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Abstract

Ensembles of independently trained neural networks are a state-of-the-art approach
to estimate predictive uncertainty in Deep Learning, and can be interpreted as an
approximation of the posterior distribution via a mixture of delta functions. The
training of ensembles relies on non-convexity of the loss landscape and random
initialization of their individual members, making the resulting posterior approxima-
tion uncontrolled. This paper proposes a novel and principled method to tackle this
limitation, minimizing an f -divergence between the true posterior and a kernel den-
sity estimator in a function space. We analyze this objective from a combinatorial
point of view, and show that it is submodular with respect to mixture components for
any f . Subsequently, we consider the problem of ensemble construction, and from
the marginal gain of the total objective, we derive a novel diversity term for training
ensembles greedily. The performance of our approach is demonstrated on com-
puter vision out-of-distribution detection benchmarks in a range of architectures
trained on multiple datasets. The source code of our method is publicly available
at https://github.com/MIPT-Oulu/greedy_ensembles_training.

1 Introduction

Estimation of predictive uncertainty is one of the most important challenges to solve in Deep Learning
(DL). Applications in finance, medicine and self-driving cars are examples where reliable uncertainty
estimation may help to avoid substantial financial losses, improve patient outcomes, or prevent fatal
accidents [1]. However, to date, despite rapid progress, there is a lack of principled methods that
reliably estimate the predictive uncertainty of deep neural networks (DNNs). As such, the most
practical and empirically best-performing approaches is based on training a series of independent
randomly initialized DNNs – Deep Ensembles (DE) [2, 3].

Recent studies, e.g. by Wilson and Izmailov [3] interpret ensembles as an approximation of predictive
posterior. While this interpretation is correct from a Bayesian point of view, obtaining individual
ensemble members via maximum a posteriori probability (MAP) estimation, may not lead to obtaining
good coverage of the full support of the function space posterior distribution, and naturally has
arbitrary bad theoretical approximation guarantees.

In this work, we propose a novel and principled methodology for approximate function space
posterior inference in DNNs. Contrary to the mainstream BDL approach, which is based on defining
a posterior distribution over the model parameters [4], we take a functional view, which allows us to
treat the problem of training ensembles from combinatorial optimization prospective. This paper is a
short version of [5].
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2 Preliminaries

Consider an ensemble to be parameterized by a set of functions Z = {zm}Mm=1 ⊂ F , where F is a
class of continuous functions, zm : Rd → Rc, with d the dimensionality of the input data, and c the
dimensionality of the output. When training ensembles, we generally want to solve the following
optimization problem:

min
Z,|Z|=M

R(Z)− ΩλM (Z), (1)

where R(Z) = 1
N

∑N
i=1 `

(
1
M

∑M
m=1 zm(xi), yi

)
2 is the empirical risk of the ensemble, ` : Y ×

Y → R+ is a loss function, D = {xi, yi}Ni=1 is a training dataset of size N , and ΩλM (Z) is some
diversity-promoting term, with diversity regularization strength λM . Let is now introduce the main
notions of submodular analysis, a powerful tool that enables the analysis of the optimization of set
functions.
Definition 1 (Submodularity). A function f : 2V → R, for the power set of a base set V , is
submodular if for all A ⊆ B ⊂ V and x ∈ V \B

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B). (2)

Definition 2 (Supermodularity and modularity). A set function is called supermodular if its negative
is submodular, and modular if it is both submodular and supermodular.

3 Submodular analysis of f -divergences

Main result We now consider the problem of approximating a Bayesian posterior via minimization
of an f -divergence.

Consider some density p(z) over continuous functions. We define qM (z) = 1
M

∑M
m=1K(d(z, zj)),

Kj(z) := K(z, zj) is a kernel centered at zj used to approximate the modes of p(z).
Theorem 1. Any f -divergence

Df (p||qM ) =

∫
f

(
p(z)

1
M

∑M
j=1Kj(z)

)
1

M

M∑
m=1

Km(z)dz (3)

between a distribution p(z) and a normalized mixture of M kernels with equal weights is supermodu-
alar in a cardinality-fixed setting, assuming that ∀zmaxqM Df (p(z)||qM (z)) <∞.

