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Abstract

Specifying meaningful weight priors for variational inference in Bayesian deep
neural network (DNN) is a challenging problem, particularly for scaling to larger
models involving high dimensional weight space. We evaluate the recently pro-
posed, MOdel Priors with Empirical Bayes using DNN (MOPED) method for
Bayesian DNNs within the Bayesian Deep Learning (BDL) benchmarking frame-
work. MOPED enables scalable VI in large models by providing a way to choose
informed prior and approximate posterior distributions for Bayesian neural network
weights using Empirical Bayes framework. We benchmark MOPED with mean
field variational inference on a real-world diabetic retinopathy diagnosis task and
compare with state-of-the-art BDL techniques. We demonstrate MOPED method
provides reliable uncertainty estimates while outperforming state-of-the-art meth-
ods, offering a new strong baseline for the BDL community to compare on complex
real-world tasks involving larger models.

1. Introduction

Variational inference (VI) [[1H3] is an approximation technique to learn the posterior distribution. VI
formulates the Bayesian inference problem as an optimization-based approach which lends itself to
the stochastic gradient descent based optimization used in training DNN models. The generalized
formulations of VI [4-9] has renewed interest in Bayesian neural networks.

Variational inference for Bayesian DNN involves specifying prior distributions and approximate
posterior distributions for weights. In a pure Bayesian approach, a prior distribution is specified
before any data is observed. But specifying meaningful priors in large Bayesian DNN models is a
challenging problem [10]], as it is practically difficult to have prior belief on millions of parameters
that we intend to estimate through Bayesian inference. Empirical Bayes [11H13]] methods estimate
prior distribution from the data, which is in contrast to typical Bayesian approach. Also, scaling
variational inference in Bayesian DNNSs to practical applications involving large-scale datasets and
deeper models in high dimensional weight space is an ongoing research problem. On the contrary,
DNNSs are shown to have structural benefits [14] which helps them in learning complex models on
larger datasets. The convergence speed and performance [15] of DNN models heavily depend on the
initialization of model weights and other hyperparameters. The transfer learning approaches [[16]]
demonstrate the benefit of fine tuning the pretrained DNN models from adjacent domains in order to
achieve faster convergence and better accuracies.

Based on Empirical Bayes (EB) and transfer learning approaches, we have proposed MOPED [17]] to
scale VI to large Bayesian DNN models. MOPED is a simple and yet efficient method to specify
informed priors and approximate posteriors, which in our experiments with complex real-world
tasks has shown to provide good initialization for weights. The original formulation of Empirical
Bayes dates back to 1950s [[11]], since then many parametric formulations have been proposed
and used in wide variety of applications. We use a parametric EB approach in our method for
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mean field variational inference (MFVI) in Bayesian DNN, where weights are modeled with fully
factorized Gaussian distribution. We evaluate MOPED-MFVI within Bayesian Deep Learning
Benchmarks (BDL-benchmarks) [18] framework on a real-world diabetic retinopathy diagnosis task.
BDL-benchmarks is an open-source framework for evaluating deep probabilistic machine learning
models and their application to real-world problems. BDL-benchmarks assess both the scalability
and effectiveness of different techniques for uncertainty estimation.

Contribution: Our main contribution in this paper is to propose a new strong baseline (MOPED-
MFVI) for Bayesian DNNs evaluated within the BDL-benchmarks framework [[18] on Diabetic
Retinopathy diagnosis. Our empirical results indicate our method provides reliable uncertainty
estimates and achieves better model performance than state-of-the-art baselines in BDL-benchmarks,
offering a strong baseline for the BDL community to compare on real-world tasks.

2. MOPED: specifying weights in Bayesian DNN using Empirical Bayes framework

MOPED (MOdel Priors from Empirical Bayes using DNN) provides a way for specifying meaningful
prior distributions and approximate posterior distributions over weights in Bayesian DNNs using
Empirical Bayes (EB) framework. EB methods intend to combine the strengths of frequentist and
Bayesian statistical approaches, and considered as an approximation to a fully Bayesian treatment of
a hierarchical Bayes model.

We formulate a two-stage hierarchical modeling approach, first find the maximum likelihood estimates
of weights with DNN, and then set the weight priors using empirical Bayes approach to infer the
posterior with variational inference.

We illustrate our approach on mean-field variational inference (MFVI). For MFVI in Bayesian DNNss,
weights are modeled with fully factorized Gaussian distribution i.e. each weight is independently
sampled from the Gaussian distribution w ~ A (p, o). In Bayesian DNNs of complex architectures
involving very high dimensional weight space, initial choice of 11 and o can be very sensitive for
variational inference. MOPED method proposes to specify prior p(w) and approximate posterior q(w)
for each weight as mentioned in Equations([I] w,,,, represents weights obtained through maximum
likelihood estimation from DNN model of equivalent architecture. The prior mean and variance is set
at w,,,, and unit variance respectively. The variational parameters 1 and o in q(w) is initialized using
w,,,» and § as mentioned below.

p(w) = N(w,,., I)
g(w) = N(p, o) (1)

W= Wes 0= 0|W,,]

where, ¢ is initial perturbation factor (hyperparameter) in terms of decimal percentage of the mean.

