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1 Introduction
The advent of modern data era has given rise to voluminous, high-dimensional datasets in which the
outcome has complex, nonlinear dependency on the input features. In this nonlinear, high-dimensional
regime, a fundamental task behind many knowledge discovery endeavors is variable selection, i.e., to
identify a small subset of features that is the most relevant in explaining the outcome. However, The
high-dimension regime brings two challenges: the first challenge is the curse of dimensionality, i.e.
the exponentially increasing difficulty in estimating the variable importance parameters as the data
dimension increases. The second challenge is multiple comparison, i.e., the difficulty in constructing
a high dimensional decision rule that maintains the correct level of precision (e.g., 1 - false discovery
rate). The multiple comparison problem often arise when a multivariate variable-selection decision
is made based purely on individual decision rule, ignoring the dependency structure among the
decisions across variables [7].

To this end, the main interest of this work is to establish Bayesian Deep Neural Network as an
effective tool for tackling both of these challenges. Deep neural network is known to be an effective
model for high-dimensional learning problems, illustrating empirical success in image classification
and speech recognition applications. Bayesian inference in neural networks, on the other hand,
provides a principled framework for uncertainty quantification that naturally handles the multiple
comparison problem [14]. By sampling from the joint posterior distribution of variable importance
parameters, Bayesian inference provides easy access to not only the model uncertainty about the
individual variables, but importantly, a complete picture of the dependency structure among all
the input covariates. This information has allowed the variable selection procedures to tailor their
decision rule with respect to the correlation structure of the problem, leading to a more precise and
informative precision-recall trade-off in high dimension.

Specifically, we propose a simple variable selection method for high-dimensional regression based
on credible intervals of a deep Bayesian Rectified Linear Unit (ReLU) network. Consistent with the
existing nonlinear variable selection approaches, we measure the importance of an input variable xp

using the empirical norm of its gradient function ψp( f ) = || ∂

∂xp
f ||2n = 1

n ∑
n
i=1 | ∂

∂xp
f (xi)|2 [40, 30, 42,

19]. We perform variable selection by first computing the (1−α)-level simutaneous credible intervals
for the joint posterior distribution ψ( f ) = {ψp( f )}d

p=1, and then make variable-selection decision by
inspecting whether the credible intervals includes 0. It is simple to implement, agnostic to model
architecture and is shown to be more effective than a range of existing classic or neural-network-based
methods especially in high dimension (see simulation experiment in Section C).

Clearly, the effectiveness of this approach hinges on ReLU networks’ ability in learning and quanti-
fying uncertainty about variable importance ψp( f ) in high dimension. Specifically, two important
questions must be answered: (1) learning accuracy. i.e., does a ReLU networks’ good performance
in prediction (i.e. in learning f0) translates to that in learning the variable importance? (2) uncertainty
quantification. i.e., does ReLU network properly quantifies its uncertainty about variable importance,
such that its 95% credible interval for ψp( f ) indeed covers the “true" variable importance ψp( f0)
for 95% of the time? To this end, we develop a complete set of Bayesian nonparametric theorems
results for the deep ReLU network to answer both questions in the affirmative. For learning accuracy,
we show that a ReLU network learns the variable importance Ψp( f0) in a rate that is at least as fast
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as its rate in learning f0 (Theorem 1). For uncertainty quantification, we establish a Bernstein-von
Mises (BvM) theorem to show that the posterior distribution of ψ( f ) converge quickly (i.e. in the
parametric rate) toward a Gaussian distribution, and the (1−α)-level credible interval of the posterior
distribution covers the truth (1−α)% of the time (Theorem 2 and 3). The Bernstein-von Mises (BvM)
theorems establish a rigorous frequentist interpretation for a Bayesian ReLU network’s credible
intervals, and are essential in ensuring the validity of the credible-interval-based variable selection
methods in controlling its operating characteristics such as the false discovery rate (FDR). To the
authors’ knowledge, this is the first semi-parametric BvM result for deep neural network models,
and therefore the first Bayesian non-parametric study on the ability of Bayesian neural networks in
achieving rigorous uncertainty quantification.

2 Problem Setup

Data For data {yi,xi}n
i=1 where y ∈ R and x ∈X = (0,1)d a d×1 vector of covariates, we consider

the nonparametric regression setting where yi = f ∗(xi)+εi for εi ∼N(0,σ2). The data dimension d is
allowed to be large but assumed to be o(1), i.e. does not increase with the sample size n. Here f ∗ is an
unknown continuous function belonging to certain function class F ∗. Recent theoretical development
suggests that the model space of a (properly configured) deep ReLU network F (L,W,S,B) (defined
below) achieves excellent approximation performance for a wide class of f ∗ ∈F ∗ [43, 33, 24, 35, 17].
Therefore in this work, we focus our analysis on the Bayesian ReLU networks’ behavior in learning
the optimal f0 ∈F (L,W,S,B), making an assumption throughout that the ReLU model is properly
configured such that f0 ∈F is either identical to f ∗ or is sufficiently close to f ∗ for practical purposes.

Model Denote σ the ReLU activation function. The class of deep ReLU neural networks with
depth L and width K can be written as f (x) = b0+β>

[
σWL

(
σWL−1 . . .

(
σW2(σW1x)

))]
. Following

existing approaches in deep learning theory [33, 35], we assume the hidden weights W satisfy
the sparsity constraint C S

0 and norm constraint C B
∞ in the sense that: C S

0 =
{
W
∣∣∑L

l=1 ||Wl ||0 ≤ S
}

,
C B

∞ =
{
W
∣∣maxl ||Wl ||∞ ≤ B, B≤ 1

}
. As a result, we denote the class of ReLU neural networks with

depth L, width K, sparsity constraint S and norm constraint B as F (L,K,S,B):

F (L,K,S,B) =
{

f (x) = b0 +β
>[◦L

l=1 (σWl)◦ x
]∣∣∣W ∈ C S

0 ,W ∈ C B
∞

}
, (1)

and write F = F (L,K,S,B) when it is clear from the context. The Bayesian approach to neural
network learning specifies a prior distribution Π( f ) that assigns probability to every candidate
f ∈F (L,K,S,B) in the model space. The prior distribution Π( f ) is commonly specified through
its model weights W such that the posterior distribution is Π( f ,W |{y,x}n

i=1) ∝ Π(y|x, f ,W )Π(W ).
Common choices for Π(W ) include Gaussian [26], Spike and Slab [29], and Horseshoe [16, 23].

3 Learning Variable Importance with Theoretical Guarantee

Throughout the theoretical analysis, we assume for yi = f0(xi)+ εi, the true function f0 has bounded
norm || f0||∞ ≤C f so the risk minimization problem is well-defined. We also put a weak requirement
on the neural network’s effective capacity so the total stochasticity in the neural network prior is
manageable:

Assumption 1 (Model Size). The width of the ReLU network model F (L,K,S,B) does not grow
faster than O(

√
n), i.e. K = op(

√
n)

This assumption ensures that the posterior estimate for ψp( f ) is stable in finite sample and converges
quickly toward the truth, which is a essential condition for the BvM theorem to hold. Assumption 1
is satisfied by most of the popular architectures in practice [32, 20, 34, 36, 18].