Minimization of (3) is equivalent to a cardinality-constrained maximization of a non-monotone
submodular function of Z = {z1, . . . , zM}.

Marginal gains Although submodular optimization has natural parallel extensions and associated
approximation guarantees, due to the simplicity of presentation, we focus in this paper on forward
greedy selection, which requires the computation of the marginal gain on the objective function
F (Z), i.e. ∆(zk|Z) = F (Z ∪ {zk})− F (Z).
Proposition 1. Consider C = maxDf (p||qM ), where Df (p||qM ) is an arbitrary f -divergence be-
tween some distribution p(z) and a mixture of kernels qM (z) = 1

M

∑M
j=1Kj(z), and Df (p||qM ) <

∞. Then, maximization of a marginal for −Df (p||qM ) + C at a step k of a greedy algorithm
corresponds to

arg max
zk

∆(zk|Z) = arg min
zk

Ez∼Kk(z)f

(
p(z)

1
M

∑k
j=1Kj(z)

)
. (4)

4 Objective function

We consider parametric functions zθ : Rd → Rc. We also consider f(x) = − log x to be a gen-
erator for the f -divergence. p(zθ|D) ∝ p(zθ1 , . . . , zθM |D) ∝

∏M
m=1 p(D|zθm)p(zθm), where θm

2In practice we apply Jensen’s inequality, and setR(Z) = 1
M

∑M
m=1

1
N

∑N
i=1 `(zm(xi), yi).
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are parameters, p(D|zθ) the likelihood and p(zθ) the prior; p(D|zθ) ∝
∏n
i=1 exp(−`(zθ(xi), yi)),

and p(zθ) ∝ exp(−λ‖θ‖22). To solve the problem defined by (4) in the context of Bayesian poste-
rior approximation, we define the kernel density components via generalized exponential kernels
Kj(zθ) ∝ exp(−λMd(zθ, zθj )

2), where λM is proportional to the kernel width. Furthermore, in-
stead of full integration in (4), we consider a MAP-like point estimate. Therefore, at a kth greedy
step, we minimize

J(θk) = E(x,y)∼p(x,y)`(zθk(x), y) + λ‖θk‖22︸ ︷︷ ︸
Marginal gain on R(Z)

+ log

k−1∑
j=1

exp

(
−λM
M

d(zθk , zθj )
2

)
︸ ︷︷ ︸

Marginal gain on ΩλM (Z)

(5)

to obtain a new ensemble member.

Based on hardness results for function norm computation [6], computing the marginal gain on the
diversity term in (5) is non-trivial. Here, we use the following sampling-based approximation.

log

k−1∑
j=1

exp

(
−λM
M

Ex∼p∗(x)‖zθk(x)− zθj (x)‖22
)
, (6)

where p∗(x) is a weighting distribution. In our experiments, we fit a pixel-wise Gaussian to the data,
and set p∗(x) to have ×5 larger standard deviation (Appendix A).

5 Experiments

Datasets and models. We ran our main experiments on CIFAR10, CIFAR100 [7] and SVHN [8]
in-distribution datasets. Our OOD detection benchmark included CIFAR10, CIFAR100, DTD [9],
SVHN [8], LSUN [10], TinyImageNet [11], Places 365 [12], Bernoulli noise images, Gaussian noise,
random blobs image, and uniform noise images. The composition of the benchmark was inspired by
the work of Hendrycks et al. [13]. We excluded the in-distribution datasets for each of the settings,
resulting in a total of 10 OOD datasets for each in-distribution dataset. The full description of the
benchmark is shown in Appendix A.2. The experiments were conducted using ResNet164 (pre-
activated version; denoted as PreResNet164) [14], VGG16 (with batch normalization [15]; denoted
as VGG16BN) [16], and WideResNet28x10 [17]. Other relevant details are shown in Appendix B.1.

Model selection and metrics. We used mutual information (MI) between the distribution of the
predicted label ŷ for the point x̂ and the posterior distribution over functions p(f |D), to evaluate
the epistemic uncertainty (Appendix A.3) and reported the area under the ROC curve (AUC) and
area under the precision-recall (PR) curve, i.e. average precision (AP) to quantify the OOD detection
performance. Furthermore, we computed the false positive rate at 95% true positive rate (FPR95).

