Information-theoretic stochastic contrastive
conditional GAN: InfoSCC-GAN

Vitaliy Kinakh'* Mariia Drozdova':2, Guillaume Quétant'-2,
Tobias Golling? & Slava Voloshynovskiy! *
'Department of Computer Science
2Department of Particle Physics
University of Geneva
Switzerland
{vitaliy.kinakh,svolos}Qunige.ch

Abstract

Conditional generation is a subclass of generative problems where the output of the
generation is conditioned by the attribute information. In this paper, we present a
stochastic contrastive conditional generative adversarial network (InfoSCC-GAN)
with an explorable latent space. The InfoSCC-GAN architecture is based on an
unsupervised contrastive encoder built on the InfoNCE paradigm, an attribute
classifier and an EigenGAN generator. We propose a novel training method, based
on generator regularization using external or internal attributes every n-th iteration,
using a pre-trained contrastive encoder and a pre-trained classifier. The proposed
InfoSCC-GAN is derived based on an information-theoretic formulation of mutual
information maximization between input data and latent space representation as
well as latent space and generated data. Thus, we demonstrate a link between the
training objective functions and the above information-theoretic formulation. The
experimental results show that InfoSCC-GAN outperforms the "vanilla" Eigen-
GAN in the image generation on AFHQ and CelebA datasets. In addition, we
investigate the impact of discriminator architectures and loss functions by per-
forming ablation studies. Finally, we demonstrate that thanks to the EigenGAN
generator, the proposed framework enjoys a stochastic generation in contrast to
vanilla deterministic GANs yet with the independent training of encoder, classifier,
and generator in contrast to existing frameworks. Code, experimental results, and
demos are available online at github.com/vkinakh/InfoSCC-GAN.

1 Introduction

In this paper, we present a new information-theoretic stochastic contrastive conditional generative
adversarial network InfoSCC-GAN. The proposed approach is based on the stochastic generative
model EigenGAN [1]] with explorable latent spaces, independent contrastive encoder and independent
classifier for class label regularization. The EigenGAN baseline generator ensures that the model
is truly stochastic. In contrast to other conditional generation methods, our model is based on an
independent contrastive encoder and attribute classifier. By using them, we avoid a complex and joint
procedure of encoder and classifier training, when the model does not produce realistic images in the
early iterations. Also, since we use the encoder pre-trained on the real data, we ensure that it properly
contrasts real data and avoids contrasting poorly generated data.

We provide an information-theoretical problem formulation of the proposed model in Section 2}
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Figure 1: The proposed InfoSCC-GAN. Stage 1. Contrastive encoder training. Stage 2. Classifier
training. Stage 3. Contrastive generator training.

We summarize our contributions in this paper as follows: (i) we proposed a novel stochastic con-
trastive conditional generative adversarial network (InfoSCC-GAN) for stochastic conditional image
generation with explorable latent space. It is based on the EigenGAN generator, an independent
contrastive encoder and an independent attributes’ classifier; (ii) we introduce a novel classification
regularization technique, which is based on updating the model each n-th iteration and updating
the generator using adversarial and classification loss separately; (iii) we provide the information-
theoretic interpretation of the proposed system; (iv) we perform the ablation studies to determine the
contribution of each part of the model to the overall performance.

2 Information-theoretic formulation

The training stages of InfoSCC-GAN are shown in Fig. [T|and explained below.

2.1 The training of the encoder (stage 1)

The encoder training is based on the maximization problem:

¢e = argmax Iy (X;E), (1)
Pe

where Iy (XGE) = Epx.¢) {log q;;(?:)()} , where ¢4_(e|x) denotes the encoder and gg4_(e) - the

marginal latent space distribution.

In the framework of contrastive learning, (T) is maximized based on the infoNCE framework [2]]. In
the practical implementation, one can use the approach similar to SimCLR[3]], where the inner product
between the positive pairs created from the augmented views of the same image is maximized and
the inner product between the negative pairs based on different images is minimize(ﬂ Alternatively,
one can use other approaches to learn the representation € such as BYOL [4], Barlow Twins [3]], etc.
without loose of generality of the proposed approach. It should be pointed out that the encoder is
trained independently from the decoder in the scope of the considered setup.

