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Abstract

Uncertainty estimation and ensembling methods go hand-in-hand. Uncertainty
estimation is one of the main benchmarks for assessment of ensembling perfor-
mance. At the same time, deep learning ensembles have provided state-of-the-art
results in uncertainty estimation. In this work, we focus on in-domain uncertainty
for image classification. We explore the standards for its quantification and point
out pitfalls of existing metrics. Avoiding these pitfalls, we perform a broad study
of different ensembling techniques. To provide more insight in this study, we in-
troduce the deep ensemble equivalent (DEE) and show that many sophisticated
ensembling techniques are equivalent to an ensemble of very few independently
trained networks in terms of the test log-likelihood.

1 Introduction

There are many faces to uncertainty estimation, and there are many settings and metrics to measure
all desirable properties of a well-uncertain model. In the out-of-domain setting uncertainty of the
model is measured on data that mismatches the training data distribution. The model is expected
to be resistant to corruptions and to be more uncertain on out-of-domain data as compared to the
in-domain data. This setting was explored in a recent study [21]]. On the contrary, in the in-domain
setting, uncertainty of the model is measured on data from the training data distribution. In this
case, a model is expected to provide correct probability estimates that can be measured by metrics
like log-likelihood, Brier score, calibration metrics, and performance of downstream problems, e.g.,
misclassification detection.

Ensembles of deep neural networks have become a de-facto standard for uncertainty estimation and
improving the quality of deep learning models [[14]. There are two main directions in the field of
training ensembles of DNNSs: training stochastic computation graphs and obtaining separate snap-
shots of neural network weights. Methods based on the stochastic computation graph paradigm
introduce noise over the weights or activations of deep learning models. When the model is trained,
each sample of the noise corresponds to a member of the ensemble. During test-time, the predic-
tions are averaged across the noise samples. These methods include (test-time) data augmentation,
dropout [26 5], variational inference [2} [12} [15]], batch normalization [11} [1l], Laplace approxima-
tion [24] and many more. Snapshot-based methods aim to obtain sets of weights for deep learning
models and then average the predictions across these weights. The weights can be trained inde-
pendently (e.g., deep ensembles [14]), collected on different stages of a training trajectory (e.g.,
snapshot ensembles [10] and fast geometric ensembles [6]), or obtained from a sampling process
(e.g., MCMC-based methods [28}130]).
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In this paper we focus on two problems in the field of in-domain uncertainty estimation. One is
the multitude of different metrics and experimental setups, some of which we show to be flawed.
The other one is a lack of consistent comparisons of different methods on the larger scale. We find
that deep ensembles outperform all other ensembling techniques using much less computational
resources at test-time. While methods that are specifically designed to traverse different “optima”
of the loss function (e.g. snapshot ensembles and cyclical SGLD) can come close to matching the
performance of deep ensembles, methods that are bound to a single “optima” are found to fall far
behind. Finally, it turns out that test-time data augmentation is a surprisingly strong baseline that
outperforms many conventional uncertainty estimation methods like variational inference, Laplace
approximation and dropout.

2 Pitfalls of measuring the quality of in-domain uncertainty estimation

There are many definitions of uncertainty and there is no single metric that can measure all desirable
properties of a well-uncertain model. To this end, the community has used different metrics that aim
to measure the quality of uncertainty estimation e.g., Brier score [3], log-likelihood [23], different
calibration metrics [7, [20], performance of misclassification detection [[17], and threshold—accuracy
curves [14].

We consider a classification problem with a dataset that consists of N train pairs and n test pairs
(xi,y}) ~ p(z,y) where yi € {1,...,C}. A probabilistic classifier is a function mapping each
object x; into a set of class probabilities p(y = ¢ |z;),c € {1,...,C}. max.p(y = c|z;) is called
classifier confidence on object ;. I[-] denotes the indicator function.

2.1 Log-likelihood

The average log-likelihood LL = % Sor logp(y = y; | z;) is a popular metric for measuring the
quality of in-domain uncertainty of deep learning models [14} [16]. It penalizes high probability
scores assigned to incorrect labels and low probability scores assigned to the correct labels y; .