Out of distribution detection results We present aggregated results for all the models and in-
distribution datasets in Table 1. It is clear that on average (across OOD datasets), our method is
substantially better than DE. This holds for all the architectures and in-distribution datasets. We show
the expanded version of all the OOD detection results in Appendix B.3. An example of these results
is shown in Figure 1 for all the models trained on CIFAR 100. Here, one can see that our method is at
least similar to DE, and substantially better overall.

6 Conclusion

In this paper, we have introduced a novel paradigm for Bayesian posterior approximation in Deep
Learning using greedy ensemble construction via submodular optimization. We have proven a
new general theoretical result, which shows that minimization of an f -divergence between some
distribution and a kernel density estimator has approximation guarantees, and can be done greedily.
We then derived a novel coverage promoting diversity term for ensemble construction. The results
presented in this paper, demonstrate that our method outperforms DE [2], on a range of benchmarks.
An extended version of this workshop paper can be found in [5]. Our code is available at https:
//github.com/MIPT-Oulu/greedy_ensembles_training.
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Figure 1: Out-of distribution detection results on CIFAR 100 for 3 different architectures (read
column-wise). Here, we show AUC values from 0.5 to 1 averaged across 5 seeds.

Table 1: Averaged metrics across 10 OOD datasets.

Model Dataset Deep Ensembles Ours
AUC (↑) AP (↑) FPR95 (↓) AUC (↑) AP (↑) FPR95 (↓)

PreResNet164
C10 0.94 0.92 0.17 0.95 0.95 0.14
C100 0.79 0.80 0.47 0.88 0.88 0.40
SVHN 0.99 0.97 0.02 1.00 0.98 0.01

WideResNet28x10
C10 0.95 0.94 0.15 0.96 0.96 0.12
C100 0.86 0.85 0.36 0.90 0.91 0.30
SVHN 0.99 0.96 0.03 1.00 0.99 0.01

VGG16BN
C10 0.92 0.91 0.23 0.95 0.95 0.18
C100 0.83 0.82 0.45 0.89 0.90 0.36
SVHN 0.99 0.96 0.02 1.00 0.98 0.02
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A Implementation details

A.1 Practical implementation of the algorithm

Weighting distribution for the diversity term We propose the following simple heuristic, defining
p∗(x) as a normal distribution N (µD, α · ΣD) of dimensionality, corresponding to the training data.
The covariance ΣD for this distribution is set to be diagonal, such that the variance for every dimension
j is ΣD[j, j] = (α · σj)2, where α > 1 is a scaling parameter, and σ2

j is a variance of the dimension
j computed from samples of the training dataset D. Similarly, µD, the vector of expected values
for every dimension, is also computed from the training data. Finally, the hyperparameter α = 5
was found to work well, and we thus report all the experimental results with it fixed. We note that a
similar technique, but for in-distribution data generation has been used earlier in [18].
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The resulting algorithm The resulting, computationally tractable optimization algorithm for en-
sembles, which minimizes marginal gains (4), is shown in Algorithm 1. For simplicity, we omit the
snapshot selection step, i.e. early stopping.

We note that contrary to the general Random Greedy method, shown in the main text, we can resort
to a method with complexity of O(k). This is achieved through the fact that a uniform selection of
the elements maximizing the marginal gain can be avoided, since at each greedy step, we initialize
the new models randomly before maximizing the marginal gain. Another performance improvement
can be gained by storing the evaluations zj(xi) ∀j = 1, . . . , k − 1 in memory before executing each
kth step.

We report here also one important practical trick, which we found important during the training.
Specifically, freezing the batch normalization layers [15] before computing the diversity term turned
out to help the convergence substantially. We anticipate that the diversity term weighting distribution
approximated as a simple multivariate Gaussian with diagonal covariance may be corrupting the
batch norm statistics. We thus think that using other, more sophisticated techniques for generating
the weighting distribution samples might provide better results.

Algorithm 1 O(k) Random Greedy algorithm for training ensembles of neural networks.

