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Abstract

Implicit neural representations (INRs) have recently achieved impressive results in
image representation. This work explores the uncertainty quantification quality of
INRs for medical imaging. We propose the first uncertainty aware, end-to-end INR
architecture for computed tomography (CT) image reconstruction. Four established
neural network uncertainty quantification techniques – deep ensembles, Monte
Carlo dropout, Bayes-by-backpropagation, and Hamiltonian Monte Carlo – are
implemented and assessed according to both image reconstruction quality and
model calibration. We find that these INRs outperform traditional medical image
reconstruction algorithms according to predictive accuracy; deep ensembles of
Monte Carlo dropout base-learners achieve the best image reconstruction and model
calibration among the techniques tested; activation function and random Fourier
feature embedding frequency have large effects on model performance; and Bayes-
by-backpropogation is ill-suited for sampling from the INR posterior distributions.
Preliminary results further indicate that, with adequate tuning, Hamiltonian Monte
Carlo may outperform Monte Carlo dropout deep ensembles.

1 Introduction

In computed tomography (CT), improving reconstructed image quality via increased measurement
also increases patient exposure to harmful radiation [1, 2, 3]. As a result, there is interest in
reconstruction techniques which achieve high image quality from few measurements. Machine
learning approaches based on deep learning have proved promising in this regard. However, they
require large training data sets, which are difficult to collect in the medical setting. A significant
recent advance was the introduction of implicit neural representations (INRs), which represent
complex coordinate-based signals as functions encoded by small neural networks. For example,
an image can be represented as a function mapping (x, y) coordinates to (r, g, b) pixel intensities.
INRs have taken the field of computer graphics by storm, achieving impressive results in novel view
synthesis [4, 5, 6, 7], shape representation [8, 9, 10, 11, 12, 13], and texture synthesis [14, 15]. More
recent work has also demonstrated the applicability of this technique to medical imaging [16, 17].

In all these applications, INRs were assessed on their predictive accuracy and reconstructed signal
plausibility. However, in medical imaging, which affects doctor decisions and patient well-being, it is
also important to understand model confidence in the reconstructed image. For example, a model
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Figure 1: Left) An abstraction of the CT measurement process and resultant sinogram data. Right)
An illustration of our end-to-end INR architecure, which directly outputs the desired image by
embedding the sinogram measurement data in the network loss.

can quantify its uncertainty in each pixel by outputting a per-pixel variance. If this variance is large
in critical image regions, such as the location of a potential tumor, a doctor should order additional
measurements to ensure proper diagnosis. Uncertainty quantification can also be used to decrease
healthcare cost via automated triage, e.g. by assigning images with varying degrees of uncertainty to
healthcare providers of relevant expertise. Finally, understanding model uncertainty could inform
more efficient measurement procedures, leveraging techniques such as active learning [18].

2 Methods

Encoding 2D CT image reconstruction in INRs As shown in Figure 1, CT measurement data
comes in the form of a sinogram, pθ(r), where r is the X-ray detector location and θ is the measure-
ment angle. However, the goal of reconstruction is to generate a photo of the 2D cross-section of
attenuation coefficients, f(x, y). This is achieved using an end-to-end approach to image reconstruc-
tion, in which our model predicts the final cross-section attenuation coefficient function, as illustrated
in Figure 1. The model input is pixel coordinate (x, y) and its output is the corresponding predicted
attenuation coefficient value f̂(x, y). The sinogram data is incorporated in the model via the training
loss function. Given a ground truth sinogram pθ(r), the loss of the INR output f̂(x, y) is defined as

L
(
pθ(r), f̂(x, y)

)
=

1

2|Θ×R|
∑
θ∈Θ

∑
r∈R

(
pθ(r)−

∫
Y

∫
X
f̂(x, y) δ(x cos θ+ y sin θ− r) dxdy

)2

,

(1)
where Θ = {θ1, ..., θn} are the view angles, R = {r1, ..., rn} the X-ray detector locations, and
X × Y the image pixels (x, y). The integral surrounding f̂ is the Radon transform. Since the loss
is calculated directly on the desired output, end-to-end training minimizes the propagation of error,
but has a training complexity cost. Each training iteration requires sampling the model |X × Y|
times, once per image pixel, and a Radon transform must be calculated for all |Θ×R| points in the
sinogram. However, given the relatively small nature of INRs by deep learning standards, we did not
find this computationally barring, with networks taking no more than a few minutes to train.2