The softmax function is used in various kinds of classification models. It transforms a vector of log-

its z(x) into the predictive distribution p(y = c|x) = % The temperature parameter

T significantly affects the log-likelihood which can either improve or deteriorate with temperature
change. The temperature 7™ that maximizes the log-likelihood on validation data allows to signifi-
cantly improve it on test data too [[7]. For now it is not clear whether it is possible to find the optimal
temperature without relying on hold-out data.

While ensembling techniques do seem to have better temperature than single models, the default
choice is still suboptimal. Comparison of the average log-likelihood with suboptimal temperatures
can significantly change the ranking of different methods.

The comparison of the log-likelihood should only be performed at the optimal temperature.

While this applies to most ensembling techniques (see Appendix [A), this effect is most noticeable
on experiments with data augmentation on ImageNet (see Figure[l]and Table[T]for more details).

2.2 Brier score

Brier score BS = 1L 3" S Ay = ¢ — py = ¢| 2;))? [3] has been known for a long time
as a metric for verification of predicted probabilities. Similarly to the log-likelihood, the Brier score
penalizes low probabilities assigned to correct predictions and high probabilities assigned to wrong
ones. It is also sensitive to the temperature of the softmax distribution and behaves similarly to the
log-likelihood.

2.3 Misclassification detection

Detection of wrong predictions of the model, or misclassifications, is a popular downstream problem
aiding in assessing the quality of in-domain uncertainty. Since misclassification detection is essen-
tially a binary classification problem, some papers measure its quality using conventional metrics for
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significantly lower.

binary classification such as AUC-ROC and AUC-PR [17, 4, 18]. These papers use an uncertainty
criterion like confidence or predictive entropy H[p(y | ;)] as a prediction score.

These metrics, however, cannot be used to compare misclassification performance across differ-
ent models. Correct and incorrect predictions are specific for every model, therefore, every model
induces a different classification problem. The induced problems can differ from each other signifi-
cantly since different models produce different confidences and misclassify different objects.

The AUCs for misclassification detection can not be directly compared between different models.

Note that while comparing AUCs is incorrect in this setting, it is correct to compare these metrics
in many out-of-domain data detection problems. In this case, both the objects and the targets of
the induced binary classification problems remain fixed for all models. However, this condition still
breaks in the problem of detection of adversarial attacks.

2.4 Classification with rejection

Rejection curves are another way to measure the performance of misclassification detection. To
construct the curves, the accuracy is measured only over objects that are assigned a confidence
above a certain threshold [[14].

The main problem with threshold-accuracy curves is that they rely too much on calibration and the
actual values of confidence. Models with different temperatures would have different amounts of
objects at each confidence level which does not allow for a meaningful comparison. To overcome
this problem, one can switch from thresholding by the confidence level to thresholding by the amount
of rejected objects. The corresponding curves are then less sensitive to the temperature scaling and
allow to compare the misclassification detection ability in a more meaningful way.

2.5 Calibration metrics

Informally speaking, probabilistic classifier is calibrated if any predicted class probability is equal
to the true class probability according to the underlying data distribution (follow [27] for formal
definitions).

Expected Calibration Error (ECE) [19] is a score that estimates model miscalibration. Typically,
there is no access to expected accuracy of the classifier at the exact confidence level, so binning
is needed to approximate expected accuracy with average accuracy over the bin. When computing
ECE, predictions are binned uniformly according to their confidence level. Assuming B,, denotes
the m-th bin, M is overall number of bins, accuracy and confidence are averaged over predictions of



each bin:
M | Bo|
ECE = E_l T |aCC(Bm) - conf(Bm)| ) (1)

where, denoting p; . = p(y = ¢| ;) for brevity, acc(B) = [B|~! Y, [farg max, p; . = y;] and
conf(B) = |B|™' 37, g Pi.yr- A recent line of work on measuring calibration in deep learning [20,
27 outlines several problems with the ECE score. The bias-variance trade-off of estimation using
ECE is very suboptimal. ECE-like scores cannot be optimized directly since they are minimized by a
model with constant uniform predictions. ECE only estimates miscalibration in terms of confidence
whereas practical applications may require the full predicted probability vector to be calibrated.
Finally, biases of ECE on different models may not be equal, rendering miscalibration estimates
incompatible.