1: Input: D = {(xi, yi)}ni=1 – Dataset
2: Input: M – Size of the ensemble
3: Input: N – Number of iterations
4: Input: α – Variance parameter for p∗(x)
5: Input: Nb – Mini-batch size
6: Z ← ∅
7: D∗ ← {(x∗, y∗i )}ni=1 ∼ N (µD, α · ΣD)
8: while |Z| < M do
9: k ← |Z|;

10: Randomly initialize zθk ;
11: for i = 1 to N do
12: Di ← {(xb, yb)}Nbb=1 ∼ D;
13: D∗i ← {x∗b}

Nb
b=1 ∼ D∗;

14: L← E(x̂,ŷ)∼Di`(zθk(x̂), ŷ) + λ‖θk‖22
15: Ω← 0
16: if k > 1 then
17: for j = 1 to k − 1 do
18: dij ← Ex∗∼D∗

i
‖zθk(x∗)− zθj (x∗)‖22

19: end for
20: Ω← log

∑k−1
m=1 exp(−λMM dim)

21: end if
22: Update θ using∇θ (L+ Ω)
23: end for
24: Z ← Z ∪ {zθk}
25: end while
26: return Z

A.2 OOD detection benchmark

The OOD benchmark included 10 different datasets. Here, we used DTD [9], Gaussian noise,
Bernoulli noise, and uniform noise datasets In addition, we used Places 365 [12], Tiny ImageNet
[11, 19], and LSUN [10] datasets in the benchmark. For CIFAR10 as in-domain data, we added
CIFAR100 and SVHN [8] to the benchmark. For CIFAR100 – CIFAR10 and SVHN. Finally, for
SVHN, we added CIFAR10 and CIFAR100 as OOD datasets, making a total of 10 OOD datasets per
1 in-distribution dataset. The details about each of the datasets are shown in Table 2.

Before feeding the images to the network, we applied re-scaling of the intensity range by subtracting
the in-domain dataset mean, and dividing by the in-domain dataset std.
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Table 2: Description of the datasets used in all the exp. R indicates real images, S – synthetic.
Dataset Type # samples Comment
Uniform

S

25, 000 N/A
Gaussian 25, 000 Generated once, used in all experiments
Blobs 25, 000 N/A
Bernoulli 25, 000 N/A

CIFAR10

R

10, 000 Test set (not used in training)
CIFAR100 10, 000 Test set (not used in training)
SVHN 73, 257 Test set (not used in training)
Places 365 10, 000 First 10, 000 images from the test set (sorted alphabetically)
TinyImageNet 10, 000 Original validation set images
DTD 5, 640 Release 1.0.1
LSUN 10, 000 Test set

A.3 Epistemic uncertainty computation

We used the epistemic uncertainty, i.e. mutual information (MI) between the distribution of predicted
label ŷ for the point x̂ and the posterior distribution over functions p(f |D), to evaluate the uncer-
tainty [20, 21]. As a distribution over weights induces a distribution over functions, we approximate
the MI as:

I(ŷ; f |x̂,D) = H
[
Ep(θ|x̂,D)p(ŷ|θ, x̂,D)

]
− Ep(θ|x̂,D)H [p(ŷ|θ, x̂,D)] , (7)

where H[·] denotes the entropy. One can see that this metric can be efficiently computed from the
predictions of an ensemble.

B Experiments

B.1 Experimental details

Model selection Contrary to the commonly used practice, we did not use CIFAR10/100 and SVHN
test set sets for model selection. Neither did we use any OOD data. Instead, we used validation
set accuracy (10% of the training data; randomly chosen stratified split) to select the models when
optimizing the marginal gain. The best snapshot found using the validation data, was then selected
for final testing. When selecting the models for evaluation on OOD data, we first evaluated ensembles
on the in-distribution test set (Appendix B.2). Subsequently, we selected the highest λM that did not
harm the test set (in-domain) performance (no overlap of confidence intervals defined as mean ±
standard error). To provide additional information, we also analyzed adaptive calibration error (ACE)
with 30 bins [22].

Hyper-parameters The main training hyper-parameters were adapted from [4] (see Table 3), but
with additional modifications inspired by [20, 23], which helped to train the CIFAR models to state-
of-the-art performance in only 100 epochs. As such, we first employed a warm-up of the learning rate
(LR) from a value 10 times lower than the initial LR (LRinit in Table 3) for 5 epochs. Subsequently,
after 50% of the training budget, we linearly annealed the LR to the value of LR× lrscale until 90%
of the training budget is reached, after which we kept the value of LR constant.