*The SimCLR training is based on the maximization I_,¢, (X; H), but since Io_ 4, (X; H) < I4_(X; E)
one could lower bound @



2.2 The training of the class attribute classifier (stage 2)
The class attribute classifier training is based on the maximization problem:

9y = argmax Ig+ o, (Y; E), 2)
where Iy- 0, (Y;E) = H(Y) — Hgrp, (Y|E) and H(Y) = -E, (y)logpy(y) is the
conditional entropy of Y and the conditional entropy is defined as Hg: o, (Y|E) =
—E,, (%) [Eq s (€]%) [log pe, (y|€)H . Since H (YY) is independent of the parameters of the encoder
and classifier, reduces to the lower bound minimization:

9y = ar%min Hg: 0, (Y|E), 3)
that under the categorical conditional distribution pg, (y|€) can be expressed as the categorical cross
entropy Ly (y,¥)-

2.3 The training of the decoder, i.e., the mapper and generator (stage 3)

The decoder is trained first to maximize the mutual information between the class attributes y
predicted from the generated images and true class attributes y:

(Bx, %) = argmax Iy g, ¢: 0: (Y E), “4)

where Iy, :.0:(Y;E) =  H(Y) - Hypg, ¢:0;(YE) and H(Y) =
—Ep, (y)logpy(y) and the conditional entropy is defined as Hyp, ¢:0:(Y|E) =

—Epyy) {Epz(z) [Ew(ely,z) [Epex(x|e) |:Eq¢; (elx) [logpo; (yle)] } } } } po, (yle)  corresponds
to the classifier and gj_ (e]x) denotes the pre-trained encoder. Since H(Y) is independent of the
parameters of the encoder and classifier, @) reduces to the lower bound minimization:

(Ox, ) = argmin Hy, 9, o 0: (Y|E), (5)

that under the categorical conditional distribution pg, (y|€) can be expressed as the categorical cross
entropy Ly (y,¥).

Finally, the decoder should produce samples that follow the distribution of training data py(x) that
corresponds to the maximization of mutual information:

(0)(7 ’P) = arggmax I‘l,b,ex (X’ E)7 (6)
. — x (X —
where 11/,79)( ()(7 E) = pr(x) {Epy(y) {]Epz(z) {Erﬁ,(s\y,z) {Epox (x|e) |:10g p(;xi(x‘)e)} ] } ]} =

Epy(y) [Ep. (@) [Ery(cly.z) [Dr (o, (X|E = €)||pe, (x))]]] — D (px(x)[|pe, (%)), where pq, (x)
denotes the distribution of generated samples X. Since Dkr, (pe, (x|E = €)||pg, (x)) > 0, the maxi-
mization of the above mutual information reduces to the minimization:

(6, %) = argmin Dk (px (%)||po.. (x))- ()

X

The above discriminator is denoted as Dy (x). At the same time, one can also envision the dis-
criminator conditioned on the attribute class y, e.g., Dxx(x | y) that is implemented as a set of
discriminators for each subset of generated and original samples defined by the class attributes y.

3 Experiments

In this section, we describe the generation experiments. For the evaluation, we use 3 metrics: Fréchet
inception distance (FID) [6], inception score (IS) [7] and Chamfer distance [8]]. Since Chamfer



Table 1: Conditional generation results on CelebA dataset with 5 selected attributes.

FID| ISt Attribute Control Accuracy 1
Bald Eyeglasses Mustache Wearing Hat Wearing Necktie
27.84 991 9327% 99.88% 95.68% 94.62% 98.62%

Table 2: Conditional generation results on CelebA dataset with 10 selected attributes.

Attribute Control Accuracy?

FID,  IST Bald Black Hair Blond Hair  Brown Hair Double Chin
32.39  9.04 89.74% 89.61% 86.86% 85.55% 84.82%
Eyeglasses  Gray Hair ~ Mustache =~ Wearing Hat  Wearing Necktie
99.6% 81.71% 92.27% 92.83% 89.26%

distance works in low dimensional spaces, we compute features of the real and generated image by
the pre-trained encoder, then compute the 3D t-SNEs of these features, which are used to compute
the Chamfer distance. We perform ablation studies on AFHQ dataset. To determine whether the
conditional generated images obey the needed attributes, we use attribute control accuracy. The
attribute control accuracy is computed as the percentage of the images for which the output of the
attribute classifier is the same as an input attribute. The attribute control accuracy measures how good
the generator is at conditional generation.

3.1 EigenGAN

We compare the proposed InfoSCC-GAN with the original EigenGAN [1]] on the AFHQ dataset. Our
model is based on the same generator while using different inputs and conditional regularization. In
the current setup, EigenGAN has 6 layers each with 6 dimensions that are used for interpretable and
controllable features exploration. The original EigenGAN achieves FID score of 29.02 and IS of 8.52
after 200000 training iterations on AFHQ dataset using global discriminator and Hinge loss [9]. The
EigenGAN does not allow for interpretable feature exploration for the wild animal images. It can be
explained by the imbalance since the "wild" animals class includes multiple distinct subclasses such
as tiger, lion, fox, and wolf, which are not semantically close.