A modification of ECE called Thresholded Adaptive Calibration Error (TACE) was proposed as a
step towards solving some of these problems [20]. As opposed to ECE, TACE estimates miscalibra-
tion of probabilties across all classes in a prediction. When computing TACE, binning is carried out
over predicted probabilities which are larger than a predefined threshold, separately for each class
(not just the top-1 predicted class as in ECE). Bin widths are varied so that each bin has the same
number of objects. Assuming that B299P*v¢ denotes the m-th bin and M is the overall number of
bins:

Badaptwe ) )
TACE = CM Z Z 1B |objs( (Badaptive o) _ conf(Badartive, o), (2)
c=1m=1
where objs(B,c) = |B|™* >, .5 Ily; = ] and conf(B,c) = |B|™* >, Pi,c. Although TACE
does solve several problems of ECE and is useful for measuring calibration of a specific model, it still
cannot be used as a criterion for comparing different models. This is because TACE is sensitive to its
two parameters, the number of bins and the threshold, and does not provide a consistent ranking of
different models (see Figure[/|in Appendix |C|for details). Biases of TACE on different models may
not be equal for different models just like in the case of ECE. Moreover, they are highly dependent
on the number of objects, further complicating its usage as a criterion for comparison of different
models or ensembling techniques.

2.6 Temperature scaling and test-time cross-validation

There are two common ways to perform temperature scaling using a validation set when training on
datasets that only feature public training and test sets (e.g. CIFARs). Some authors divide the public
training set into a smaller training set and validation set [7, [16]. Others divide the public test set in
half, use one half for validation, and report test metrics for the other half [7, 20]. The problem with
the first method is that the resulting models cannot be directly compared with all the other models
that have been trained on the full training set. The second approach provides an unbiased estimate
of metrics such as log-likelihood and Brier score but introduces more variance.

In order to reduce the variance, we perform “test-time cross-validation”: we compute metrics on
each half of the test set using temperature optimized on another half of the test set. We repeat this
procedure five times and average the resulting metrics across different splits to reduce the variance.

3 A broad comparison of ensembling techniques

In this paper, we consider the following ensembling techniques: deep ensembles [[14], snapshot
ensembles (SSE [[10])), fast geometric ensembling (FGE [6]), SWA-Gaussian (SWAG [16]), cyclical
SGLD (cSGLD [30]), variational inference [2]], dropout [26] and test-time data augmentation. These
techniques were chosen judging on predictive performance and diversity of approaches.

All these techniques can be summarized as distributions ¢, (w) over computation graphs, param-
eterized by weights w, where m stands for the name of the technique. During testing, one can
average the predictions of different models wy ~ ¢, (w) to approximate the predictive distribution

pyi | zi):
C
ﬁ(yilxi)%/p(yilmt, W) G (W Z (yi | 23, we) 3)



Method Error (top-1) NLL NLL (ts) Brier Brier (ts)

One network 24.52+0.15 0.973 +0.006 0.965 £ 0.006 0.341 +0.002 0.340 + 0.002
Augmentation (Aug.) 21.72+0.10 0.911 +0.007 0.832+0.006 0.3294+0.002 0.307 + 0.001
Deep ensembles (DE) 20.82+0.02 0.807 +0.000 0.799 £ 0.000 0.298 £ 0.000 0.295 %+ 0.000
DE + Aug 19.61 £ 0.03 0.863 £+ 0.000 0.749 + 0.001 0.315 =+ 0.000 0.281 £ 0.000

Table 1: Results on combination of deep ensembles and augmentation (50 samples each) on
ResNet50 and ImageNet dataset. Test-time data augmentation improves both accuracy and negative
log-likelihood, however it breaks a nearly perfect temperature naturally provided by deep ensem-
bles. This effect is shown by significant improvement of negative log-likelihood after temperature
scaling. Comparison of log-likelihoods without scaling the softmax temperature first may result in
incorrect ranking of ensembling methods.

3.1 Deep Ensemble Equivalent

Instead of comparing the values of different uncertainty estimation metrics directly, we ask the fol-
lowing question aiming to introduce perspective and interpretability in our method comparison: what
number of independently trained networks combined yields the same performance as an application
of a particular ensembling method?