Posterior Consistency and Learning Rates We first investigate a Bayesian ReLU network’s ability
in accurately learning the variable importance Ψ( f0) = || ∂

∂xp
( f0)||22 in finite sample. It states that, for

a ReLU network that learns the true function f0 in a rate εn (in the sense of Definition 1), its posterior
distribution for variable importance ψp( f ) converge consistently to a point mass on the truth Ψ( f0),
and in a speed that is not slower than εn.

Theorem 1 (Rate of Posterior Concentration for ψp). For f ∈F (L,K,S,B), assuming the posterior
distribution Πn( f ) contracts around f0 with rate εn, then the posterior distribution for ψp( f ) =
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|| ∂

∂xp
f ||2n contracts toward Ψp( f0) = || ∂

∂xp
f ||22 at a rate not slower than εn, i.e., for any Mn→ ∞

E0Π

(
sup

p∈{1,...,P}
|ψp( f )−Ψp( f0)|> Mnεn

∣∣{yi,xi}n
i=1

)
→ 0. (2)

Proof is in Section D. Theorem 1 confirms two important facts. First, despite the non-identifiablity
of the network weights W , a ReLU network can reliably recover the variable importance of the
true function Ψ( f0). Second, a ReLU network learns the variable importance in a speed that is no
slower than learning the prediction function f0, i.e. good performance in prediction translates to good
performance in learning variable importance. We validate this conclusion in the experiment (Section
4), and show that the learning speed for ψp( f ) is in fact much faster than learning f0. Given the
empirical success of deep ReLU networks in high-dimensional prediction, Theorem 1 suggests that
ReLU network is an effective tool for learning variable importance in high dimension.

Uncertainty Quantification We first establish a univariate semi-parametric BvM theorem for ψp( f )
under the deep ReLU network’s posterior (Theorem 2), and then extend it to the the multivariate case
for ψ( f ) = {ψp( f )}P

p=1 to handle the issue of multiple comparison (Theorem 3). Both theorems
show that, after proper re-centering, the posterior distributions of the variable importance parameters
converge in O(1/

√
n) rate to a (multivariate) Gaussian distribution. More importantly, the credible

intervals of this Gaussian distribution achieve the correct frequentist coverage for the true parameter.
Theorem 2 (Bernstein-von Mises (BvM) for ψc

p). For f ∈F (L,W,S,B), assuming the posterior
distribution Πn( f ) contracts around f0 at rate εn. Denote Dp : f → ∂

∂xp
f the differentiation operator,

and Hp = D>p Dp the corresponding inner product. For ε the "true" noise such that y = f0 +ε , define:

ψ̂p = ||Dp( f0 + ε)||2n = ψp( f0)+2〈Hp f0,ε〉n + 〈Hpε,ε〉n, (3)

and its centered version as ψ̂c
p = ψ̂p− η̂n where η̂n = trace(Hp)/n. Then ψ̂c

p is an unbiased estimator
of ψp( f0), and the posterior distribution for ψc

p( f ) is asymptotically normal surrounding ψ̂c
p, i.e.,

Π

(√
n(ψc

p( f )− ψ̂
c
p)
∣∣∣{xi,yi}n

i=1

)
 N(0,4||Hp f0||2n). (4)

The proof is in Section E.4. Theorem 2 establishes a rigorous theoretical basis for using the ReLU
network posterior Πn to quantify model uncertainty about variable importance. It states that the
credible intervals from posterior distribution Πn

(
ψc

p( f )
)

achieves correct frequentist coverage (i.e. a
95% credible interval covers the truth 95% of the time). To see why this is the case, notice (4) implies
that any (1−α)-level credible set B̂n such that Πn

(
ψc

p( f ) ∈ B̂n
)
= 1−α will satisfy

ΠN(0,1)
(
(B̂n− ψ̂

c
p)/σψ

)
→ 1−α

in probability for σ2
ψ = 4||Hp f0||2n/n, where we have denoted ΠN(0,1) as the standard Gaussian

measure. In other words, the set B̂n can be written in the form of B̂n =
[
ψ̂c

p−ρα ∗σψ , ψ̂
c
p +ρα ∗σψ

]
,

which coincides with the (1−α)-level confidence intervals of an unbiased and efficient frequentist
estimator of ψp( f0), which are known to achieve correct coverage for true parameters [38]. As a
result, similar to an efficient frequentist confidence interval, the neural network credible interval (??)
achieves correct coverage for true parameter ψc

p( f ) in sufficiently large sample, justifying its ability
in achieving rigorous uncertainty quantification.

Notice that Theorem 2 is an univariate result and provides justification only for the univariate
confidence intervals. To handle the issue of multiple comparison in high dimension, we need to take
the statistical dependencies between ψc

p( f )’s into account. In the Appendix Section B, we extend
Theorem 2 to the multivariate case to also ensure the validity of the simutaneous covarage of the
ReLU network’s credible intervals.

4 Experiment Analysis
We first empirically validate the two core theoretic results of this paper (posterior convergence
and Bernstein-von Mises theorem), and then present a comprehensive simulation study to compare
the variable-selection effectiveness of the proposed approach against existing classic or neural-
network based approaches in Appendix (Section C). To ensure the effectiveness in variable-selection
coming strictly from the neural network’s ability in uncertainty quantification, we use the standard
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independent and identically distributed (i.i.d.) Gaussian priors for model weights, so the model does
not have additional sparse-inducing mechanism beyond ReLU. We perform posterior inference using
Hamiltonian Monte Carlo (HMC) with an adaptive step size scheme [2].

Learning Accuracy and Convergence Rate We generate data under the Gaussian noise model
y∼N( f ∗,σ2 = 1) for data-generation function f ∗ : [0,1]d

∗→R with true dimension d∗ = 5. We vary
sample sizes n∈ (100,2000), and vary data dimension between d ∈ (25,200). For the neural network
model, we consider a 2-layer, 50-hidden-unit feedforward architecture (i.e., L = 2 and K = 50). We
consider three types of data-generating f ∗: (1) linear, a simple linear model f ∗(x) = x>β ; (2) neural,
a function f ∗ ∈F (L,W,S,B), and (3) complex, a complex, non-smooth multivariate function that is
outside the neural network model’s approximation space F (L,W,S,B)2. For each setting of (n,d, f ∗),
we repeat the simulation 20 times and evaluate the neural network’s performance in learning f and
ψp( f ) using out-of-sample standardized mean squared error (MSE) against f ∗ and ψ( f ∗):

std_MSE( f , f ∗) =
[1

n

n

∑
i=1

[ f (xi)− f ∗(xi)]
2
]/[1

n

n

∑
i=1

[ f ∗(xi)−E( f ∗(xi))]
2
]
.

This is essentially the 1−R2 statistic in regression modeling whose value lies within (0,1), allowing
us to directly compare model performance across different data settings. The std_MSE for ψ( f ) is
computed similarly by averaging over all p ∈ {1, . . . ,d}.
Figure 1 summarizes the standardized MSEs for learning f ∗ and ψ( f ∗). The first and the second
row correspond to std_MSE’s for f ∗ and ψ( f ∗), and each column corresponds to a data-generation
machanism (linear, neural and complex). We see that the model performance in prediction (i.e.,
in learning f ∗, first row) deteriorates quickly as d increase, showing strong pattern of the curse of
dimensionality. Comparatively, the model’s learning speed for variable importance ψc( f ∗) (second
row) are much faster and less susceptible to the curse of dimensionality. This verifies our conclusion
in Theorem 1 that a model’s good behavior in prediction translates to good performance in learning
variable importance. We also observe that when the theorem assumption f ∗ ∈F is violated (e.g. for
complex f ∗ on Column 3), the posterior convergence still occur albeit at a slower rate.