3.2 Conditional generation
We achieve the best FID score of 11.59, IS of 11.06 and Chamfer distance 3645 using the InfoSCC-
GAN approach after 200000 training iterations using Patch discriminator [10]] and LSGAN [[11] loss

on AFHQ dataset. In the current setup, we have 6 layers with 6 explorable dimensions. The results
on CelebA dataset with 5, 10 and 15 attribute labels are presented in Tables|[I] 2| [3]

4 Ablation studies

In this section, we describe the ablation studies we have performed on the type of discriminator and
the discriminator loss.

Table 3: Conditional generation results on CelebA dataset with 15 selected attributes.

Attribute Control Accuracy?

FID| ISt Bald Blurry Chubby  Double Chin Eyeglasses
3497 8.87 83.6% 96.46% 80.1% 95.74% 98.11%
Goatee Gray Hair ~ Mustache Narrow Eyes Pale Skin
89.09% 90.78% 87.64% 74.22% 86.91%
Receding Hairline  Rosy Chicks Sideburns  Wearing Hat ~ Wearing Necktie
86.46% 78.88% 74.9% 97.64% 94.87%




Table 4: Discriminator ablation studies.

Discriminator Loss FID | ISt Chamfer distance |
Global Hinge 13.08 10.71 4030
Global Non saturating  25.62 10.33 28595
Global LSGAN 29.02  9.89 45583
Patch Hinge 1595 10.51 7327
Patch Non saturating  14.83  10.21 5114
Patch LSGAN 11.59 11.06 3645

4.1 Discriminator ablation studies

In this section, we describe the discriminator and loss ablation studies. We compare two discrimina-
tors: global discriminator and patch discriminator. The global discriminator outputs one value that is
the probability of the image being real. The architecture of the global discriminator is inspired by the
EigenGAN paper. The patch discriminator outputs a tensor of values that represent the probability
of the image patch being real, the architecture of the patch discriminator is inspired by the pix2pix
GAN [10]. We compare these discriminators in combination with discriminator losses: Hinge loss,
non-saturating loss and LSGAN. The results of the studies are presented in Table. ] For all of the
discriminators and losses, used in the study, the attribute control accuracy is in the range of 99-100%.

5 Conclusions

In this paper, we propose a novel stochastic contrastive conditional GAN InfoSCC-GAN, which
produces stochastic conditional image generation with an explorable latent space. We provide
the information-theoretical formulation of the proposed system. Unlike other contrastive image
generation approaches, our method is truly a stochastic generator, that is controlled by the class
attributes and by the set of stochastic parameters. We apply a novel training methodology based
on using a pre-trained unsupervised contrastive encoder and a pre-trained classifier with every n-th
iteration using a classification regularization. We propose an information-theoretical interpretation of
the proposed system. We propose a novel attribute selection approach based on clustering embeddings
computed using an encoder. The proposed model outperforms "vanilla" EigenGAN on AFHQ dataset,
while it also provides conditional image generation. We have performed ablations studies to determine
the best setup for conditional image generation. Finally, we have performed experiments on AFHQ
and CelebA datasets.

Acknowledgments and Disclosure of Funding

This research was partially funded by the SNF Sinergia project (CRSII5-193716) Robust deep density
models for high-energy particle physics and solar flare analysis (RODEM).

References

[1] Zhenliang He, Meina Kan, and S. Shan. FEigengan: Layer-wise eigen-learning for gans. ArXiv,
abs/2104.12476, 2021.

[2] Adron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. ArXiv, abs/1807.03748, 2018.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. ArXiv, abs/2002.05709, 2020.

[4] Jean-Bastien Grill, Florian Strub, Florent Altch’e, C. Tallec, Pierre H. Richemond, Elena Buchatskaya,
Carl Doersch, B. A. Pires, Z. Guo, M. G. Azar, Bilal Piot, K. Kavukcuoglu, R. Munos, and Michal Valko.
Bootstrap your own latent: A new approach to self-supervised learning. ArXiv, abs/2006.07733, 2020.

[5] J. Zbontar, L. Jing, Ishan Misra, Y. LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning via
redundancy reduction. In /ICML, 2021.

[6] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, 2017.



[7] Tim Salimans, I. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. In NIPS, 2016.

[8] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and
Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501, 2020.

[9] Jae Hyun Lim and J. C. Ye. Geometric gan. ArXiv, abs/1705.02894, 2017.

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with conditional
adversarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
5967-5976, 2017.

[11] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and Stephen Paul Smolley. Least
squares generative adversarial networks. 2017 IEEE International Conference on Computer Vision (ICCV),
pages 2813-2821, 2017.



	Introduction
	Information-theoretic formulation
	The training of the encoder (stage 1)
	 The training of the class attribute classifier (stage 2)
	 The training of the decoder, i.e., the mapper and generator (stage 3) 

	Experiments
	EigenGAN
	Conditional generation

	Ablation studies
	Discriminator ablation studies

	Conclusions