Following insights from the previous sections, we use log-likelihood at the optimal temperature, or
the calibrated log-likelihood (CLL) as the main measure of performance of the ensemble. We define
the Deep Ensemble Equivalent (DEE) and its upper and lower bounds as follows:

DEE(l) = mink s.t. CLLRE (k) > 1, 4)

mean

DEE,pperjtower (1) = mink s.t. CLLOG, (k) F CLLOG (k) > 1, (5)

mean

where CLLPE (k) and CLLLS (k) are the mean and the standard deviation of the calibrated log-

likelihood of a deep ensemble of k networks. We compute CLLPE (k) and CLLYS (k) for natural
numbers £ = 1,...,100 and use linear interpolation to define them for real-valued k. In the fol-
lowing plots we report DEE for different number of samples from different methods, and shade the

area between the respective lower and upper bounds DEE; e and DEE,,pper-.

3.2 Experiments

We considered three popular deep architectures (VGG16 [25,29], PreResNet110 and PreResNet164
[8]) on CIFAR-10/100 datasets [13]]. We used public PyTorch [22]] implementations of ensembling
techniques that were available, and reimplemented the rest of the techniques. All the reported results
have been reproduced by us; we do not report the results published in the previous papers. Technical
details on training, hyperparameters and implementation can be found in Appendix [B] Source code
for all mentioned methods as well as scripts for training and ensembling will be available at ht tps:
//github.com/bayesgroup/pytorch—-ensembles.

As one can see on Figure[2] the methods clearly fall into three categories. SSE and cSGLD outper-
form all other techniques except deep ensembles and enjoy a near-linear scaling of DEE with the
number of samples. It means that these methods can efficiently explore different modes of the loss
landscape and do not saturate unlike other methods that are bound to a single mode. More verbose
results are presented in Figure[5]in Appendix [B]

Other more “local” methods like FGE and SWAG perform worse than SSE and cSGLD, but are still
able to obtain more diversity from the local snapshots than “single-snapshot” models like dropout,
Laplace approximation and variational inference.

3.3 Data augmentation

Interestingly, simple test-time data augmentation performs surprisingly well and outperforms
dropout, Laplace approximation and variational inference (see preliminary results in Appendix
and Figure ). It is, however, orthogonal to these techniques, and can be used to improve them. In
Table [T we show results of combination of deep ensembles and augmentation on ImageNet dataset.
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Augmentation improves accuracy of deep ensembles by a large margin, however, it breaks the nearly
optimal temperature of deep ensembles and requires temperature scaling (see Section [2.1). Other
ensemble methods from the list above are coming soon.

The performance is better than a state-of-the-art Bayesian ResNet50 on ImageNet that achieved
22.5 topl-error and 0.883 negative log-likelihood [9]. These numbers, however, are not directly
comparable due to slight variations in architectures and the absence of temperature scaling.

4 Discussion

We have explored the field of in-domain uncertainty estimation and performed a large-scale evalua-
tion of modern ensembling techniques. Our main conclusions can be summarized as follows:

e Temperature scaling is a must even for ensembles. While ensembles generally have better
calibration out-of-the-box, they are not calibrated perfectly and can benefit from the proce-
dure. Comparison of log-likelihoods of different ensembling methods without temperature
scaling can focus on calibration and might not provide a fair ranking.

e Many common metrics for measuring in-domain uncertainty are either unreliable (ECE and
analogues) or cannot be used to compare different methods (AUROC, AUPR for misclas-
sification detection; accuracy-confidence curves). In order to perform a fair comparison of
different methods, one needs to be cautious of these pitfalls.

e Many popular ensembling techniques require dozens or hundreds of samples for test-time
averaging, yet are essentially equivalent to a handful of independently trained models. The
results indicate in particular that exploration of different modes in the loss landscape is
crucial for good predictive performance. Methods that are stuck in a single mode are unable
to compete with methods that explore the loss landscape. Would more elaborate posterior
approximations shorten this gap or is there not enough diversity in a vicinity of a single
mode?

o Test-time data augmentation is a surprisingly strong baseline for in-domain uncertainty
estimation and can significantly improve other methods without increasing training time or
model size.