All models were trained using stochastic gradient descent with momentum of 0.9 and a total batch
size of 128. We employed standard training augmentations – horizontal flipping, reflective padding
to 34× 34, and random crop to 34× 34 pixels.

Model LRinit Nesterov Weight Decay lrscale

PreResNet164 0.1 Yes 0.0001 0.01
VGG16BN 0.05 No 0.0005 0.01
WideResNet28x10 0.1 No 0.0005 0.001

Table 3: Main hyper-
parameters of all the used
models.
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Figure 2: Relationship between accuracy, ACE, and λM (M = 11). Subplots (a) and (b) show the
results for CIFAR10. Subplots (c) and (d) show the results for CIFAR100.

B.2 In-domain performance

In-distribution performance vs. diversity. Figure 2 provides an illustration of how the test set
performance changes with λM on CIFAR data. One can see a general trend that when λM approaches
M , the models lose the ability to make accurate predictions, which results in lower accuracy and
poorer calibration. Interestingly, performance on the VGG model degrades much slower with λM
compared to other architectures. Similar findings were also obtained for the SVHN dataset. Based on
the test performance, we selected the models for further evaluation on OOD benchmark.

Best models’ performance Table 4 shows the results of all the trained models on the in-domain
data. One can see that the results between Deep Ensembles (DE) [2] do not differ significantly. We
trained all these models according to the earlier specified hyper-parameters and the learning rate
schedule. Models selected in Table 4 are used to report the results in the main experiments.

Table 4: In-domain performance on the test sets of CIFAR10/100 and SVHN for all the models used
in the experiments (M = 11). We report mean and standard error over 5 random seeds for each of
the models. Standard errors are reported if they are more than 0.01 across runs. DE indicates Deep
Ensembles.

Architecture Dataset Method Accuracy (%) NLL ×100 ACE (%)

PreResNet164

C10 DE 95.70±0.02 13.28±0.06 0.18
Ours (λM = 3) 95.66±0.02 13.18±0.09 0.16

C100 DE 79.97±0.04 73.44±0.17 0.08
Ours (λM = 5) 79.93±0.04 74.16±0.91 0.09±0.01

SVHN DE 99.46±0.01 2.34±0.04 0.25
Ours (λM = 1) 99.38±0.01 3.16±0.13 0.81±0.12

VGG16BN

C10 DE 94.55±0.02 17.59±0.05 0.23
Ours (λM = 5) 94.48±0.06 17.84±0.15 0.23±0.01

C100 DE 76.32±0.09 91.07±0.35 0.11
Ours (λM = 5) 76.78±0.07 89.10±0.33 0.10

SVHN DE 99.40±0.01 2.71±0.02 0.18±0.01

Ours (λM = 1) 99.25±0.01 3.94±0.10 0.95±0.12

WideResNet28x10

C10 DE 96.56±0.02 10.76±0.06 0.16±0.01

Ours (λM = 1) 96.54±0.01 10.99±0.03 0.18±0.01

C100 DE 83.08±0.09 62.05±0.18 0.09
Ours (λM = 1) 83.02±0.06 62.20±0.13 0.08

SVHN DE 99.45±0.01 2.53±0.03 0.43±0.01

Ours (λM = 1) 99.38 2.87±0.04 0.46±0.01
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B.3 Detailed results

Detalized versions of the results presented in the main text are shown in Table 5. The corresponding
λM coefficients are the same as in Table 4.

Table 5: CIFAR10 results. We report mean and standard error over 5 random seeds for each of the
models. Standard errors are reported if they are more than 0.01 across runs. DE indicates Deep
Ensembles.