Related work: Choosing weight priors in Bayesian DNN is an active area of research [19-22].
Dziugaite et al. [23]] use a method of setting prior mean as maximum likelihood estimate, which gives
a tight generalization bound. Nguyen et al. [24] use prior with zero mean and unit variance, and
initialize the optimizer at the mean of the MLE model and a very small initial variance for small-scale
MNIST experiments. Wu et al. [19] introduced hierarchical prior for parameters and a novel EB
procedure for automatically selecting prior variances.

3. Experiments and Results

We evaluate our method on diabetic retinopathy diagnosis task in BDL-benchmarks [18]. We use
the same model architecture and experiment setup described in BDL-benchmarks framework. The
Bayesian DNN model used in experiments is a variant of VGG architecture (same as MFVI baseline
in BDL-benchmarks), where the weights in variational layers are modeled with mean-field Gaussian
distribution using Flipout [25]. The number of trainable parameters is twice as compared to a
deterministic DNN. The model is trained using Adam adaptive optimizer with an initial learning rate
of 4e~* and batch size of 64. We trained for 60 epochs (40 epochs to obtain the maximum likelihood
estimates for weights using DNN, and 20 epochs with MFVT after specifying approximate posteriori
and priori using MOPED method as given by Equations|1| with §=0.3). In order to obtain statistically
significant results, we trained five independent models with MOPED-MFVI method.



50% data retained 70% data retained 100% data retained

Method AUC Accuracy AUC Accuracy AUC Accuracy
MC Dropout 87.8+1.1 91.3+£0.7 85.2+0.9 87.1+0.9 82.1+09 84.5+0.9
Mean-field VI 86.6+1.1 88.1+1.1 84.0+1.0 85.0+1.0 82.14+1.2 84.3+0.7
Deep Ensembles 872409 89.9+09 84.9+0.8 86.1+1.0 81.8+1.1 84.64+0.7
Deterministic 84.9+1.1 86.1+£0.6 82.3+1.2 84.9+0.5 82.0+1.0 84.24+0.6

Ensemble MC Dropout 88.1+£1.2 924409 854+1.0 88.1£1.0 82.5£1.1 85.3£1.0
MOPED Mean-field VI 87.3£0.8 93.4+0.4 84.4+0.6 91.840.5 82.1+0.2 85.5+0.7
Random referral 81.8+1.2 84.8+09 82.0+1.3 84.3+0.7 82.0+0.9 84.2+0.5

Table 1: Comparison of Area under the receiver-operating characteristic curve (AUC) and classification accuracy
as a function of retained data (based on predictive uncertainty). The results for the BDL baseline methods other
than MOPED-MFVI are presented from [18]. MOPED Mean-field VI outperforms other baselines in terms of
accuracy vs retained data.
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Figure 1: Benchmarking MOPED-MFVI with state-of-the-art BDL techniques on diabetic retinopathy diagnosis
task in BDL-benchmarks [18]]. Accuracy and area under the receiver-operating characteristic curve (AUC) plots
for varied percentage of retained data based on predictive uncertainty. Shading shows the standard error.

MOPED-MFVTI is compared with state-of-the-art baseline methods in BDL-benchmarks suite on
diabetic retinopathy detection task [26]. The baselines include Monte Carlo (MC) dropout [8], MFVI
with randomly initialized weight parameters [5, 4], deep ensembles [27], ensemble of MC dropout
and deterministic DNN models. The results for baselines from BDL-benchmarks [[18]] is currently
provided for medium scale experiment setup, so we have compared MOPED-MFVI in the same
setting for fair comparison. In appendix section [A.2] we provide the results for MOPED-MFVI
in real-world experiment setting along with other real-world tasks in Section[A.T] The evaluation
methodology expects that the models with well-calibrated uncertainty improve their performance
(accuracy and AUC) as most certain data is retained, while referring the uncertain predictions to
expert doctors. Table[T]and Figure[T|provides quantitative evaluation of AUC and accuracy values for
MOPED-MFVI and other BDL baseline methods. MOPED-MFVI outperforms other state-of-the-art
BDL techniques in terms of accuracy with respect to retained data based on predictive uncertainty.