Bernstein-von Mises Phenonmenon. We evaluate the model’s convergence behavior toward
the asymptotic posterior N(0,σ2

BvM = 4||Hp f0||2n) using two metrics: (1) the standardized MSE
for learning the standard deviation σBvM , which assesses whether the spread of the posterior
distribution is correct. (2) The Cramér von Mises (CvM) statistic (i.e. the empirical L2 dis-
tance) between the standardized posterior sample {ψc

std,m}M
m=1 and a Gaussian distribution Φ:

CvM(ψc
std) =

1
M ∑

M
m=1

[
F(ψc

std,m)−Φ(ψc
std ,m)

]2, which assesses whether the shape of the poste-
rior distribution is sufficiently symmetric and has a Gaussian tail. Notice that since the CvM is a
quadratic statistic that can never be zero, we compare it against a null distribution of CvM(ψc

std) for
which ψc

std,m is sampled from a Gaussian distribution.

Figure 2 summarizes the model’s convergence behavior in standard deviation (measured by std_MSE,
left) and in normality (measured by CvM, right). The shaded region in the right figure corresponds to
the quantiles of a null CvM distribution. As shown, as the sample size increases, the standardized
MSE for sd(ψc) converges toward 0, and the CvM statistics enters into the range of the null
distribution. The speed of convergence deteriorates as the data dimension increases, although not very
dramatically. Above observations indicates that the credible intervals from the variable importance
posterior Πn(ψ

c( f )) indeed achieve the correct spread and shape in reasonably large sample, i.e.
the Bernstein-von Mises phenomenon holds under the neural network model (Theorems 2 - 3).
Consequently, the (1− q)-level credible intervals from Πn

(
ψc( f )

)
are valid tools for rigorous

uncertainty quantification, i.e. they indeed cover the true parameter ψ( f ∗) for (1−q)% of the time.

Effectiveness in High-dimensional Variable Selection. In Appendix C, we present a comprehen-
sive simulation study to compare the proposed approach (neural variable selection using credible
intervals) against nine existing methods based on various models (linear-LASSO, random forest,
neural network) and decision rules (LASSO/Spike-and-Slab thresholding, hypothesis testing, Knock-
off). We consider both low- and high-dimension situations (d ∈ {25,75,200}) and observe how the
performance of each variable selection method changes as the sample size grow (n ∈ (250,500)).

2 f ∗(x) = sin(max(x1,x2))+arctan(x2)
1+x1+x5

+ sin(0.5x3)
(
1 + exp(x4 − 0.5x3)

)
+ x2

3 + 2sin(x4) + 4x5. It is non-
continuous in terms of x1,x2, but is infinitely differentiable in terms of x3,x4,x5
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We observe that the proposed method, although simple, over-performs other specially-designed
neural-network approaches by a significant margin (Table C). Comparing with other state-of-the-art
approaches (e.g. LASSO-Knockoff and random-forest permutation tests), our method remains com-
petitive in low-to-moderate dimension, and out-performs in high dimension due to the Bayesian ReLU
network’s effectiveness in learning / quantifying uncertainty in variable importance in high-dimension
as shown by Theorem 1-3.

Figure 1: BNN’s convergence behavior for learning prediction f ∗ (first row) and variable impor-
tance ψ( f ∗) (second row) under sample sizes n ∈ (100,2000) for d ∈ (50,200), measured by the
standardized MSE (i.e. 1−R2). Column 1-3 corresponds to linear, neural, and complex.

Figure 2: The variable importance posterior’s convergence behavior toward the asymptotic standard
deviation (left, measured by standardized MSE) and toward normality (right, measured by the CvM
distance from a Gaussian distribution) under sample size n ∈ (100,10000) and d ∈ (25,100). Shaded
region in the right figure indicates the {5%,10%,25%,75%,90%,95%} quantiles of the null CvM
distribution.
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A Theoretical Aspect of Bayesian Learning of Neural Networks

The Bayesian approach to neural network learning specifies a prior distribution Π( f ) that assigns
probability to every candidate f ∈F (L,K,S,B) in the model space. For a neural network model
f (.) = β>φW (.), the prior distribution Π( f ) is commonly specified through its model weights
{β ,W }, i.e., by specifying a hierarchically distribution Π( f ,β ,W ):

Π( f ,β ,W ) = Π( f |β ,W )Π(β )Π(W ), (5)

where Π( f |β ,W ) is the Dirac measure I( f = βφW ). Π(β ), Π(W ) are the prior distributions for the
output and hidden weights of the neural network model.

It is well-known that for some common choices of Π(β ), Π( f ) corresponds to a (conditional)
Gaussian process (GP) [26]. Specifically, by placing i.i.d. Gaussian prior N(0, 1

K ) on β and N(0,σ2
b0
)

on b0, the neural network model f (.) = φW (.)>β is equal in distribution to Gaussian process with
kernel function kW (x,x′) = 1

K φW (x)>φW (x′)+σ2
b0

, i.e., Π( f |W ) = GP( f |0,kW ).

As a result, under the conditional Gaussian process (GP) representation, the prior distribution for f
can be written as:

Π( f ,W ) = Π( f |W )Π(W ) = GP( f |0,kW )Π(W ), (6)

where the common choices for Π(W ) include Gaussian [26], Laplace [41], Spike and Slab [29], and
Horseshoe [16, 23].

The conditional GP representation in (6) is important for analyzing the asymptotic behavior of the
Bayesian neural network. It suggests that, if the behavior of the conditional posterior Πn( f |W ) does
not change drastically under Πn(W ), then the asymptotic behavior of Πn( f ,W ) is analogous to that
of a Gaussian process, whose theoretical properties are well-understood in the literature [39, 10]. In
Section ??, we take advantage of this representation to show an BvM phenomenon (i.e. asymptotic
normality) for the posterior distribution of variable importance for a wide range of choices for Π(W ).

Posterior Consistency and Concentration Rates

The quality of a Bayesian learning procedure is commonly measured by the learning rate of its
posterior distribution, i.e., the speed at which the posterior distribution Πn shrinks around the truth
as n→ ∞. Such speed is usually assessed by the radius of a small ball surrounding f0 that contains
the majority of the posterior probability mass, i.e., a set An = { f ||| f − f0||n ≤ Mεn} such that
Πn(An)→ 1. Here, the concenration rate εn describes how fast this small ball concentrates toward
f0 as the sample size increases. Clearly, an efficient Bayesian learning procedure that has good
finite-sample performance is expected to have an εn that converges quickly to zero.