Architecture OOD dataset DE Ours
AUC (↑) AP (↑) FPR95 (↓) AUC (↑) AP (↑) FPR95 (↓)

PreResNet164

bernoulli 0.98±0.01 0.97±0.01 0.04±0.01 1.00 1.00 0.00
blobs 0.96 0.98 0.12±0.01 0.96 0.98 0.12±0.01

cifar100 0.90 0.87 0.30 0.90 0.88 0.30
dtd 0.93 0.83 0.19±0.01 0.96 0.93 0.14
gaussian 0.93±0.01 0.94±0.01 0.16±0.01 0.96±0.02 0.97±0.02 0.11±0.03
lsun 0.93 0.89 0.20 0.95 0.94 0.18
places 0.92 0.89 0.21 0.94 0.93 0.19
svhn 0.94 0.99 0.16 0.95 0.99 0.14
tiny imagenet 0.91 0.88 0.28 0.92 0.89 0.26
uniform 0.98±0.01 0.97±0.01 0.04±0.01 1.00 1.00 0.00

VGG16BN

bernoulli 0.94±0.01 0.95±0.01 0.11±0.02 1.00 1.00 0.00
blobs 0.96 0.98 0.16 0.96 0.98 0.15
cifar100 0.89 0.86 0.34 0.89 0.86 0.34
dtd 0.90 0.77±0.01 0.25±0.01 0.96 0.92 0.18
gaussian 0.95 0.97 0.14±0.01 0.99 0.99 0.05±0.01
lsun 0.93 0.91 0.24 0.95 0.94 0.21
places 0.91 0.90 0.27±0.01 0.94 0.93 0.23
svhn 0.87 0.97 0.28±0.01 0.87 0.97 0.27±0.01

tiny imagenet 0.90 0.88 0.33 0.90 0.88 0.32
uniform 0.90±0.02 0.89±0.01 0.16±0.02 1.00 1.00 0.00

WideResNet28x10

bernoulli 1.00 1.00 0.00 1.00 1.00 0.00
blobs 0.96 0.97 0.11±0.01 0.97 0.98 0.10±0.01

cifar100 0.92 0.89 0.27 0.91 0.89 0.27
dtd 0.93 0.86±0.01 0.22±0.01 0.97 0.94 0.14±0.01
gaussian 0.96±0.01 0.97±0.01 0.09±0.01 1.00 1.00 0.00
lsun 0.93 0.91 0.20 0.95 0.95 0.17±0.01
places 0.93 0.91 0.21 0.95 0.94 0.18
svhn 0.96 0.99 0.12 0.95 0.99 0.13±0.01

tiny imagenet 0.92 0.90 0.27 0.93 0.91 0.25
uniform 1.00 1.00 0.00 1.00 1.00 0.00
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Table 6: CIFAR100 results. We report mean and standard error over 5 random seeds for each of
the models. Standard errors are reported if they are more than 0.01 across runs. DE indicates Deep
Ensembles.

Architecture OOD dataset DE Ours
AUC (↑) AP (↑) FPR95 (↓) AUC (↑) AP (↑) FPR95 (↓)

PreResNet164

bernoulli 0.81±0.03 0.82±0.03 0.24±0.04 1.00 1.00 0.00
blobs 0.92±0.01 0.95 0.25±0.02 0.92±0.02 0.95±0.01 0.23±0.03

cifar10 0.80 0.76 0.57 0.78±0.01 0.75 0.67±0.02

dtd 0.76±0.01 0.61±0.01 0.64±0.01 0.80±0.01 0.75±0.01 0.78±0.05

gaussian 0.80±0.01 0.83±0.01 0.37±0.02 0.95±0.02 0.97±0.01 0.16±0.05
lsun 0.86 0.81 0.45 0.87 0.85 0.47±0.01

places 0.82 0.77 0.52 0.83 0.81 0.60±0.03

svhn 0.80±0.01 0.96 0.55±0.01 0.83±0.01 0.96 0.50±0.01
tiny imagenet 0.82 0.79 0.53 0.82 0.79 0.58±0.01

uniform 0.51±0.09 0.66±0.05 0.55±0.09 1.00 1.00 0.00

VGG16BN

bernoulli 0.87±0.02 0.88±0.02 0.24±0.03 1.00 1.00 0.00
blobs 0.95 0.97 0.16±0.01 0.97 0.98 0.12±0.02
cifar10 0.78 0.73 0.63 0.78 0.74 0.64±0.01

dtd 0.73 0.53 0.62±0.01 0.86 0.80±0.01 0.50±0.01
gaussian 0.87±0.02 0.90±0.01 0.35±0.04 0.95±0.01 0.97±0.01 0.15±0.03
lsun 0.85 0.82 0.47 0.90 0.89 0.40
places 0.82 0.78 0.55 0.86 0.85 0.51
svhn 0.76±0.01 0.95 0.67±0.02 0.76±0.01 0.95 0.72±0.04

tiny imagenet 0.81 0.78 0.56 0.83 0.79 0.55
uniform 0.86±0.02 0.89±0.02 0.28±0.04 1.00 1.00 0.00

