to assess the overall idea we decided to have the
simplest functional form for the latent transformation r, (z1|z,T): 7y (21|2z,T) = z + T and its
inverse as z — 7T'. This implies that Tiq = 0. For the posterior ¢, (z|z1, z2) we chose a Gaussian
whose mean and s.d. are parameterized by a neural network h, (21, z2). The implicit distribution
qe(T'|z1, z2) is represented by a neural network he(z1,22). The goal of DJ[-, -] is to ensure coher-
ence between the inference and generative paths. Inspired by [20, 28] we choose the maximum
mean discrepancy criterion [9] to implement D[-,-]. While the resulting standard VAE posterior
¢4(Zo|x) produced acceptable results with respect to the marginal likelihoods, the posterior infer-
€nce OVer z, i.€. qy (z|z1, z2) failed with respect to the implications of the Tyag semantics. More
specifically, log pg(x|z) was very bad. As a solution to this issue we introduced the indirect coher-
ence term Fy |, = —Ey (221 ,22)q0 (21 |x1) 4 (22 x2) 108 Po(X|2)] + Dk [¢4(Z0), 7(2z0)]. substituting
Eq, (z0]x) [P [46(20|%), 7y (Z0|2z, Tia)]] in Eq. 3. Fy, explicitly enforces the implied semantic for z
and zg (i.e. both are equal under the VAE model).

3 Experiments

The experiments in this section demonstrate that (i) the resulting Tyvag model is a good generative
model for a given dataset (ii) the latent structure induced by the Tyag is helpful for downstream tasks
and (iii) the variable T encodes information that resembles transformations in observation space.
For the first two aspects we utilize a standard VAE as a baseline. Because Tyag is trained on an
augmented dataset we also introduce VAE+ as another baseline — a VAE trained on an augmented
dataset constructed through the employed transformations during training of the 7yag. These
three models have the same architecture for the core encoder as well as the core decoder. We run
experiments on MNIST [18], Fashion-MNIST [27] and AffNIST.

Generative Modeling. On MNIST, the Tyag achieves a marginal likelihood of ~ 92 nats on the
test set (using a simple convolutional encoder and decoder, see the Appendix). A VAE achieves ~ 93
nats and VAE+ ~ 94 nats. Similar qualitative behaviour is observed over various other datasets and
architectures. We therefore conclude that the Tyag is able to learn a reasonable generative model for
a given dataset.

Latent Space Structure. The core motivation for introducing a latent transformation object was
the hypothesis that the structure of the latent space can be shaped better. Here, we test this hypothesis
in two ways. If two datasets are similar in the sense that they have a substantial overlap in their
respective sets of transformations, the latent embedding learned (by a 7yag) on the one dataset should
also be useful for the other. We test usefulness of an embedding through a KNN classifier on these.
We run experiments for the dataset pairs MNIST-AffNIST and FashionMNIST-AffNIST. That means,
we train a Tyag on MNIST and F-MNIST respectively and then evaluate the embedding on AffNIST.
For that a KNN classifier is trained on the training set embedding of AffNIST and evaluated on its
test set embeddings.

Because MNIST and AffNIST are relatively similar with respect to their content we would expect
that at least VAE+ should perform well, too In the case of F-MNIST/AffNIST however the structured
latent space of a Tyag should be much more informative. This is what Table 1 shows (M-Aff and
F-Aff columns). For the standard case of no domain/content shift (the M-M and F-F columns in
Table 1) all the models perform comparably, corroborating our hypothesis that the performance gain
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Table 1: MNIST, Fashion-MNIST and AffNIST test set
accuracy using the latent mean p. and a KNN classifier.
Models trained on MNIST (M) and Fashion-MNIST (F).

Figure 2: Classification accuracy on AffNIST test
set over 20 runs using p.. Models trained on
Fashion-MNIST.

for Tyag in the presence of a domain shift is due to a better way to organize information in the latent
space, and not unfit baselines. Similarly, in the setting of a domain shift (e.g. embedding trained
on F-MNIST, used for AffNIST), the structure induced by Tyag should be very helpful when only
a small set of labelled samples for the KNN are available. Fig. 2 documents this effect (which is
aligned with the previous experiment) and shows that 7Tysg embeddings utilize additional samples
much more efficiently.

