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Abstract

The ability of likelihood-based probabilistic models to generalize to unseen data
is central to many machine learning applications. The Variational Auto-Encoder
(VAE) is a popular class of latent variable model used for many such applications
including density estimation, representation learning and lossless compression. In
this work, we highlight how the common use of amortized inference to scale the
training of VAE models to large data sets can be a major cause of poor general-
ization performance. We propose a new training phase for the inference network
that helps reduce over-fitting to training data. We demonstrate how the proposed
scheme can improve generalization performance in the context of image modeling.

1 Generalization of Probabilistic Models

We are interested in approximating the data distribution pd(x) with a model pθ(x). A principled
method to learn parameters θ is to minimize the Kullback-Leibler (KL) divergence training objective

KL(pd||pθ) = −〈log pθ(x)〉pd(x) −H(pd(x)), (1)

where the entropy term H(pd(x)) is a constant. We use 〈·〉 to denote integration: 〈f(x)〉p(x) =∫
f(x)p(x)dx. Minimizing the KL divergence is equivalent to maximizing the likelihood
〈log pθ(x)〉pd(x). In practice pd is unknown and we only have access to a finite training data set
Xtrain = {x1, . . . , xN} ∼ pd(x). We therefore approximate pd(x) by the empirical distribution
p̂d(x) =

1
N

∑N
n=1 δ(x− xn). The training objective becomes:

〈log pθ(x)〉pd(x) ≈ 〈log pθ(x)〉p̂d(x) =
1

N

N∑
n=1

log pθ(xn). (2)

For a flexible pθ(x), this approximation can over-fit the model to the training data. This results
in KL(pd||pθ) being greater than 0. We refer to KL(pd||pθ) as the model generalization gap.
This gap is not tractable because we cannot access the pd(x). We instead use the test likelihood
1
M

∑M
m=1 log pθ(x

′
m) to approximate the generalization gap:

KL(pd||pθ) ≈
1

M

M∑
m=1

log pθ(x
′
m) + const., (3)

where Xtest = {x′1, . . . , x′M} ∼ pd(x) is the test dataset. As M → ∞, higher test likelihood
indicates a smaller model generalization gap.

In the application of lossless compression, the test likelihood has a practical meaning : a lossless
compressor can be designed based on pθ where the average compression length is approximately
equal to − 1

M

∑M
m=1 log2 pθ(x

′
m) on the test data set (see [9] for a detailed introduction). Therefore,

the better model in terms of test likelihood leads to a greater saving in bits. This is an illustration of
the practical importance of model generalization.
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2 Generalization of Latent Variable Model with Amortized Inference

For a latent variable models of the form pθ(x) =
∫
pθ(x|z)p(z)dz, where z is the unobserved latent.

When pθ(x|z) is parameterized by a non-linear neural network, the evaluation of log
∫
pθ(x|z)p(z)dz

is usually intractable. In this case, the evidence lower bound (ELBO) can instead be used

〈log pθ(x)〉pd(x) ≥ 〈log pθ(x, z)− log qφ(z|x)〉qφ(z|x)pd(x) ≡
〈
ELBO(x, θ, φ)

〉
pd(x)

, (4)

where qφ(z|x) is a posterior approximation parameterized by an inference neural network with
parameters φ. The ELBO is traditionally maximized with respect to both φ and θ.

This model is referred to as a Variational Auto-Encoder (VAE) [6, 11]. The use of an approximate
posterior of the form qφ(z|x) is called amortized inference. We denote the posterior family of
qφ(z|x) as Q. If Q is flexible enough such that pθ(z|x) ∈ Q then at the optimum of equation 4
qφ(z|x) = pθ(z|x) for every x ∈ pd(x) and the inequality in equation 4 becomes an equality. Many
previous methods are developed to increase the flexibility ofQ increasing the practical utility of these
methods. For example, adding auxiliary variables [1, 8] or flow-based methods [3, 10].

Recent works [13, 14, 7] have successfully applied VAE style models to lossless compression realiz-
ing impressive performance. In this setting, the average compression length on the test data set is
approximately equal to1 − 1

M

∑M
m=1 ELBO(x′m, θ, φ). Hence, the better the generalization perfor-

mance (as measured by the negative ELBO on the test set), the better the compression performance.
This motivates finding practical ways to improve the generalization of this class of model.