We state the notion of posterior concentration formally as below [15]:
Definition 1 (Posterior Concentration). For f ∗ ∈F ∗ where d = o(1), let F (L,K,S,B) denote a
class of ReLU network with depth L, width W, sparsity bound S and norm bound B. Also denote f0
the Kullback-Leibler (KL)-projection of f ∗ to F (L,K,S,B), and E0 the expectation with respect to
P0. Then we say the posterior distribution f concentrates around f0 at the rate εn in Pn

0 probability if,
for any Mn→ ∞, there exists an εn→ 0 such that nε2

n → ∞ and:

E0Π( f : || f − f0||2n > Mnεn|{yi,xi}n
i=1)→ 0 (7)

To ensure the full generality of our theoretical results, in this work we do not assume an specific
expression for εn (except that it is upper bounded by the optimal parametric rate O(n−1/2)), requiring
only that such rate εn→ 0 exists and is attained by the ReLU network configured by the user. In
practice, the exact value of the concenration rate εn depends on the property of the learning problem.
Specifically, εn depends on the dimension of the input feature P, and the geometry of the “true"
function space f ∗ ∈F ∗. For example, under the typical nonparametric assumption that F ∗ = H β

is the space of β -Hölder smooth (i.e. β -times differentiable) functions, the concentration rate εn is
found to be close to minimax optimal up to a logarithm factor, i.e., εn = O

(
n−2β/(2β+P) ∗ (logn)γ

)
for some γ > 1 [29]. However, recent advances in frequentist learning theory shows that a deep
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ReLU network model can surpass the optimal nonparametric rate by adapting to the structure of f ∗
[3, 35] and to the intrinsic dimension of the input feature space [25], suggesting that the Bayesian
concetration rate εn can achieve similar adaptivity as well. In particular, if F ∗ = F (L,K,S,B) (i.e.
the target function lies in the approximation space of the neural networks), it can be shown that even
under the standard i.i.d. Gaussian prior, εn can achieve a fast polynomial rate of O(n−

1
2 ) (up to a

logarithm factor).

B Multivariate Bernstein-von Mises (BvM) Theorem for ψc

Theorem 3 (Multivariate Bernstein-von Mises (BvM) for ψc). For f ∈F (L,W,S,B), assuming
the posterior distribution Πn( f ) contracts around f0 at rate εn. For ε = Pro jF (ε), denote ψ̂c =
[ψ̂c

1 , . . . , ψ̂
c
P] for ψ̂c

p as defined in Theorem 2. Also recall that P = O(1), i.e. the data dimension does
not grow with sample size.

Then ψ̂c is an unbiased and efficient estimator of ψ( f0) = [ψ1( f0), . . . ,ψP( f0)], and the posterior
distribution for ψc( f ) asymptotically converge toward a multivariate normal distribution surrounding
ψ̂c, i.e.

Π

(√
n(ψc( f )− ψ̂

c)
∣∣∣{xi,yi}n

i=1

)
 MV N(0,V0), (8)

where V0 is a P×P matrix such that (V0)p1,p2 = 4〈Hp1 f0,Hp2 f0〉n.

C Simulation Study for Variable Selection with Bayesian Neural Networks

In this section we empirically study the effectiveness of variable selection using the BNN’s posterior
credible intervals for variable importance, and compare the performance against other classic or
machine-learning-based approaches that are popular in practice. As in Section C, we use i.i.d.
Gaussian prior for model weights without any sparse-inducing penalty, so the method’s effectiveness
in variable selection relies only on the validity of the credible interval in uncertainty quantification.

Model / Metric Decision Rule
Thresholding Hypothesis Test Knockoff

Linear Model - LASSO [37] [4] [22]
Random Forrest - Impurity [6] [8] [1]

Group L1 Thresholding Spike-and-Slab Probability Credible Interval
Neural Network - W1 [12] [21]

Neural Network - ψc( f ) (this work)
Table 1: Summary of variable selection methods included in the empirical study.

For the candidate variable selection methods, we notice that a variable selection method is usually
consisted of three components: model, measure of variable importance, and the variable-selection
decision rule. To this end, we consider nine methods that spans three types of models and three
types of decision rule for each model (See Table 1 for a summary). The models we consider are
(1) LASSO, the classic linear model y = ∑

P
p=1 xpβp with LASSO penalty on regression coefficients

β , whose variable importance is measured by the magnitude of βp. (2) RF, the random forest
model that measures variable importance using impurity, i.e., the decrease in regression error due to
inclusion of a variable xp [6]. (3) NNet, the (deep) neural networks that commonly measure feature
importance using the magnitude of the input weights W1 or the gradient-norm variable importance
ψc( f ). For LASSO and RF, we consider three types of decision rule: (1) Heuristic Thresholding,
which selects variable by inspecting if β̂p estimate is 0 or if impurity is greater than 1% of the total
impurity summed over all variables; (2) Knockoff [8], a nonparametric inference procedure that
constructs data-adaptive threshold for variable importance to control for false discovery rate (FDR),
and (3) Hypothesis Test, which conducts either an asymptotic test on LASSO-regularized |βp| [22] or
permutation-based test on impurity [1]. We select the LASSO hyper-parameters λ based on 10-fold
cross validation, and use 500 regressions trees for RF. For NNet we also consider three decision
rule: the frequentist approach with group-L1 regularization on input weights W1 [12], the Bayesian
approach with spike-and-slab prior on W1 [21], and our approach that is based on posterior credible
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intervals of ψc
p( f ). Regarding the NNet architecture, we use L = 1,W = 5 for the LASSO- and

Spike-and-slab-regularized networks as suggested by the original authors, and we use L = 1,W = 50
for our credible-interval-based approach since it is an architecture that is more common in practice.

We generate data by sampling the true function from the neural network model f ∗ ∈F (L∗ = 1,W ∗ =
5) so the data closely matches the architecture of the regularized NNets. Notice this choice puts
our method at a slight disadvantage since our network width W = 50 >W∗. We fix the number of
data-generating covariates to be d∗ = 5, and perform variable selection on input feature Xn×p with
dimension d ∈ {25,75,200} which corresponds to low-, moderate, and high-dimensional situtation,
and we vary sample size n ∈ (250,500). For each simulation setting (n,d), we repeat the experiment
20 times, and summarize each method’s variable selection performance using the F1 score (i.e., the
geometric mean of variable selection precision prec = |Ŝ∩S|/|Ŝ| and recall recl = |Ŝ∩S|/|S| for S
the set of data-generating variables and Ŝ the set of model-selected variables).

Model Rule n=250 n=300 n=350 n=400 n=450 n=500

d=25

LASSO
thres 0.65±0.11 0.64±0.06 0.63±0.08 0.76±0.11 0.72±0.09 0.73±0.06

knockoff 0.99±0.02 0.99±0.04 0.94±0.09 0.98±0.04 0.99±0.03 0.99±0.04
test 1.00±0.00 1.00±0.00 1.00±0.00 0.89±0.00 1.00±0.00 1.00±0.00

RF
thres 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

knockoff 0.62±0.48 1.00±0.02 0.96±0.16 0.90±0.30 0.94±0.19 0.99±0.03
test 0.91±0.05 0.98±0.05 1.00±0.00 0.98±0.05 0.98±0.05 0.98±0.05

NNet
Group L1 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
SpikeSlab 0.68±0.05 0.68±0.05 0.70±0.06 0.69±0.07 0.71±0.08 0.72±0.13
CI (ours) 0.90±0.04 0.97±0.05 0.98±0.04 0.97±0.05 0.93±0.06 1.00±0.00

n=250 n=300 n=350 n=400 n=450 n=500

d=75

LASSO
thres 0.32±0.04 0.31±0.03 0.31±0.06 0.46±0.11 0.56±0.00 0.53±0.11

knockoff 0.93±0.14 0.90±0.14 0.89±0.15 0.94±0.08 0.94±0.11 0.98±0.04
test 0.75±0.03 0.83±0.07 0.91±0.00 0.66±0.33 0.71±0.00 0.89±0.00

RF
thres 0.66±0.10 0.67±0.06 0.72±0.10 0.68±0.06 0.80±0.04 0.86±0.04

knockoff 0.79±0.37 0.93±0.14 0.93±0.17 0.92±0.18 0.95±0.09 0.98±0.05
test 0.89±0.12 0.93±0.07 0.86±0.04 0.88±0.07 0.90±0.09 0.95±0.05

