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Abstract

The generation of discontinuous distributions is a difficult task for most known
frameworks such as generative autoencoders and generative adversarial networks.
Generative non-invertible models are unable to accurately generate such distribu-
tions, require long training and often are subject to mode collapse. Variational
autoencoders (VAEs), which are based on the idea of keeping the latent space to be
Gaussian for the sake of a simple sampling, allow an accurate reconstruction, while
they experience significant limitations at generation task. In this work, instead of
trying to keep the latent space to be Gaussian, we use a pre-trained contrastive
encoder to obtain a clustered latent space. Then, for each cluster, representing a
unimodal submanifold, we train a dedicated low complexity network to generate
this submanifold from the Gaussian distribution. The proposed framework is based
on the information-theoretic formulation of mutual information maximization be-
tween the input data and latent space representation. We derive a link between the
cost functions and the information-theoretic formulation. We apply our approach
to synthetic 2D distributions to demonstrate both reconstruction and generation of
discontinuous distributions using continuous stochastic networks.

1 Introduction

The generation of data with discontinuous distributions with non-invertible networks represents a
great interest for many problems in high energy physics, astrophysics and chemistry all dealing
with high dimensional data. The previous attempts to develop generative models for discontinuous
distributions show limited performance of GANs [1][2][3] and VAE models [4]. Flow models [5]
can handle this problem to some extent but they face the complexity issues when the dimensionality
of data increases. Hybrid models such as SurVAE [6] try to solve this problem by a combination of
non-invertible and invertible networks based on Flows.

In this paper, we present a new information-theoretic stochastic contrastive generative adversarial
network SC-GAN. The SC-GAN is a hybrid system that is based on a deterministic encoder producing
an interpretable latent space and a stochastic decoder representing a generator. The generator
architecture is a set of fully connected layers implemented based on a stochastic EigenGAN network
[7] conditioned on a set of random noise vectors at each layer. The model is trained both in the
reconstruction mode (with fixed noise vectors) and in the generative mode. The contrastive encoder
is trained independently of the generator. The latent space of the encoder is then clustered using
K-Means and approximated by many low-complexity mapping networks which try to shape Gaussians
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into corresponding cluster distributions. Finally, the decoder is trained jointly for reconstruction and
generation using the likelihood with the corresponding discriminators.

We provide an information-theoretical interpretation of the proposed model in Section 2. In Section
3, we perform the analysis of both auto-encoding mode and generation of toy 2D datasets: Eight
Gaussians, Checkerboard, Two spirals, Abs, Sinewaved cube and Four circles.

2 Information-theoretic formulation

The proposed framework is schematically shown in Figure 1 and consists of three stages of training.

2.1 The training of the encoder (stage 1)

The encoder is trained to maximize the mutual information between the data X and its latent space
representation E:

ϕ̂ε = argmax
ϕε

Iϕε
(X;E), (1)

where Iϕε(X;E) = Ep(x,ε)

[
log

qϕε (ε|x)
qϕε (ε)

]
.

The encoder is trained independently from the decoder using contrastive losses (Figure 1a). The
maximization can be considered in the scope of the InfoNCE framework [8] and technically imple-
mented using for example SimCLR contrastive learning [9]. For our toy datasets we choose simple
augmentations based on the addition of small noise to the input data.

(a) Stage 1 (b) Stage 2

(c) Stage 3 : generation step (d) Stage 3 : auto-encoding step

Figure 1: The proposed framework: Stage 1 - training of the encoder, Stage 2- training of the mapping
network, Stage 3 - training of the decoder for the simultaneous reconstruction and generation.