Uncertainty quantification of INRs We implemented and compared multiple methods for un-
certainty quantification of INR parameters and predictions. Experimental details are reported in
Appendix A. Bayes-by-backpropagation (BBB) [19], Monte Carlo dropout (MCD) [20], and Hamil-
tonian Monte Carlo (HMC) [21, 22, 23] were used for approximate Bayesian neural network (BNN)
inference, while deep ensembles of sizeN (DE-N ) [24] were used to aggregate the results ofN MCD
base learners. Besides HMC, which is regarded as the gold standard inference scheme for BNNs [25],
all these approximate inference schemes are computationally efficient and common choices within
the uncertainty deep learning community [26]. Model performance was assessed according to peak
signal-to-noise ratio (PSNR), negative log likelihood (NLL), and expected calibration error (ECE).

Baseline As a baseline, we compared our INRs to standard medical image reconstruction algo-
rithms: filtered back-projection (FBP), conjugate-gradient least squares (CGLS), expectation maxi-

2Experiments were run on a cluster of four graphical processing unit (GPU) nodes of 8 GPUs each, consisting
of a mixture of GTX 1080, GTX 1080Ti, and GeForce RTX 2080 Ti cards, all with under 12GB VRAM.
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# View Recon Validation Set Test Set

Angles Type PSNR NLL ECE PSNR NLL ECE

FBP 7.68 – – 5.15 – –
CGLS 16.38 – – 14.62 – –

EM 21.39 – – 19.88 – –
SART 21.12 – – 19.75 – –
SIRT 21.12 – – 21.12 – –

5 HMC∗ – – – 24.87∗ -1.616∗ 0.090∗
BBB 23.26 -1.190 0.152 22.52 0.138 0.203
MCD 26.15 -1.473 0.111 24.45 -1.572 0.083
DE-2 26.31 -1.730 0.091 24.49 -1.774 0.069
DE-5 26.44 -1.737 0.085 24.88 -1.751 0.067
DE-10 26.36 -2.226 0.075 24.67 -1.969 0.068
FBP 17.35 – – 15.71 – –

CGLS 21.85 – – 20.82 – –
EM 30.22 – – 29.11 – –

SIRT 31.98 – – 30.44 – –
SART 31.97 – – 30.45 – –

20 HMC∗ – – – 29.12∗ -1.676∗ 0.009∗
BBB 28.25 1.650 0.121 28.16 0.562 0.119
MCD 33.74 0.701 0.135 33.08 1.093 0.113
DE-2 33.96 0.005 0.136 33.44 -0.372 0.102
DE-5 34.31 -0.364 0.134 34.02 -0.625 0.101
DE-10 34.38 -0.529 0.131 33.86 -0.774 0.096

Table 1: INR accuracy and calibration results of all
four uncertainty quantification approaches are pre-
sented. Classical approaches do not produce uncer-
tainty estimates. For BBB, MCD, and DEs results are
averaged over all validation and all test set images.
HMC results are preliminary, with a star demarcating
that HMC was trained and tested on a single image
outside the validation and test sets. The best result
for each metric – PSNR, NLL, and ECE – is bolded
in each subcategory.
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Figure 2: The pixel-wise mean, pixel-wise
variance, pixel-wise mean squared error
(MSE), pixel-wise coverage, and image re-
liability curves are shown for BBB, MCD,
and DE image reconstructions of a test set 20-
view sinogram. The same is shown for HMC
on a 20-view sinogram, outside the test set.

mization (EM), simultaneous algebraic reconstruction technique (SART), and simultaneous iterative
reconstruction technique (SIRT). These were implemented using the TomoPy Astra wrapper [27].

Data The Shepp-Logan phantom [28] approach was used to generate artificial brain images, with
corresponding sinograms generated via the Radon transform. In this preliminary work, no noise was
added to the images. In all, 10 ground truth images and 20 corresponding sinograms were generated:
5 validation and 5 test set sinograms each for the 5- and 20-view (θ) cases.