NNet
Group L1 0.77±0.00 0.67±0.27 0.68±0.23 0.77±0.00 0.77±0.00 0.77±0.00
SpikeSlab 0.63±0.09 0.66±0.06 0.65±0.08 0.65±0.06 0.67±0.07 0.68±0.10
CI (ours) 0.98±0.04 0.97±0.04 0.91±0.07 0.97±0.04 0.98±0.05 1.00±0.00

n=250 n=300 n=350 n=400 n=450 n=500

d=200

LASSO
thres 0.29±0.05 0.32±0.01 0.28±0.05 0.38±0.10 0.42±0.08 0.35±0.06

knockoff 0.31±0.42 0.68±0.38 0.88±0.21 0.89±0.11 0.90±0.09 0.87±0.18
test 0.21±0.04 0.25±0.03 0.04±0.00 0.49±0.02 0.27±0.13 0.61±0.04

RF
thres 0.37±0.02 0.42±0.01 0.43±0.06 0.52±0.02 0.54±0.05 0.59±0.05

knockoff 0.12±0.25 0.29±0.39 0.38±0.42 0.70±0.42 0.80±0.39 0.44±0.49
test 0.79±0.10 0.81±0.13 0.79±0.07 0.87±0.11 0.83±0.09 0.70±0.08

NNet
Group L1 0.67±0.00 0.67±0.00 0.67±0.00 0.67±0.00 0.67±0.00 0.67±0.00
SpikeSlab 0.45±0.26 0.53±0.17 0.57±0.14 0.60±0.14 0.57±0.12 0.57±0.11
CI (ours) 0.84±0.10 0.76±0.08 0.84±0.08 0.93±0.07 0.98±0.04 0.92±0.08

Table 2: F1 score for classic and machine-learning based variable selection methods (summarized in
Table 1) under low-dimension (d=25), moderate-dimension (d=75) and high-dimension data (d=200).
Boldface indicates the best-performing decision rules in each dimension-model combination.

Table C summarizes the performance (F1 score) of the variable-selection methods in low-, medium-
and high-dimension situations. In general, we observe that across all model-rule combinations,
LASSO-knockoff, RF-test and NNet-CI (ours) tend to have good performance, with NNet-CI
being more effective in higher dimensions (d=200).

Our central conclusion is that a powerful model along is not sufficient in guaranteeing effective
variable selection. (Recall that a variable-selection method is a combination of model, measure and
decision rule). It is important that the variable selection decision is also based on a proper measure of
variable importance (e.g., an unbiased and low-variance estimator of the true variable importance), and
ideally with a rigorous decision rule that has statistical guarantee in variable selection (e.g., control
over FDR or Type-I error). For example, while NNet-Group L1 and NNet-SpikeSlab are based on a
neural network architecture that closely matches the truth, their measure of variable importance is
based on the input weight estimate Ŵ1, which is over-parametrized and / or non-identifiable, and has
high estimation variance which leads to unstable estimate of variable importance. As a result, the
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performance of these two neural-network based methods are worse than LASSO-knockoff which
is based on a linear model. Comparing between the decision rules, the thresholding-based decision
rules (LASSO-thres and RF-thres) are mostly heuristic and are not optimized for variable selection
performance. As a result, they are observed to have worse performance that are the most susceptible
to the curse of dimensionality when compared to other methods based on the same model. The
Knockoff-based methods (LASSO-knockoff and RF-knockoff) are nonparametric procedures that
are robust to model misspecification but tend to have weak power when the model variance is high.
As a result it produced good results for the low-variance linear model, but comparatively result for
the more flexible but high-variance random forest. Finally, the hypothesis tests / credible intervals
are model-based procedures whose performance depends on the quality of the model estimate. They
are expected to be more powerful when the model is an unbiased and low-variance estimate of
f ∗ (i.e. RF-test and NNet-CI), but has no performance guarantee when the model is misspecified
(i.e. LASSO). In summary, we find that the NNet-CI method combines a powerful model that is
effective in high dimension with a variable-importance measure that has fast rate of convergence,
and make its variable selection decision based on a credible-based selection rule that has rigorous
statistical guarantee. As a result, even without any sparse-inducing model regularization, NNet-
CI over-performed its NNet-based peers, and is more powerful than other LASSO or RF based
approaches in high dimension.

D Proof for Theorem 1

Proof. Denote An = { f : || f − f0||2n >Mnεn} and Bn = { f : |ψp( f )−Ψp( f0)|>Mnεn}, then showing
the statement in (2) is equivalent to showing Πn(Bn)→ 0.

Specifically, we assume below three facts hold:

Fact 1 |ψp( f )−ψp( f0)| ≤ || ∂

∂xp
f − ∂

∂xp
f0||2n

Fact 2 supp∈{1,...,P} || ∂

∂xp
f − ∂

∂xp
f0||2n ≤C ∗ || f − f0||2n for some constant C.

Fact 3 supp∈{1,...,P} |ψp( f0)−Ψp( f0)|. || f − f0||2n.

Because if above facts hold, we then have

sup
p∈{1,...,P}

|ψp( f )−Ψp( f0)| ≤ sup
p∈{1,...,P}

|ψp( f )−ψp( f0)|+ sup
p∈{1,...,P}

|ψp( f0)−Ψp( f0)|

≤ sup
p∈{1,...,P}

|| ∂

∂xp
f − ∂

∂xp
f0||2n + sup

p∈{1,...,P}
|ψp( f0)−Ψp( f0)|

≤C ∗ || f − f0||2n + sup
p∈{1,...,P}

|ψp( f0)−Ψp( f0)|

. || f − f0||2n,
it then follows that:

E0Πn

(
sup

p∈{1,...,P}
|ψp( f )−Ψp( f0)| ≥Mnεn

)
. E0Πn

(
|| f − f0||2n ≥M′nεn

)
→ 0.

We now show Facts 1-3 are true:

• Fact 1 follows simply from the triangular inequality:

|ψp( f )−ψp( f0)|=
∣∣∣|| ∂

∂xp
f ||2n−||

∂

∂xp
f0||2n

∣∣∣
= max

{
|| ∂

∂xp
f ||2n−||

∂

∂xp
f0||2n, ||

∂

∂xp
f0||2n−||

∂

∂xp
f ||2n
}
≤ || ∂

∂xp
f0−

∂

∂xp
f ||2n.

• Fact 2. First establish some notation. Given data {xi,yi}n
i=1, denote f and f0 the n×1 vectors with

their elements being f (xi), f0(xi), respectively. We then have || f − f0||2n = ||f− f0||22. Furthermore,
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since f , f0 ∈F (L,W,S,B), there exisits sets of weight matrices {Wl ,Sl}L
l=1, {W0,l ,S0,l}L

l=1 and
output weights β ,β 0 such that f = XW1S1(∏

L
l=2 WlSl)β and f0 = XW0,1S0,1(∏

L
l=2 W0,lS0,l)β 0.