2.2 The training of the latent space mapping networks (stage 2)

The mapping networks aim at generating the complex latent space ε from a simple distribution pω(ω)
(Fig. 1b). The latent space ε has a discontinuous clustered nature following the distribution qϕε(ε).
A simple continuous MLP mapper cannot generate complex qϕε

(ε) from a unimodal pω(ω). For
this reason, we consider splitting qϕε

(ε) on a set of unimodal sub-distributions in such a way that
a simple MLP model can be used to generate each unimodal sub-distribution. We use a simple
K-means [10] clustering to produce Kε distinct subsets. Then for all ε ∈ Ci, i = 1, ...,Kε, we trained
adversarial auto-encoders (AAE) [11] with the latent space pω(ω) following the Gaussian distribution.
Alternatively, one can use Flows to construct a mapper from pω(ω) to qϕε

(ε). Each AAE is defined
by a pair of the encoder qiϕω

(ω|ε) and the decoder piθε(ε|ω) for each cluster i ∈ 1, ...,Kε . The
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Figure 2: The generation results from different latent space models : a) from a single Gaussian pdf,
b) from cluster centers with the Gaussian noise, c) from the mapping network, d) from real data. e) is
a target distribution.

training of the AAE is based on the optimization problem:

(ϕ̂i
ω, θ̂

i
ε) = argmax

ϕi
ω,θi

ε

Iiϕω
(E;W) + λεI

i
ϕω,θε(W;E), (2)

where

Iiϕω
(E;W) = Eqi

ϕε(ε)

[
Eqi

ϕω(ω|ε)

[
log

qiϕω
(ω|ε)

qiϕω
(ω)

× pω(ω)

pω(ω)

]]
= Eqi

ϕε(ε)

[
DKL(q

i
ϕω

(ω|E = ε)||pω(ω))
]
− DKL(q

i
ϕω

(ω)||pω(ω)),

and

Iiϕω,θx(W;E) = Eqi
ϕε(ε)

[
Eqi

ϕω(ω|ε)

[
log

piθε(ε|ω)
qiϕε

(ε)

]]
= Hϕi

ε
(E)−Hϕi

ω,θx(E|W), (3)

where Hϕi
ε
(E) = −Eqi

ϕε(ε)

[
log qiϕε

(ε)
]
, Hϕi

ω,θx(E|W) = −Eqi
ϕε(ε)

[
Eqi

ϕω(ω|ε)

[
log piθε(ε|ω)

]]
and

λε is a constant for the importance of each term. As Eqi
ϕε(ε)

[DKL(qϕω
(ω|E = ε)||pω(ω))] ≥ 0 and

Hϕi
ε
(E) does not depend on the parameters of the networks, the training objective can be rewritten as:

(ϕ̂i
ω, θ̂

i
ε) = argminϕi

ω,θi
ε
DKL(q

i
ϕω

(ω)||pω(ω)) + λεHϕi
ω,θx(E|W), as the original AAE loss [11].

3



2.3 The training of the decoder (stage 3)

The decoder training is performed for both reconstruction and generation modes based on the
optimization problem:

θ̂x = argmax
θ̂x

Iϕ∗
ε ,θx

(E;X) + λxIθ∗
ε ,θx

(E;X), (4)

where the reconstruction mode corresponds to the term:

Iϕ∗
ε ,θx

(E;X) = Epx(x)

[
Eqϕ∗

ε
(ε|x)

[
log

pθx(x|ε)
px(x)

× p̂θx(x)

p̂θx(x)

]]
= −Hϕ∗

ε ,θε
(X|E)− DKL(px(x)||p̂θx(x)) +H(px(x); p̂θx(x))

with Hϕ∗
ε ,θε

(X|E) = Epx(x)

[
Eqϕ∗

ε
(ε|x) [log pθx(x|ε)]

]
, DKL(px(x)||p̂θx(x)) =

Epx(x)

[
log px(x)

p̂θx (x)

]
and H(px(x); p̂θx(x)) = −Epx(x) [log p̂θx(x)] and the generation mode

corresponds to the term:

Iθ∗
ε ,θx

(E;X) = Epx(x)

[
Epω(ω)

[
Epθ∗ε (ε|ω)

[
Epθx (x|ε)

[
log

pθx(x|ε)
px(x)

× p̃θx(x)

p̃θx(x)

]]]]
= Epθε(ε)

[DKL(pθx(x|E = ε)||p̃θx(x))]− DKL(px(x)||p̃θx(x)),

with pθ∗
ε
(ε) = Epω(ω) [pθε(ε|ω)] and DKL(px(x)||p̃θx(x)) = Epx(x)