WideResNet28x10

bernoulli 0.97±0.02 0.96±0.02 0.04±0.02 1.00 1.00 0.00
blobs 0.95 0.97 0.16±0.01 0.98±0.01 0.99 0.09±0.02
cifar10 0.80 0.74 0.53 0.81 0.76 0.54±0.01

dtd 0.84±0.01 0.75±0.01 0.54±0.01 0.88±0.01 0.84±0.01 0.49±0.02
gaussian 0.72±0.08 0.78±0.05 0.39±0.09 0.94±0.03 0.97±0.01 0.20±0.07
lsun 0.87 0.81±0.01 0.35 0.91 0.90±0.01 0.32±0.01
places 0.84 0.79±0.01 0.44±0.01 0.88 0.87±0.01 0.41±0.01
svhn 0.80 0.95 0.52±0.01 0.80±0.01 0.95 0.52±0.01

tiny imagenet 0.84 0.78 0.46 0.85 0.81 0.46
uniform 0.95±0.01 0.96±0.01 0.12±0.03 1.00 1.00 0.00
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Table 7: SVHN results (averaged across 5 seeds)

Architecture OOD dataset DE Ours
AUC (↑) AP (↑) FPR95 (↓) AUC (↑) AP (↑) FPR95 (↓)

PreResNet164

bernoulli 1.00 0.99 0.01 1.00 1.00 0.00
blobs 1.00 0.99 0.01 0.99 0.98 0.02
cifar10 0.99 0.97 0.02 0.99 0.97 0.02
cifar100 0.99 0.96 0.02 0.99 0.96 0.04
dtd 0.99 0.94 0.02 1.00 0.98 0.01
gaussian 1.00 0.99 0.01 1.00 1.00 0.00
lsun 0.99 0.96 0.02 1.00 0.98 0.01
places 0.99 0.96 0.02 1.00 0.98 0.01
tiny imagenet 0.99 0.96 0.02 1.00 0.97 0.02
uniform 1.00 0.99 0.01 1.00 1.00 0.00

VGG16BN

bernoulli 1.00 0.99 0.01 1.00 1.00 0.00
blobs 1.00 0.98 0.01 1.00 0.99 0.01
cifar10 0.99 0.95 0.02 0.99 0.96 0.03
cifar100 0.99 0.94 0.02 0.99 0.95 0.05
dtd 0.99 0.93 0.02 1.00 0.97 0.01
gaussian 1.00 0.99 0.01 1.00 1.00 0.00
lsun 0.99 0.95 0.02 1.00 0.99 0.01
places 0.99 0.96 0.02 1.00 0.98 0.01
tiny imagenet 0.99 0.95 0.02 0.99 0.97 0.03
uniform 1.00 0.99 0.01 1.00 1.00 0.00

WideResNet28x10

bernoulli 1.00 0.99±0.01 0.02±0.01 1.00 1.00 0.00
blobs 0.99 0.98 0.02 1.00 0.99 0.01
cifar10 0.99 0.96 0.02 1.00 0.97 0.02
cifar100 0.99 0.95 0.03 0.99 0.97 0.02
dtd 0.99 0.91±0.01 0.04 1.00 0.99 0.00
gaussian 1.00 0.98 0.02 1.00 1.00 0.00
lsun 0.99 0.95 0.03 1.00 0.99 0.00
places 0.99 0.95 0.03 1.00 0.99 0.00
tiny imagenet 0.99 0.96 0.02 1.00 0.98 0.01
uniform 0.99 0.98±0.01 0.03±0.01 1.00 1.00 0.00
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