2.1 Two Factors that Affect the Generalization of VAEs

To better understand the generalization performance of VAEs, we re-write the training criterion as〈
ELBO(x, θ, φ)

〉
pd(x)

=
〈
log pθ(x)−KL(qφ(z|x)||pθ(z|x))

〉
pd(x)

, (5)

where pθ(z|x) ∝ pθ(x|z)p(z) is the true posterior under the model. It is apparent that maximizing
the average ELBO is equivalent to maximizing the likelihood 〈log pθ(x)〉pd(x) whilst simultaneously
minimizing the KL divergence between the true and approximate posterior. However, similar to
equation 2, in practice we only have finite training data and so we resort to an approximate training
objective〈

log pθ(x)−KL(qφ(z|x)||pθ(z|x))
〉
pd(x)

≈ 1
N

∑N
n=1

(
log pθ(xn)−KL(qφ(z|xn)||pθ(z|xn))

)
. (6)

This illustrates that when using finite training data, in addition to the model empirical approximation:
〈log pθ(x)〉pd(x) ≈ 1

N

∑N
n=1 log pθ(xn), we also have an inference empirical approximation:

〈
KL(qφ(z|x)||pθ(z|x))

〉
pd(x)

≈ 1

N

N∑
n=1

KL(qφ(z|xn)||pθ(z|xn)). (7)

This suggests that for a flexible inference network qφ(z|x) this approximation can also over-fit to
the training data. More specifically, if we let φ∗N = argminφ

1
N

∑N
n=1 KL(qφ(z|xn)||pθ(z|xn)),

we assume2 for any training data point xn ∈ Xtrain

qφ∗N (z|xn) = argmin
q∈Q

KL(q(z|xn)||pθ(z|xn)) ≡ q∗(z|xn). (8)

If we want to use qφ∗N (z|x) to approximate the test likelihood, we need it to be a good approximation
to the true posterior on test data. However, there is no such requirement built into the training
procedure. For x′m ∈ Xtest, we can have

qφ∗N (z|x
′
m) 6= argmin

q∈Q
KL(q(z|x′m)||pθ(z|x′m)) ≡ q∗(z|x′m), (9)

1We use log2 in the definition of ELBO.
2For a flexible inference network, we assume here that there is no amortization gap [4], which means qφ∗(z|x)

could generate optimal q∗(z|xn) for each training data xn, also see Section 3.
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where q∗(z|x′m) is the optimal posterior for the test data and qφ∗N (z|x
′
m) is the posterior learned from

the training data. We refer to the difference between the ELBO that uses these two different posteriors
as the inference generalization gap, defined as

〈log pθ(x, z)− log q∗(z|x)〉q∗(z|x)pd(x) − 〈log pθ(x, z)− log qφ∗N (z|x)〉qφ∗N (z|x)pd(x). (10)

Similar to equation 3, we can approximate the gap using the test dataset Xtest
1
M

∑M
m=1

(
〈log pθ(x′m, z)− log q∗(z|x′m)〉q∗(z|x′m) − 〈log pθ(x′m, z)− log qφ∗N (z|x

′
m)〉qφ∗

N
(z|x′m)

)
. (11)

This generalization gap results from the application of amortized inference. It is important to
emphasize that this gap can not be reduced by simply using a more flexibleQ. This would only make
the KL divergence KL(qφ(z|xn)||pθ(z|xn)) smaller for the training data xn ∈ Xtrain but would not
by design encourage better generalization performance on test data.

In conclusion, the generalization performance of VAE style models depends on two factors:

1. model generalization gap, where the model is pθ(x) =
∫
pθ(x|z)p(z)dz;

2. inference generalization gap, caused by the amortized posterior qφ(z|x).

In the next section we demonstrate how these two gaps will affect the generalization performance of
a VAE in practice.