[
log px(x)

p̃θx (x)

]
and λx is

a constant controlling the trade-off between the two terms, p̂x and p̃x denote the distribu-
tions of reconstruction and generated data, respectively. Since H(px(x); p̂θx(x)) ≥ 0 and
Epθε(ε)

[DKL(pθx(x|E = ε)||pθx(x))] ≥ 0, the above optimization problem can be reduced to:

θ̂x = argmin
θ̂x

Hϕ∗
ε ,θε

(X|E) + DKL(px(x)||p̂θx(x)) + λxDKL(px(x)||p̃θx(x)).

3 Experiments and Conclusions

single Gaussian pdf noisy cluster centers mapping network real data
Eight Gaussians 2.339 0.053 0.065 0.016
Checkerboard 0.337 0.034 0.015 0.009
Two Spirals 1.771 0.058 0.062 0.011

Abs 0.133 0.021 0.029 0.019
Sinewaved cube 0.062 0.023 0.024 0.021

Four circles 0.031 0.034 0.044 0.035
Table 1: The reconstruction results for the different latent space models: latent vector sampled from a
single Gaussian pdf, from cluster centers with Gaussian noise, from the mapping network output and
from random training data latents.

We perform generation experiments on 2D datasets using different ways for latent space modeling.
In the first setting ε is sampled from the Gaussian probability density function. Then we cluster the
ε-space using K-Means. In the second setting we place the Gaussian in the cluster centers and use
this as input. Finally, we train an individual network for each cluster to shape the Gaussian closer to
the real shape of the cluster (stage 2 of the training). For generation we can also use ε from the subset
used to train the encoder. This case is an extreme case when the number of clusters is equal to the
size of the dataset. We show the results of the generation in Fig. 2.

Covering the latent space with the clusters which are approximated by simple fully connected layers
leads to state-of-the-art results (the fourth column in Fig. 2) for the generative models which are not
based on INNs.

We show the Mean Square Error in Table 1 to demonstrate reconstruction error. We fix the noise
vectors and we take the latent vector directly from the output of the encoder from Stage 1. The
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training stage of generation is different: we take the latent vector from a single Gaussian pdf, from
cluster centers with the Gaussian noise, from the mapping network and from real data. We notice that
despite poor generation, network can still perform good results in reconstruction with simplest latent
space modeling (one Gaussian) which is a sign of overfitting. It is also interesting to note that the
better generation is, the worth are the results of reconstruction and vice versa. Modeling the latent
space as discontinuous allow us to marry the mode of reconstruction and generation. In the limit case
with number of clusters equal to the number of points in the train set we get the best results.

Acknowledgments and Disclosure of Funding

This research was partially funded by the SNF Sinergia project (CRSII5-193716): Robust Deep
Density Models for High-Energy Particle Physics and Solar Flare Analysis (RODEM). The authors
are thankful to Johnny Raine and Sebastian Pina-Otey for their feedback on the paper and discussion.

References
[1] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martín Arjovsky, Olivier Mastropietro, and

Aaron C. Courville. Adversarially learned inference. ArXiv, abs/1606.00704, 2017.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, vol-
ume 27. Curran Associates, Inc., 2014.

[3] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
4396–4405, 2019.

[4] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

[5] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

[6] Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, and Max Welling. Survae flows: Surjections
to bridge the gap between vaes and flows. In NeurIPS, 2020.

[7] Zhenliang He, Meina Kan, and Shiguang Shan. Eigengan: Layer-wise eigen-learning for gans. In
International Conference on Computer Vision (ICCV), 2021.

[8] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. ArXiv, abs/1807.03748, 2018.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Hal Daumé III and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 1597–1607. PMLR, 13–18 Jul 2020.

[10] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):129–137,
1982.

[11] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfellow. Adversarial autoencoders.
CoRR, abs/1511.05644, 2015.

5


	Introduction
	Information-theoretic formulation
	The training of the encoder (stage 1)
	 The training of the latent space mapping networks (stage 2)
	 The training of the decoder (stage 3)

	Experiments and Conclusions