Latent transformations. Finally we want to investigate what kind of transformation information
is encoded in T'. We take an arbitrary triplet (x, x1, X2) constructed according to our data generation
scheme and infer T'. We then take a random data element, sample from its posterior g4 (z|x) apply
7y (21|z,T) and 1\ (z2|z, T~') and decode z1 and z5.

Figure 3 shows the qualitative result of this ex-
periment. The triplet for extracting 7' is the
ﬁrst cqlqmn: The top imgge shows an unmod- WYYV Y VY
ified digit 3 and the two images below show a 1174672511643 TAR 1490
right/left rotation of it. Note that both images

also show the effects of a cropping transforma-  Figure 3: The transformation 7 is extracted from the
tion. This means that the two overall transfor- triplet in the first column. It is then applied to the latent
mations are not inverse to each other! Never- embedding of the top image in the subsequent columns.
theless, one would expect that the inferred 7' The green vertical lines in every image should support
should mostly obtain some representation of the inspecting for right/left rotation, which is the (invertible)
rotation transformation. The following columns ~ transformation used in the first column.

then show the result of applying 1" (second row)

and T~ !(third row) to the latent embedding of the first row. We see that most examples are rotated to
the right and left respectively, however content and style are mostly unmodified.
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4 Discussion and Outlook

Recurrent neural networks are the premier example when talking about mappings in latent spaces.
Thinking about these implicitly available mappings lead to a broad family of (recurrent) state-space
models [26, 14, 10]. Differently from these approaches, our work considers mappings as explicit
objects — what properties these objects should have and how these properties can be enforced. The
goal is to induce a structure on the latent space of VAEs such that embeddings in this space are
more useful for downstream tasks (differently from most approaches this structure is not seeking to
improve the generative modeling per se). Clearly, this structure is heavily determined by 7, (-, T).
A more powerful functional form then the one presented in this work will lead to more interesting
properties of the latent space. Preliminary results for utilizing a latent transformation function of the
form T'z (i.e. a matrix-vector product) look very promising. We also started to represent z itself as a
matrix [24]. Additionally, one might argue that only considering invertible transformations is too
strict. It turns out that this requirement can be relaxed and the model in Fig. 1 can be suitably adapted
to handle an arbitrary number of transformations (i.e. views of a sample) where no restrictions are
put onto these transformations. Obviously, posterior inference in this case is much more challenging.
In preliminary experiments we successfully trained a Tyvag that utilized a Super-pixel transformation.
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A Visualizations
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Figure 4: Interpolating the latent space on MNIST. First row (per image): original sample. Second and third
rows: views with applied transformations (resulting in z; and z2). Fourth and Fifth rows: Tvag and VAE (left
column)/ VAE+ (right column) interpolation. Interpolation is done by decoding 1522
for the utilized function ry (2, T) = z + T from Tvag.

B Technical Details

— this is clearly helpful

We use mini-batches of size 100 and train the models for 200 epochs. We set & = 10~* and use
Adam [15] for training. Every 50 epochs a is halved. We use 4x4 filters for all the encoder and
decoder layers and stride 2 for all the encoder convolutions and the last two transposed convolutions

in the decoder 3.

The encoder parametrizes the moments of a multivariate Gaussian distribution with diagonal
covariance matrix. The decoder parametrizes the moments of a Bernoulli distribution. We train the
models with a binary cross-entropy loss and minimizing a KL divergence with standard normal as
prior. We train models with latent dimensions z4 € [10, 100].

For MNIST and Fashion-MNIST :

q0(2[x):

z € R?®*?8 _ Convyy — ReLU
— Convsy — ReLU
— Convgy — ReLU
— Convisg — ReLU
— Convay,,

3We write for all the architectures Module;, where k is the number of filters in output for convolutions and
transpose convolutions and number of units in output for fully connected layers.



po(x|z):
z € R* — Convisg — ReLU
— ConvTgy — RelLU
— ConvT3o — ReLU
— ConvT3o, — ReLU

— ConvT;
qy(2|21,22):
z € R**% — FCyg09 — ReLU
— FCi9p0 — ReLLU
— FCQZd
Tg (Zl, Z2)I

z e R2zd — FCygg0 — ReLU
— FC19g0 — ReLLU
— FC,,.
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