2.2 Contributions of the different Generalization Gaps

For simple data distributions, a powerful VAE can easily over-fit the training data set. To test this, we
fit a simple VAE model to the binarized MNIST dataset. Our VAE consists of a 2-layer feed-forward
neural network with hidden dimension 500 for both the model network pθ(x|z) and inference network
qφ(z|x). The model has latent dimension 10 and is trained using the Adam optimizer[5] with learning
rate 1e − 3. We let pθ(x|z) be a Bernoulli distribution. p(z) is the standard Gaussian distribution
and the amortized variational distribution qφ(z|x) is a Gaussian distribution with diagonal variance.
We train the VAE (with amortized inference) for 1000 epochs and save and evaluate the model every
100 epochs. Figure 1a shows that the training BPD3 decreases during training whereas the test BPD
first decreases and then gradually increases, indicating the model has over-fit the training data. This
over-fitting is potentially caused by both the model network over-fitting and the inference network
over-fitting. These relate to the model and inference generalization gaps respectively.

We notice that the inference generalization gap can be eliminated by knowing the test dataset.
Specifically, since q∗(z|x′m) ≡ argminq∈QKL(q(z|x′m)||pθ(z|x′m)), we can just minimize the KL
divergence for the test data x′m ∈ Xtest with respect to φ fixing θ:

min
φ

KL(qφ(z|x′m)||pθ(z|x′m)) = −
〈
log pθ(x

′
m, z)− qφ(z|x′m)

〉
qφ(z|x′m)

+ const. (12)

Updating φ using this objective would result in an optimal inference strategy. To further investigate
the contributions of two the types of over-fitting discussed in section 2.1, we propose to use this
optimal inference strategy to eliminate the negative effect of the inference generalization gap. This
then allows us to isolate the degree to which both the model and inference generalization gap are
contributing to over-fitting.

We plot the test BPD using the optimal inference setup, leaving only the effect of the model general-
ization gap - see figure 1b. The difference between the optimal inference test likelihood curve and the
original test likelihood curve illustrates the inference generalization gap. We find that after elimi-
nating the inference generalization gap the test BPD is significantly improved and is stable during
training. This suggests the model over-fitting is negligible in this experiment and the over-fitting
behavior is in fact dominated by the inference network over-fitting to the training data in this case.

This is evidence to support that in order to improve the generalization of VAEs, an important challenge
is to reduce the inference generalization gap. Although the optimal inference procedure can help
eliminate the inference generalization gap, training qφ at test time is not practical in most applications
of interest. In the next section, we propose a simple method that can help alleviate the inference
generalization gap in amortized inference without having to further train qφ at test time.

3BPD represents Bits-per-dimension, which is the negative ELBO with log2 normalized by the data dimension.
Lower BPD means higher likelihood.
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(a) Overfitting in VAE

inference
generalization gap

(b) Optimal Amortized Inference

Figure 1: In both figures, x-axis represents the training epoch and the y-axis represents the BPD. In
Figure a, we plot the BPD for both training data and test data for every saved model. We find the
test BPD is going up while the training BPD is going down, which indicates the VAE model has
overfit to the training data. In Figure b, we plot the test results using the optimal inference strategy,
which fixes the model parameter θ and only trains the qφ(z|x) on the test data using equation 12.
This evaluation method eliminates the effect of the inference generalization gap. We can see the
results using optimal inference significantly improve the BPD and no longer exhibits the over-fitting
behavior. Additionally, the gap between the purple line (amortized inference) and green line (optimal
inference) is the inference generalization gap.

3 Reducing the Inference Generalization Gap

Recall the empirical approximation of the ELBO in equation 6. Even with a perfect model pθ = pd
the second term in the objective 1

N

∑N
n=1 KL(qφ(z|xn)||pθ(z|xn)) can still cause the inference

network to over-fit to the training data. A solution when the model is perfect is to replace pd with pθ:〈
KL(qφ(z|x)||pθ(z|x))

〉
pd(x)

=
〈
KL(qφ(z|x)||pθ(z|x))

〉
pθ(x)

. (13)

Similar to equation 12, we can fix θ and train φ using〈
KL(qφ(z|x)||pθ(z|x)

〉
pθ(x)

= −
〈
log pθ(x, z)− log qφ(z|x)

〉
qφ(z|x)pθ(x)

+ const. (14)

