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Abstract

We introduce a novel autoencoder model that deviates from traditional autoencoders
by using the full latent vector to modulate each layer of the decoder independently
of each other, taking advantage of adaptive instance normalization. Further, we
demonstrate how such an ‘automodulator’ specifically allows for a novel principled
method to enforce latent space disentanglement. We do this by passing random
combinations of latents through the network more than once, whilst maintaining
consistency between multiple passes. This conserves the layer-specific information
in latent codes. As the backbone, we extend the recent PIONEER model which
retains input identity and image sharpness in higher resolutions than plain VAEs.
As a first application, we demonstrate conditional sampling of realistic face images
by having some decoder layers fixed to the latent code of a ‘driving’ input image.

1 Introduction

In image generation, the probability mass representing sensible images (such as human faces) lies
concentrated on an effectively low-dimensional manifold. Even if impressive results have been shown
for image generation (e.g., by GANs [2, 10]), efficient reconstruction, sampling, or manipulation
remain open problems. Deep generative autoencoders provide a principled approach for automatic
feature extraction and modelling. They are typically set up as single-pass encoder–decoder structures,
where a sample enters from one end and is reconstructed at the other. It would appear that the
reconstructed samples could be re-introduced to the encoder, repeating the process, and requiring
consistency between the passes. However, especially in variational autoencoders (VAEs, [8, 11]), the
reconstructed sample is not guaranteed to be identical to the input even at convergence, due to the
use of the reparametrization trick. This makes the idea of multiple passes questionable for VAEs,
compounded by their well-known empirical tendency to blur images. However, in models without
reparametrization, such as AGE [13], the individual sample could in principle be conserved when
doing more than a single pass, and recently such models have been shown to retain input identity and
image sharpness in high resolutions (see [3, 4]). This would allow for measuring consistency between
the 1st and 2nd pass at any network layer. Furthermore, by utilizing adaptive instance normalization
(AdaIn, [7]) in the decoder, we can use the latent codes to modulate the statistics of each decoder layer
separately. This allows us to mix the latent codes of separate samples and measure the conservation
of layer-specific information for each, which enforces disentanglement of layer-specific properties.

We introduce such a model and turn this idea into a novel way of formulating reconstruction losses
that improve disentanglement of features in latent space. First, we provide a clean model (called
automodulator) that can be used as a simple autoencoder (with no ‘discriminators’ or ad hoc additions)
but it produces sharp outputs unlike typical VAE models. Second, it provides the same style mixing
capabilities as StyleGAN [10] but, critically, our model can also directly operate on new real image
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inputs. Third, our model is completely general-purpose, and allows not only style mixing but also
latent space manipulation such as morphing the image by latent space interpolation.

2 Models and Methods

Our interest is in unsupervised training of an autoencoder wherein the inputs x are images fed through
an encoder φ to form a low-dimensional latent space representation z (we use z ∈ R512, normalized
to unity). This representation can then be decoded back into an image x̂ through a decoder θ. For
stable training, we adopt the progressively growing architecture of Balanced PIONEER [3, 5]. The
convolutional layers of the symmetric encoder and decoder are faded in gradually during the training,
in tandem with the resolutions of training images and generated images.

Adaptive Instance Normalization (AdaIn) A traditional decoder architecture would start from
a small-resolution image and expand it layer by layer until the full image is formed, feeding the
full information of the latent code via the decoder layers. In contrast, our decoder is composed of
layer-wise functions θi(ξi−1, z) that separately take a ‘canvas’ variable ξi−1 denoting the content
input from the preceding decoder layer (see Fig. 1a), and the actual (shared) latent code z. First, each
deconvolutional layer #i computes its feature map output χi from ξi−1 as in traditional decoders.
Second, we take the AdaIn normalization step that uses z to modulate the channel-wise mean µ and
variance σ2 of the output. To do this, we need a map gi : z 7→ (µi,σ

2
i ), arriving at:

ξi = AdaIn(χi, gi(z)) = σi

(
χi − µ(χi)
σ(χi)

)
+ µi. (1)

We implement gi for layer #i as a fully connected linear layer, with output size 2Ci for Ci channels.
Layer #1 starts from a constant input ξ(0) ∈ R4×4. Here, we focus on pyramidal decoders with
monotonically increasing resolution and decreasing number of channels, but any deep decoder would
be applicable. The AdaIn-based architecture allows the output of layer #i to be not solely determined
by the input from layer #i− 1, enabling finer control over the image information and image mixing
schemes.