To keep the notation simple, we write for f its the input weights as W, and the product of weight
matrices after the input layer as D = S1(∏

L
l=2 WlSl)β , such that f and f0 can be written as:

f = XWD, f0 = XW0D0

where recall X is a n×nP block diagonal matrix with 1× p vectors xi’s on the diagonal. Furthermore,
by the definition of gradient functions for ReLU network, we can write the n×1 vectors of gradient
functions as:

∂pf = WpD, ∂pf0 = W0,pD0,

where Wp = In⊗wp,W0,p = In⊗w0,p are n×nK block diagonal matrices. Notice that || ∂

∂xp
f −

∂

∂xp
f0||2n = ||∂pf− ∂pf0||22. Finally, we will denote X = [X>, . . . ,X>]> a nP× nP matrix that is

formed by stacking X for P times.

Consequently:

sup
p∈{1,...,P}

|| ∂

∂xp
f − ∂

∂xp
f0||2n ≤

P

∑
p=1
|| ∂

∂xp
f − ∂

∂xp
f0||2n

=
P

∑
p=1
||WpD−W0,pD0||22 = ||WD−W0D0||22

≤ ||X−1X(WD−W0D0)||22 ≤ ||X−1||22||XWD−XW0D0||22
= P∗ ||X−1||22||XWD−XW0D0||22 = P∗ ||X−1||22|| f − f0||2n

≤ P
cx
|| f − f0||2n.

The equality on the fourth line follows since ||X(WD−W0D0)||22 = P ∗ ||X(WD−W0D0)||22,
due to the fact that X is formed by stacking the X matrix P times. Recall that xi = {xi,p}P

p=1 ∈
(0,1)P, i.e. xi,p is bounded away from zero. We denote this lower bound for x as cx > 0, such
that xi,p ≥ cx∀i, p. Then the inequality on the last line follows since ||X−1||2 is bounded by 1

cx
.

This is because ||X−1||2 = λmax(X−1) = 1/λmin(X), and X can be re-ordered (through column
permutation) into a block matrix with P×P diagonal matrices Xi = diag(xi,1, . . . ,xi,p), such that:

X =

X1 X2 . . . Xn
X1 X2 . . . Xn
. . . . . . . . . . . .
X1 X2 . . . Xn

. Since eigenvalues of X is invariant under column permutation, and

eigenvalue of a block matrix is the eigenvalues of the matrix blocks on the diagonal, we see that
λmin(X) = mini,p(xi,p)≥ cx. Consequently, since P

cx
= Op(1), we have shown that for some constant

C:

sup
p∈{1,...,P}

|| ∂

∂xp
f − ∂

∂xp
f0||2n ≤C ∗ || f − f0||2n

• Fact 3 follows from standard Bernstein-type concentration inequality (see, e.g. Lemma 18 of [30]).
Specifically, for | ∂

∂xp
f0(x)|2 a random variable with respect to probability measure P(x) that is

bounded by L. Given n i.i.d. samples {| ∂

∂xp
f0(xi)|2}n

i=1, recall that ψ̂( f0) =
1
n ∑

n
i=1 | ∂

∂xp
f0(xi)|2 and

ψ( f0) = E( ∂

∂xp
f0), then with probability 1−η :

|ψ̂( f0)−ψ( f0)| ≤ n−
1
2 ∗
(
2
√

2∗L∗ log(2/η)
)
,

that is, |ψ̂( f0)−ψ( f0)| → 0 at rate of O(n−
1
2 ). Notice that O(n−

1
2 ) is the optimal parametric

rate that cannot be surpassed by the convergence speed of the ReLU networks (recall the typical

convergence rate is εn � n−
β

2β+δ ∗ log(n)γ for some δ > 0 and γ > 1). Therefore we have:
sup

p∈{1,...,P}
|ψp( f0)−Ψp( f0)|. || f − f0||2n.
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E Proof for Theorem 2

E.1 Background: Semi-parametric BvM Theorem for Smooth Functionals

In this section, we provide background on a general semi-parametric BvM theorem for smooth
nonlinear functionals [11]. In nonparametric regression, the regression function f ∈F is infinite-
dimensional and the asymptotic distribution of f in this case is in general difficult to characterize
[13]. However, in practical applications, we are mostly interested in a finite-dimensional parameter
ψ : F → Rd whose asymptotic distribution is easier to reason with. For example, a cumulative
distribution function at a fixed point F(x0) =

∫
I(x < x0) f (x)dx [28].

To this end, a series of work by [5, 28, 11] provided general sufficient conditions for BvM theorem in
smooth functionals under general models. These results show that, if the functional of interest ψ and
the model log likelihood ln both satisfy certain smoothness conditions, then the marginal posterior
of ψ( f ) concentrates at the rate O(n−1/2), and furthermore, the marginal posterior distribution of√

n(ψ( f )− ψ̂) converges weakly to a N(0,V0) under the data-generation distribution P0, where ψ̂ is
an efficient estimator of ψ( f0). Such properties have the implication that it allow the construction of
credible regions for which have correct asymptotic frequentist coverage [10].

The main conditions are as below:

1. Locally Asymptotic Normal (LAN) Expansion of Likelihood Function ln( f ):

ln( f )− ln( f0) =−
n
2
|| f − f0||2n +

√
nWn( f − f0). (9)

2. Smoothness Expansion of Functional ψ( f ):

ψ( f )−ψ( f0) = 〈ψ1, f − f0〉n +
1
2
〈ψ2( f − f0), f − f0〉n. (10)

3. Relation between ln( f ) and ψ( f ):
For a posterior distribution Πn( f ) = Π( f |{yi,xi}n

i=1) that concentrates around f0 at rate εn, i.e.
Πn( f : || f − f0||n ≤ εn) = 1+ op(1), define An as the sequence of sets that receive majority of
probability mass from Πn, i.e.

Πn(An) = Πn( f ∈ An : || f − f0||n ≤ εn) = 1+op(1).

Assume there exists wn ∈F such that Wn adopts a decomposition

Wn( f ) = 〈wn, f 〉n +∆n( f ),

where wn is the "representor" of Wn such that 〈wn, f 〉n retains majority of information from Wn( f ),
and ∆n( f ) is the corresponding residual term. It is required that both of these terms are sufficiently
regular in the sense that they satisfy below two conditions:

〈wn,ψ2(ψ1)〉n + εn||wn||n = op(
√

n), (11)
sup
f∈An

|∆n(ψ2( f − f0))|= op(1). (12)

Then under some mild additional conditions, BvM is valid in below sense:
Theorem E.1 (Semiparametric BvM Theorem). Let Wn, wn and ψ , ψ1, ψ2 as defined above. Fur-
thermore, denote

ft = f − t√
n

(
ψ1 +

1
2

ψ2( f − f0)
)
− t

2n
ψ2(wn)

and

ψ̂ = ψ( f0)+
Wn(ψ1)√

n
+

1
2
〈wn,ψ2(wn)〉n

n
, V0,n =

∣∣∣∣∣∣ψ1−
1
2

ψ2(wn)√
n

∣∣∣∣∣∣2
n

Then the “moment generating function (MGF)" of
√

n(ψ( f )− ψ̂) under posterior distribution Πn
evaluated at the set An such that Πn(An) = 1 can be written as:

En(et
√

n(ψ( f )−ψ̂)|An) = eop(1)+t2V0,n/2 ∗In, where In =

∫
An

eln( ft )−ln( f0)dΠ( f |W )∫
An

eln( f )−ln( f0)dΠ( f |W )
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Moreover, if V0,n = ||ψ1||2n +op(1) and In = op(1), then the posterior distribution
√

n(ψ( f )− ψ̂p)

is asymptotically normal with mean zero and variance ||ψ1||2n, i.e.