Conclusion: We offer a new strong baseline for the Bayesian Deep Learning community to compare
on large scale real-world tasks. We demonstrated MOPED-MFVI improves MFVI in Bayesian neural
networks, and outperforms state-of-the-art Bayesian deep learning techniques in BDL-benchmarks.
The results support that new baseline provides better model performance and reliable uncertainty
estimates on a real-world diabetic retinopathy diagnosis task. We will integrate the code and setup
for MOPED-MFVI baseline into BDL-benchmarks framework [f]

Thttps://github.com/OATML/bdl-benchmarks
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A Appendix

A.1 Additional experiments with various datasets and large-scale models

We evaluated MOPED-MFVI on additional real-world applications including video activity recog-
nition, audio and image classification. We consider multiple model architectures with varying
complexity to show the scalability of method in training deep Bayesian models.

Bayesian DNN Validation Accuracy
Complexity Bayesian DNN

Dataset Modality  Architecture (# parameters) DNN MFVI MOPED-MFVI
UCF-101 Video  ResNet-101 C3D 170,838,181 0.851 0.029 0.867
UrbanSound8K Audio VGGish 144,274,890 0.817 0.143 0.819
CIFAR-10 Image ResNet-56 1,714,250 0.926 0.896 0.927
ResNet-20 546,314 0.911 0.878 0.916
MNIST Image LeNeT 1,090,856 0.994 0.993 0.995
Fashion-MNIST Image SCNN 442,218 0.921 0.906 0.923

Table 2: Accuracies for model architectures with different complexities and input modalities. MOPED-MFVI
achieves similar or better accuracy as the deterministic DNNs while providing reliable uncertainty estimates.
MFVI with random initialization has difficulty in converging to optimal solution (shown in red) for larger models,
while MOPED-MFVI enables scalable VI in larger models.

Bayesian DNN AUPR AUROC

Dataset Archiecture MFVI MOPED-MFVI MFVI MOPED-MFVI
UCF-101 ResNet-101 C3D 0.0174 0.9186 0.6217 0.9967
Urban Sound 8K VGGish 0.1166 0.8972 0.551 0.9811
CIFAR-10 ResNet-20 0.9265 0.9622 0.9877 0.9941
ResNet-56 0.9225 0.9799 0.987 0.9970
MNIST LeNet 0.9996 0.9997 0.9999 0.9999
Fashion-MNIST SCNN 0.9722 0.9784 0.9962 0.9969

Table 3: Comparison of area under precision-recall curve (AUPR) and receiver operating characteristic curve
(AUROC) for models with varying complexities. MOPED-MFVI outperforms MFVI that was trained with
random initialization.

Our experiments include: 1) ResNet-101 C3D [28]] for video activity classification on UCF-101[29]]
dataset, 2) VGGish[30] for audio classification on UrbanSound8K [31]] dataset, 3) ResNet-20 and
ResNet-56 [32]] architectures for the image classification on CIFAR-10 [33]] dataset, 4) LeNet for
MNIST [34] digit classification, and 5) Simple convolutional neural network (SCNN) consisting
of two convolutional layers followed by two dense layers for image classification on Fashion-
MNIST [35] datasets. We implemented all of these Bayesian DNN models and trained them with
MFVI and MOPED-MFVI.

In Table 2| classification accuracies for model architectures with various complexity are presented.
Table [3|compares AUPR and AUROC for MFVI and MOPED-MFVI on various model architectures
and datasets. Bayesian DNNs trained with MOPED-MFVI achieves similar or better accuracies as



compared to equivalent DNN models. MFVI with random initialization has difficulty in converging
to optimal solution for larger models (ResNet-101 C3D and VGGish) with hundreds of millions
of trainable parameters. These results show that MOPED enables scalable VI and guarantees the
training convergence even for the larger models.

A.2 Real-world experiment setting on Diabetic Retinopathy Diagnosis

In these experiments, visual inputs consisting RGB images of retinas with resolution 512x512
pixels is considered. Where as in medium scale experiment setting, RGB images of retinas with
resolution 256x256 pixels are used. The AUC and accuracy evaluation for MOPED-MFVT at different
percentage of retained data based on predictive uncertainty is shown in Table ] and Figure 2]

50% data retained 70% data retained 100% data retained

Method AUC Accuracy AUC Accuracy AUC Accuracy
MOPED Mean-field VI  91.24+1.3  96.44+0.2 88.9+1.2 949+0.3 88.34+0.5 88.94+0.5

Table 4: AUC and classification accuracy as a function of retained data (based on predictive uncertainty)for
MOPED-MFVI in real-world experiment setting as described in [18]].
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Figure 2: MOPED-MFVI on diabetic retinopathy diagnosis task in real-world experiment setting. Accuracy and
AUC plots for varied percentage of retained data based on predictive uncertainty. Shading shows the standard
error from multiple MOPED-MFVI models that was trained independently.
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