The integration 〈·〉pθ(x) is approximated by Monte-Carlo samples generated from pθ(x) instead of
p̂d(x). We refer to this training criterion as self-consistent training because a perfect qφ(z|x) should
satisfy the following consistency condition

KL
(
qφ(z|x)pθ(x)||pφ(z|x)pθ(x)

)
= 0⇒

〈
KL
(
qφ(z|x)||pφ(z|x)

)〉
pθ(x)

= 0. (15)

In practice our model will not be perfect, pθ 6= pd. Empirically we find that samples from even a
well trained model pθ may not always be sufficiently like the samples from the true data distribution
leading to degradation in the performance of the inference network when trained using the self-
consistent criterion. For this reason, within the self-consist objective we propose to use a mixture
distribution between the model and the empirical training data distribution as follows〈

KL
(
qφ(z|x)||pθ(z|x)

)〉
m(x)

with m(x) ≡ αpθ(x) + (1− α)p̂d. (16)

When α = 0 then this reduces to the standard approach. When α = 1 we recover equation 15. We
find that a setting of α = 0.5 works well in practice. This balances samples from the true underlying
data distribution with samples from the model. This can also be interpreted as a form of training data
augmentation to help over-come the over-fitting caused by the application of amortized inference. In
contrasts to the optimal inference approach discussed in section 2.1, our approach does not require
further training on test data to improve generalization performance.

Empirically, we validate the performance of this approach for both binary and Grey-scale MNIST
problems. The model architecture and the training method is the same as described in section 2.1.
However, for grey-scale MNIST we use the discretized Logistic distribution as p(x|z). We first train
the VAE with the usual amortized inference approach with 1000 epochs and save the model every 100
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epochs. We then use the saved models to 1) evaluate on the test data sets, 2) conduct optimal inference
by training qφ(z|x) on the test data and 3) run self-consistent training using samples from the learned
model and the training data before calculating the test BPD. We compare the test ELBO with the
standard amortized inference approaches - see figure 2 for results. We find that the self-consistent
training approach consistently improves the generalization performance of our models as measured
by the negative test ELBO.

(a) Binary MNIST (b) Greyscale MNIST

Figure 2: In both figures, x-axis represents the training epoch and the y-axis represents the BPD.
We compare test BPD using amortized inference, optimal inference and amortized inference with
our additional self-consistent training step on both Binary MNIST and Greyscale MNIST datasets.
We find that although the self-consistent training still has a gap, it improves the generalization
performance in both cases without training the qφ(z|x) on the test data.

4 Related Work

Recent work [15] first studies the generalization of probabilistic image modeling in the context of the
lossless compression. They focus on an auto-regressive model whose likelihood can be computed
exactly. Unlike our work where we focus on the inference related generalization gap, their study of
model generalization is limited to just the model generalization gap.

Previous work [4] focus on the amortization gap in the context of amortized inference. This gap
is caused by learning a network q∗φ(z|xn) to generate posteriors for each input data point xn rather
than learning a posterior q∗n for each data point xn individually. This gap can be somewhat alleviated
using a larger capacity encoder or decoder model. This amortization gap is fundamentally different
from the inference generalization gap we discuss in this work since the latter focuses solely on test
time generalization but the former problem also exists at training time.

In paper [12], they propose to regularize the encoder to prevent the inference network over-fitting
to the training data and to improve the test likelihood. Such regularization techniques also affects
the parameters of the model (decoder) during training wheres our proposed self-consistent training
leaves the model unchanged. On the other hand, the self-consistent training makes the assumption
that that trained model is approximately correct, which might not be true when the data distribution is
very complex. We thus leave a further comparison between these methods to future work.

Paper [2] also proposed to use the samples from the model to train the encoder, which aims to
make the learned representations more robust to adversarial attacks, whereas the motivation of our
self-consistent criterion is to improve generalization performance.

5 Conclusion

In this work we first highlight the factors that contribute to poor generalization performance in latent
variable models that employ amortized inference. We then empirically demonstrate the dominance of
the introduced inference level generalization gap in explaining over-fitting behavior in a simple image
modeling task. Finally we propose self-consistent training as a practically useful method to improve
generalization performance and demonstrate it’s utility on some standard image modeling tasks.
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