3 Results and discussion

Although restricted to noiseless phantom data, this work presents the first large-scale study of
model parameterization for INRs with uncertainty quantification. Experimental results are presented
in Table 1; sample reconstructed images, variances, coverage plots, and calibration curves in the
20-view case are presented in Figure 2; and boxplots of MCD and BBB model performance by
hyperparameter are presented in Appendix A. MCD significantly outperformed BBB, with activation
function substantially affecting reconstruction quality. We found the Sine activation produced top-
performing MCD models, as expected from the recent SIREN work [29]. Silu, Tanh, and Relu
achieved slightly lower performance, but greater consistency. We also confirmed previous findings
that random Fourier feature (RFF) embeddings enable neural networks to learn high-frequency image
components better [30]. However, we found that the RFF frequency must be consistent with the
amount of data used in training the INR. Too low a frequency prohibits higher frequency learning,
while too high a frequency results in high-frequency image artifacts. Consistent with previous
work [31], we further found that ensembling MCD architectures can improve image reconstruction
quality and model calibration, achieving significant improvements even for small numbers of base
learners. In all, DEs of the top 5 or 10 performing MCD models achieved the best results in terms of
image reconstruction and calibration. In future work, to better separate the influence of inference
method from INR prior choice, we will further explore the performance of tuned HMC for INRs.

While this work is the first use of uncertainty quantification for INRs, it is not the first proposal of
INRs for CT image reconstruction. The CoIL architecture [16] was recently demonstrated to improve

3



image reconstruction pipelines by learning a functional form of the measurement sinogram. However,
this necessitates use of classical image reconstruction to generate the final, desired image cross-
section. It also lacks support for uncertainty estimation, since the relation between the uncertainty of
sinogram values and image pixels is not immediately evident. Instead, we propose an end-to-end
image reconstruction pipeline where the network output is the desired image cross section, which,
as shown in this work, provides seamless support for uncertainty estimation. In future work, we
aim to compare the performance of our end-to-end approach to that of the CoIL architecture &
consider approaches to increase the training efficiency of the proposed end-to-end solution, as well as
extending our approach to other medical imaging settings, such as 3D CT & MRI.

Potential Negative Societal Impact

We do not foresee many potential negative societal impacts to our work. Given the importance of
robust and reliable predictions in the medical imaging domain, we believe calibrated uncertainty
quantification is an important quality for any model that is to be deployed in practice, including
potentially Implicit Neural Representations.
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A Appendix - Uncertainty Experiments
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Figure 3: Boxplots of the average PSNR of
MCD models trained in a coarse grid hyperpa-
rameter sweep, for both 5- and 20-views. Each
column corresponds to a different activation
function and each row to a sweep over one of
the remaining hyperparameters - depth, width,
probability of dropout, and RFF frequency (Ω0).
Individual diamond points are outliers.
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Figure 4: Boxplots of the average PSNR of
BBB models trained in the coarse grid search
hyperparameter sweep, for both 5 and 20 views.
Each column corresponds to a different acti-
vation function and each row to a sweep over
one of the remaining hyperparameters - depth,
width, RFF frequency (Ω0), KL factor (ξ), and
prior standard deviation (σ).

For MCD and BBB, large-scale hyperparameter sweeps were performed to find optimal model
parameters for: activation function (Relu, SiLU, Sine, Softplus, Tanh), model depth (3, 6, 9), model
width (16, 64, 256, 1024), and random fourier feature (RFF) frequency (1, 5, 10, 15). For MCD
probability of dropout (0.2, 0.5, 0.8) and for BBB prior standard deviation (10, 100, 1000) and KL
factor (1e-10, 1e-5, 1e-1) were additionally swept over. Hyperparameter sweep models were assessed
according to average PSNR, negative log likelihood (NLL), and expected calibration error (ECE) on
the validation set. These experiments were run in both 5- and 20-view cases. Boxplots of the model
performance for MCD and BBB according to each hyperparameter are presented in Figures 3 and 4.
The best performing model in each case was further assessed on the test set.

Since MCD outperformed BBB, shown in Table 1, MCD networks were used as base learners for the
DEs. DEs of size N (DE-N ) were created by ensembling the N top-performing unique MCD model
architectures from the hyper-parameter sweeps, in both the 5- and 20-view case. The DEs were tested
on the same validation and test sets as MCD and BBB.

HMC was implemented via Hamiltorch [32], sampling from an INR of width 256, depth 3, ReLU
activation, and RFF frequency 10. In this preliminary work, no hyper parameter tuning was performed,
so no validation set was used. Further, given the computationally intensive nature of HMC, the
network was tested only on a single Shepp-Logan phantom, outside the previously described validation
and test sets. In future work, we will perform a hyperparameter search, similar to those of MCD and
BBB, and report scores for the full validation and test sets.
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