Layer-specific Loss Metrics In training of regular AGE and PIONEER models, the encoder φ and
the decoder θ are trained at separate steps, optimizing either the loss Lφ or Lθ, correspondingly:

Lφ = DKL[qφ(z |x) ‖N(0, I)]−DKL[qφ(z | x̂) ‖N(0, I)] + λX dX (x,θ(φ(x))),

Lθ = DKL[qφ(z | x̂) ‖N(0, I)] + λZ dcos(z,φ(θ(z))), (2)

where x is sampled from the training set, x̂ ∼ qθ(x | z), z ∼ N(0, I), dX is L1 or L2 distance, and
dcos is cosine distance. Since the model allows sampling from latent space (similarly to VAEs and
GANs), the KL divergence terms during training can be calculated from empirical distributions,
despite the model itself being fully deterministic. Yet we retain, in principle, the full information
about the image, at every stage of the processing. For an image encoded into a latent vector z,
decoded back to image space as x̂, and re-encoded as latent vector z′, it is possible and desirable to
require that z is as close to z′ as possible, yielding the latent reconstruction error dcos(z,φ(θ(z))).

We now show how to encourage the latent space to become hierarchically disentangled with respect
to the levels of image detail, allowing one to separately retrieve ‘coarse’ and ‘fine’ aspects of a latent
code. This allows for e.g. conditional sampling by fixing the latent code for specific layers of the
decoder, or mixing the scale-specific features of two or more input images—impossible feats for a
traditional autoencoder with mutually entangled decoder layers.

The latent reconstruction error as such can be trivially generalized to any layer of θ. We simply
pick the layer of measurement, and from there, pass the sample once through a full encoder-decoder
cycle. But now, in the automodulator, latent codes can be introduced on a per-layer basis, enabling
more powerful reconstruction measurements. (Without loss of generality, here we only consider
mixtures of 2 codes.) We can present a decoder (Fig. 1b) with N layers, split after the jth one, as
a composition of θj+1:N (θ1:j(ξ

(0), zA), zB). Crucially, we can choose zA 6= zB (extending the
method of [10]), such as zA = φ(xA) and zB = φ(xB) for (image) inputs xA 6= xB . Because the
earlier layers #1:j operate on image content at lower resolutions, the output fusion image mixes the
‘coarse’ features of zA with ‘fine’ features of zB . Now, z holds feature information at different levels
of detail, some of which are mutually independent. Hence, when re-encoding an image, we should
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Figure 1: (a) The autoencoder-like usage of the model. (b) Modulations in the decoder can come
from different latent vectors. This can be leveraged in feature/style mixing, conditional sampling,
and during the model training (first pass). (c) The second pass during training.

keep the representation of those levels disentangled in z, even if they originate from separate source
images. Hence, when we re-encode the fusion image into ẑAB , and decode once more, the output of
θ1:j(ξ

(0), ẑAB) should be unaffected by zB .

This leads to the following conjecture. Assume that the described network reconstructs input samples
perfectly, i.e. x = θ(φ(x)). Any zA and zB can be mixed, decoded and re-encoded as

ẑAB ∼ qφ(z |x) qθj+1:N
(x | ξ(j), zB) qθ1:j (ξ(j) | ξ(0), zA). (3)

Now, between ξ(j) of the first and ξ(j) of the second pass (see Fig. 1c), the mutual information is

I[qθ1:j (ξ
(j) | ξ(0), ẑAB); qθ1:j (ξ(j) | ξ(0), zA)]. (4)

With zA, zB ∼ N(0, I), for each j, we can now maximize (4) by minimizing

Lj = d(θ1:j(ξ
(0), ẑAB),θ1:j(ξ

(0), zA)) (5)

for some distance function d (here, L2 norm). In other words, the fusion image can be encoded into a
new latent vector ẑAB in such a way that, at each layer, the decoder will treat the new code similarly
to whichever of the original two separate latent codes was originally used there (see Fig. 1b). For a
perfect network, Lj can be viewed as a layer entanglement error. Randomizing j during the training,
we can measure Lj for any layers of the decoder.

Final Unsupervised Automodulator Training Loss We chose a potentially more robust image
reconstruction loss dρ of [1] instead of L1/L2. dρ generalizes various norms and exposes robustness
as an explicit continuous parameter vector α. The complete loss functions are

Lφ = max(−Mgap,DKL[qφ(z |x) ‖N(0, I)]−DKL[qφ(z | x̂) ‖N(0, I)]) + λX dρ(x,θ(φ(x)))

Lθ = DKL[qφ(z | x̂) ‖N(0, I)] + λZ dcos(z,φ(θ(z))) + Lj , (6)

where x̂1: 34M
∼ qθ(x | z) with z ∼ N(0, I), and x̂ 3

4M :M ∼ qθ(x | ẑAB), with a set 3:4 ratio of regular
and mixed samples of batch sizeM and j ∼ U{1, N}. (A smaller ratio appeared to disproportionately
slow the overall learning, while a higher ratio could result in a very small number of mixed samples
in high resolutions.) Margin Mgap = 0.5 in low resolutions, then 0.2 for 1282 and 0.4 for 2562 (see
[5]). To avoid discontinuities in α, we utilize a progressively-growing variation of dρ, where we
first learn the α in the lower resolutions (e.g., 4×4). Each αi corresponds to one pixel. Then, when
switching to the higher resolution stage, we take take each parameter αi that corresponds to pixels
px,y in the lower resolution, to initialize the α1×4

j that, in the higher resolution, corresponds to px,y ,
px+1,y , px,y+1 and px+1,y+1, respectively.
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Input Samples with coarse features from the input

Input Samples with intermediate features from the input

Figure 2: Conditional sampling of 256×256 random face images based on ‘coarse’ (latent resolutions
4×4 – 8×8) and ‘intermediate’ (16×16 – 32×32) latent features of the fixed input. The input image
controls the coarse features (such as head shape, pose, gender) on the top and more fine features
(expressions, accessories, eyebrows) on the bottom.