Πn

(√
n(ψ( f )− ψ̂p)

)
 N(0, ||ψ1||2n) (13)

Proof. [11], Theorem 2.1.

Although the original theorem is stated under the scalar case, the generalization to multivariate case
is straightforward, i.e., one only need to generalize V0 to the corresponding matrix form following the
definitition of ψ1 [11].

E.2 Preliminary I: Notations and Basic Setup

In this section, we set up the basic notations for showing semi-parametric BvM theorems for
ψp( f ) in a nonparametric regression model. We will first verify the model likelihood ln( f ) =
− 1

2 ∑
n
i=1(yi− f (xi))

2 and the functional ψ( f ) = 〈Hp( f ), f 〉n satisfy the three conditions for Theorem
E.1, and by doing so, identify the expression for the technical terms Wn, wn, ψ1, ψ2 that are relevant
for deriving the asymptotic distribution of

√
n(ψ( f )− ψ̂).

First verify (9) the LAN condition for model likelihood ln( f ) and derive expression for Wn. Under
independent Gaussian assumption, the likelihood for nonparametric regression adopts the LAN
expansion:

ln( f )− ln( f0) =−
n
2
|| f − f0||2n +

√
nWn( f − f0)

where || f − f0||2n = 1
n ∑

n
i=1( f (xi)− f0(xi))

2, and Wn is:

Wn( f ) = 〈
√

nε, f 〉n =
1
n

n

∑
i=1

√
nεi ∗ f (xi) (14)

Now verify the rest of the two conditions, we consider two cases: the univariate case where ψp( f ) =
|| ∂

∂xp
f ||2n, to be used by the univariate BvM Theorem 2, and the multivariate case ψ( f )P×1 =

[|| ∂

∂x1
f ||2n, . . . , || ∂

∂xP
f ||2n]>, to be used by the multivariate BvM Theorem 3..

Now verify (10) the smoothness condition for functional of interest ψc( f ) and derive expressions for
ψ1, ψ2. The centered quadratic norm of gradient ψc( f ) = 〈Hp( f ), f 〉n−E(〈Hp ω,ω〉n) adopts the
smoothness expansion:

ψ
c
p( f )−ψ

c
p( f0) = 〈ψ1, f − f0〉n +

1
2
〈ψ2( f − f0), f − f0〉n,

in which ψ1, ψ2 take the form:

ψ1 = 2Hp( f0), ψ2( f ) = 2Hp( f ),

where Hp = D>p Dp for Dp : f → ∂

∂xp
f the differentiation operator and D>p the adjoint of Dp. Given

data {xi,yi}n
i=1, recall the definition of Φ, ∂pΦ (Section ??) and denote Φ

+
K×n the generalized inverse

of Φ, the operator Dp can be evaluated in matrix form as Dp = ∂pΦΦ
+, and Dp( f ) can be evaluated

as Dpf = (∂pΦΦ
+)Φβ = ∂pΦβ for f ∈F (L,K,S,B). Correspondingly, the operator Hp adopts

matrix reprentation Hp = D>p Dp = (Φ+)>∂pΦ
>

∂pΦΦ
+, such that 〈Hp( f ), f 〉 = (HpΦβ )>Φβ =

(∂pΦβ )>(∂pΦβ ).

Finally, for the decomposition Wn( f ) = 〈ω, f 〉n +∆n( f ), we will define ω = PF (ε) the projection
of ε to F , and ∆n( f ) = 〈P⊥F (ε), f 〉. Given observations {xi,yi}n

i=1, the projection operator P⊥F
can be evaluated by computing the projection matrix PF = UU> and P⊥F = I−UU> for Φn×K =

Un×KDK×KV>K×K . By noticing that PF is a rank K matrix, it is then easy to see that the two
conditions (11) and (12) are satisfied since ||ω||n = O(K) . O(

√
n) and P⊥F (ε) is orthogonal to

ψ2( f − f0) ∈FW .
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As an aside, we note that due to the existence of the bias term at the output layer, the actual
feature matrix is Φ1 = [1,Φ]. However, this does not impact the expression of Dp or Hp, since
Dp = ∂pΦ1Φ

+
1 = [0,∂pΦ][(1+)>,(Φ+)>]> = ∂pΦΦ

+ where 1+n×1 is a vector that is orthogonal to
1n×1 and Φ

+
n×K .

E.3 Preliminary II: Proof Strategy and Preliminary Theorems

Recall that under a deep ReLU neural network, the prior distribution adopts a conditional Gaussian
process representation (Section ??):

Π( f ,W ) = Π( f |W )Π(W ) = GP( f |0,kW )Π(W ).

This decomposition suggests that a neural network model can be treated as a Gaussian process with
an adaptive kernel function kW , whose hyperparameters W follows a prior distribution Π(W ).

Consequently, we use a two-step strategy to show BvM phenomenon for ReLU network:

• Step 1, fix hidden weight W and show BvM phenonmenon hold for GP( f |0,kW ). This essentially
corresponding to performing Bayesian inference for a randomized neural network whose hidden
weights are sampled a priori from certain fixed distribution [27]. Then
• Step 2, we show that such BvM phenonmenon for Πn( f |W ) still holds under the posterior distribu-

tion of hidden weights W ∼Πn(W ).

Theorem E.2 establishes Step 1. Notice that in the fixed-W case, f ∈F follows an exact GP with
effective model dimension K (i.e. the rank of the kernel matrix), for whom the BvM phenonmenon
are known to hold under suitable regularity conditions [9, 10]. Therefore it is expected that BvM to
hold for randomized neural network f ∈FW , provided K does not grow too fast with respect to n
(i.e. Assumption (1)) and the functional ψp( f ) is sufficiently smooth (i.e. satisfying (10)), which is
true for ψp( f ) = || ∂

∂xp
f ||2n:

Theorem E.2 (Bernstein-von Mises (BvM) for ψc
p, Fixed Hidden Weights). For f ∈FW (L,W,S,B)

a deep ReLU network with hidden weight fixed to W , denoting f0,W the projection of f0 to FW , and
assume the posterior distribution Πn( f |W ) contracts around f0,W at rate εn. Denote DW ,p : f →

∂

∂xp
f the differentiation operator in FW , and HW ,p = D>W ,pDW ,p the corresponding self-adjoint

operator. For ωW = Pro jFW
(ε) the projection of ε to FW , define:

ψ̂W ,p = ||DW ,p( f0 +ωW )||2n = ψW ,p( f0,W )+2〈HW ,p f0,W ,ωW 〉n + 〈HW ,pωW ,ωW 〉n, (15)

Define ψ̂c
W ,p = ψ̂W ,p − ηW ,n where ηW ,n = E0

(
〈HW ,pω,ω〉n). Then ψ̂c

W ,p is an unbiased and
efficient estimator of ψW ,p( f0), and the posterior distribution for ψc

W ,p( f ) is asymptotically normal
surrounding ψ̂c

W ,p, i.e.

Π

(√
n(ψc

W ,p( f )− ψ̂
c
W ,p)

∣∣∣{xi,yi}n
i=1,W

)
 N(0,4||HW ,p f0,W ||2n), (16)

The proof is delayed to full manuscript. It should be stressed that both operators DW ,p and HW ,p
are defined strictly with respect to FW . Such that given data, the operator DW ,p is evaluated in
matrix form as DW ,p = ∂pΦW Φ

+
W , and HW ,p is evaluated as HW ,p = (Φ+

W )>∂pΦ
>
W ∂pΦW Φ

+
W . In

comparison, the original Dp and Hp defined Section E.2 are with respect to the optimal solution
f0 ∈F .