A large number of unreliable metrics inhibits fair comparison of different methods. We urge the
community to take time and aim for more reliable benchmarks in the numerous setups of uncertainty
estimation.
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A Accuracy/LL plots with and without temperature scaling
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Figure 3: The average log-likelihood and accuracy on a test dataset for different trained networks
of CIFAR-10 dataset [13] before (a) and after (b) temperature scaling. p denotes the correlation

between the accuracy and log-likelihood.
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Figure 4: The average log-likelihood and accuracy on a test dataset for different trained networks
of CIFAR-100 dataset [13] before (a) and after (b) temperature scaling. p denotes the correlation

between the accuracy and log-likelihood.

B Experimental details

Our implementations of deep ensembles, SWAG, FGE and KFAC-Laplace is heavily based on
the original SWA / SWAG repositories https://github.com/timgaripov/swa and https://
github.com/wjmaddox/swa_gaussian. We reuse original hyperparameters for CIFAR-10 and
CIFAR-100. We trained members of deep ensembles and other methods using the hyperparameters
listed in Table[2]on CIFAR datasest. We trained ResNet50 on ImageNet for 130 epochs with standard
hyperparameters (https://github.com/pytorch/examples/tree/master/imagenet).

Model Data optimizer init_Ir total_epochs wd Pretraining
VGG CIFAR-10/100 SGD 0.05 400 Se-4 no
PreResNet110  CIFAR-10/100 SGD 0.1 300 3e-4 no
PreResNet164 CIFAR-10/100 SGD 0.1 300 3e-4 no
VI-* CIFAR-10/100  weights: SGD (Ir=1e-4), log_vars: Adam (Ir=0.1) - 100 * yes

Table 2: Hyperparameters of various models trained on CIFARs
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For KFAC-Laplace, we use the whole dataset to construct an approximation to the empirical Fisher
Information Matrix, and use the 7 correction to reduce the bias [24]. Following the original paper
[24], we find the optimal noise scale for KFAC-Laplace on a hold-out validation set by averaging
across five random initializations. We then reuse this scale for networks trained without a hold-out
validation set. We report the optimal values of scales in Table [3] Note that the resulting optimum
is different whether we use test-time data augmentation or not. Since the data augmentation also
introduces some amount of additional noise, the optimal noise scale for KFAC-Laplace with data
augmentation is lower.

Learning rate for base models is scheduled as follows:

init_Ir, epoch < 0.5 - total_epochs
1r(epoch; init_Ir, total_epochs) = { 1.0 — 0.99 = (% —0.5)/0.4, 0.5 - total_epochs < epoch < 0.9 - total_epochs  (6)
0.01, otherwise

All hyperparameters from original papers on SSE and cSGLD are reused except for the number of
noise epochs per cycle of learning rate for cyclical SGLD. It was set to the empirically optimal choice
of 3 noise epochs per cycle consistently across all datasets. Cyclical SGHMC which reportedly has
marginally better performance compared with cyclical SGLD could not be reproduced using any
value of momentum term. Because of this, we only include cyclical SGLD in our work.
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Figure 5: Solid lines: mean DEE for different methods, architectures and datasets. Area between
DEEjower and DEE,,;pe, is shaded.
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Figure 6: Solid lines: DEE for different mod-
els, averaged across different datasets and archi-
tectures. Area between average DEE;,,., and
DEEypper is shaded. Test-time data augmen-
tation alone outperforms methods line KFAC-
Laplace and variational inference, and improves
the performance of KFAC-Laplace.

Optimal noise scale
Architecture | CIFAR10 CIFAR10-aug CIFAR100 CIFAR100-aug
VGG16BN 0.042 0.042 0.100 0.100
PreResNet110 0.213 0.141 0.478 0.401
PreResNet164 0.120 0.105 0.285 0.225
Table 3: Optimal noise scale for KFAC-Laplace for different datasets and architectures.
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Figure 7: Top: KFAC-Laplace models on CIFAR10. Bottom: KFAC-Laplace models on CIFAR100.
By choosing different number of bins and different thresholds, one can obtain substantially different
rankings across the models.
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