3 Experiments

Table 1: Comparison of random sampling perfor-
mance via Fréchet Inception Distance (FID) and
latent space structure via Perceptual path length
(PPL) for images on CELEBA-HQ and LSUN
Bedrooms between StyleGAN [10], Balanced PI-
ONEER, PGGAN [9], GLOW [12] and our method.
The resolutions are 1282 for PPL and 2562 for
baseline FIDs [5]. FID for our method is based
on 1282. Autoencoders compared separately. 50k
samples used for FID, 100k for PPL. For all met-
rics, smaller is better.

FID FID PPL
(CELEBA-HQ) (LSUN) (CELEBA-HQ)

StyleGAN 5.06 2.65 50.08
PGGAN 8.03 8.34 81.33
GLOW 68.93 — 138.21

Balanced PIONEER 25.25 17.89 92.84
Automodulator (ours) 28.84 30.13 62.76

We trained our model on the FFHQ faces data
set [10] (256×256 resolution) and CELEBA-
HQ (128×128). For both, we confirmed that
it learns to produce sharp reconstructions and
random samples. We then confirmed that the
model can be used effectively for style mixing
of images (see the Supplement), and finally eval-
uated the model performance for the task of
image sampling conditioned on a certain level
of features of an input face image. We feed the
input face to the model at layers #1:2 (Fig. 2 top)
on one run and at layers #3:4 (Fig. 2 bottom) on
another. The latent for the other layers comes
from random z ∼ N(0, I). Here, we show two
separate face identities, on the two levels of de-
tail (Fig. 2).

Additionally, in CELEBA-HQ and LSUN Bed-
rooms [14], we quantify the image quality and
diversity of random draws from our model with
the Fréchet inception distance (FID, [6]), and for CELEBA-HQ, also the degree of disentanglement
with Perceptual Path Length (PPL, [10]). Our method clearly outperforms the baselines (except for
StyleGAN) in terms of PPL due to the latent space disentanglement, although the more advanced
network architecture comes at the cost of worse FID results than the baseline PIONEER [5] (Table 1),
even in the lower resolution. However, given that also in StyleGAN [10], the comparable architecture
improvements made FID only slightly better, and style-mixing during training actually made FID
worse, we believe the regular FID is not ideal for measuring models with style-mixing capabilities.

4 Discussion and Conclusion

We have introduced a novel method that uses architectural advancements for a new way of enforcing
disentanglement of decoder layers of an autoencoder. In our model, latent variables affect the output
via the 1st and 2nd moment of the intermediate decoder layers, allowing novel constraints for the
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intermediate outputs. Since our method takes additional advantage of the full encoder-decoder loop
that the regular GAN architectures lack, it is theoretically stronger than the related ‘style-mixing
loss’ of [10]. We applied the model to the task of conditional face image generation with convincing
results. We believe that the range of applications of our model is far wider than this first application,
making this family of autoencoders a viable alternative to state-of-the-art autoencoders and GANs.
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Supplementary Material for
Conditional Image Sampling by Deep

Automodulators

A Random samples

In addition to the conditional sampling described in Sec. 3, our model is also naturally capable of
unconditional random sampling from regular unit Gaussian distribution (Fig. 3). The samples here
indicate the full range of samples and face features the model can support. This should be contrasted
with the narrow range of the conditional case.

Figure 3: Random uncurated FFHQ samples at 256×256.

B Style mixing and interpolation

We can follow the methodology similar to the conditional sampling, and mix specific input faces so
that the coarse, intermediate or fine layers of decoder use one input, and the rest of the layers use the
other (Fig. 4). For comparison, we use the same input images as [10]. Importantly, the model in [10]
cannot take real inputs, so the mix is actually done between images created by the model itself. For
our model, those images appear as completely new test images.

We also show regular latent space interpolations between the reconstructions of new input images
(Fig. 5).
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Figure 4: Style mix example, using the same input images as in [10]. Note that in [10], the source
images were in fact generated by the network itself, and then mixed by the same network. For our
model, these are novel input images, and the style mix problem is hence fundamentally harder.
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Figure 5: Interpolation between random test set CELEBA-HQ images in 128×128 (in the corners)
which the model has not seen during training. The model captures most of the salient features in the
reconstructions and produces smooth interpolations at all points in the traversed space. The images
in the corners of the square grid are the reconstructions of the adjacent input image, while the other
images are interpolated between those.
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