E.4 Proof for Theorem 2

We now prove Theorem 2, which establishes Step 2 of the proof strategy outlined in Section E.3.

Our goal is to show that the BvM phenomenon in Theorem E.2 still holds under the adaptive case (i.e.
W is not fixed but follows the posterior distribution Πn(W )), and furthermore, the whole posterior
distribution of

√
n(ψc

p( f )− ψ̂c
p( f )) converges to N(0,4||Hp f0||2n) where Hp is defined with respect

to the optimal solution f0 ∈F .
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Proof. Our goal is to show:

Π

(√
n(ψc

p( f )− ψ̂
c
p)
∣∣∣{xi,yi}n

i=1

)
 N(0,4||Hp f0||2n).

First notice that by Theorem E.2, the asymptotic distribution of the marginal posterior distribution
can be represented as a mixture of Gaussian:

Πn

(√
n(ψc

p( f )− ψ̂
c
p)≤ z

)
=
∫

W
Πn

(√
n(ψc

p( f )− ψ̂
c
p)≤ z|W

)
dΠn(W )

=
∫

W
Πn

(√
n(ψc

p( f )− ψ̂
c
W ,p)≤ z+

√
n(ψ̂c

p− ψ̂
c
W ,p)|W

)
dΠn(W )

=
∫

W
Φ

((
z+
√

n(ψ̂c
p− ψ̂

c
W ,p)

)
/
√

VW ,0
∣∣W )

dΠn(W ) (17)

where the last line follows from Theorem E.2, where VW ,0 = 4||HW ,p fW ,0||2n and Φ is the standard
Gaussian cumulative distribution function (CDF).

Clearly, for BvM to hold in the case of (20), it is sufficient to show below two conditions [11]:

|VW ,0−V0|= op(1),
√

n|ψ̂c
p− ψ̂

c
W ,p|= op(1). (18)

The first condition follows from the continuous mapping theorem for V (Hp f0) = 2||Hp f0||2n, along
with the fact that :

||HW ,p fW ,0−Hp f0||n ≤ ||(HW ,p−Hp) f0||n + ||HW ,p( fW ,0− f0)||n
= O(||HW ,p−Hp||n)+O(|| fW ,0− f0||n),

= O(
1√
n
||HW ,p−Hp||F)+op(1)

= O(
K√

n
)+op(1) = op(1),

where the first equality follows from the boundedness of | f0|∞ and |HW ,p|∞ (by assumption in main
article and also Proposition ??), the second equality follows from the definition of ||.||n for matrix
and the fact about posterior concentration of || f − f0||2n in the statement of Theorem 2. The last line
follows since ||Hp||F = O(K) by Proposition (??) and the assumption that K = op(

√
n) (Assumption

(1) in the main article).

The second condition in (18) is the important no-bias condition which ensures that under W ∼Πn(W ),
all the conditional posterior ψc

p|W converges toward the same target ψ̂c
p [11, 31]. Recall that

ψ̂c
p = ψp( f0)+2〈Hp f0,ω〉n + 〈Hpω,ω〉n−E(〈Hpω,ω〉n), then the second condition can be written

as:
√

n|ψ̂c
p− ψ̂

c
W ,p| ≤

√
n|ψp( f0)−ψW ,p( fW ,0)|+2

√
n|〈Hp f0,ω〉n−〈HW ,p fW ,0,ωW 〉n|+

√
n|〈HW ,pωW ,ωW 〉n−〈Hpω,ω〉n|+

√
n|E(〈HW ,pωW ,ωW 〉n)−E(〈Hpω,ω〉n)|,

(19)

where all four terms are op(1) since they are all O(K/
√

n) and that the model dimension K is not too
large (i.e. K = op(n1/2)). We delay the detailed arguments to the end of the proof.

Consequently, since both conditions in (18) are satisfied, the expression in (20) converge uniquely to
a normal distribution under the posterior distribution Πn(W ), i.e.,

Πn

(√
n(ψc

p( f )− ψ̂
c
p)≤ z

)
=
∫

W
Φ

((
z+
√

n(ψ̂c
p− ψ̂

c
W ,p)

)
/
√

VW ,0
∣∣W )

dΠn(W )

=
∫

W
Φ

((
z+op(1)

)
/
√

V0 +op(1)
∣∣W )

dΠn(W )

= Φ
(
z/
√

V0
)
, where V0 = 4||H0 f0||2n (20)

which implies the statement of interest:

Π

(√
n(ψc

p( f )− ψ̂
c
p)
∣∣∣{xi,yi}n

i=1

)
 N(0,4||Hp f0||2n).
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We are only left to show that all four terms in the expression (19) are op(1). Specifically, recall that
Hp = D>p Dp such that 〈Hpa,b〉n = 〈Dpa,Dpb〉n for any a,b ∈F , then:

• First Term: Recall ψp( f0) = 〈Hp f0, f0〉n = ||Dp f0||2n, then the first term can be expressed as:
√

n|ψp( f0)−ψW ,p( fW ,0)|=
√

n
∣∣∣||Dp f0||2n−||DW ,p fW ,0||2n

∣∣∣
≤
√

n
(
||Dp||2n|| f0||2n + ||DW ,p||2n|| fW ,0||2n

)
=
√

n
(

Op(||Dp||2n)+Op(||DW ,p||2n)
)
=

1√
n

(
Op(||Dp||2F)+Op(||DW ,p||2n)

)
= O(

K√
n
) = op(1)

where on the third line, the first equality follows since f0 and fW ,0 are both bounded, the second
equality follows by the definition of the matrix Euclidean norm ||M||2n = 1

n ∑i, j M2
i, j =

1
n ||M||

2
F . On

the last line, the first eqality follows by ||DW ,p||2F = tr(HW ,p) = O(K) due to Proposition ??, and
the second equality follows by Assumption K = op(n1/2).

• Second Term: Similarly, the second term can be expressed as:
√

n|〈Hp f0,ω〉n−〈HW ,p fW ,0,ωW 〉n|=
√

n
∣∣〈Dp f0,Dpω〉n−〈DW ,p fW ,0,DW ,pωW 〉n

∣∣
≤
√

n
(
||Dp||2n|| f0||n||ω||n + ||DW ,p||2n|| fW ,0||n||ωW ||n

)
=
√

n
(

Op(||Dp||2n)+Op(||DW ,p||2n)
)

= Op(
K√

n
) = op(1)

where the equality on the third line follows from the fact that f0,W is bounded and ω = PF ε is a
random variable with bounded variance. The rest of the equalities follow similarly as those in the
First term.

• Third and Fourth Terms are similar to the first term except for f0 is replaced by ω . As a result:
√

n|〈HW ,pωW ,ωW 〉n−〈Hpω,ω〉n|=
√

n
∣∣∣||DW ,pωW ||2n−||Dpω||2n

∣∣∣
=
√

n
(

Op(||Dp||2n)+Op(||DW ,p||2n)
)

= Op(
K√

n
) = op(1)

√
n|E(〈HW ,pωW ,ωW 〉n)−E(〈Hpω,ω〉n)|=

√
nOp

(
|〈HW ,pωW ,ωW 〉n−〈Hpω,ω〉n|

)
= Op(

K√
n
) = op(1)
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