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Abstract

We demonstrate and discuss mode-connectivity of the ELBO, the objective function
of variational inference (VI). Local optima of the ELBO are found to be connected
by essentially flat maximum energy paths (MEPs), suggesting that optima of the
ELBO are not discrete modes but lie on a connected subset in parameter space. We
focus on Latent Dirichlet Allocation, a model commonly fit with VI. Our findings
parallel recent results showing mode-connectivity of neural net loss functions, a
property that has helped explain and improve the performance of neural nets. We
find MEPs between maxima of the ELBO using the simplified string method (SSM),
a gradient-based algorithm that updates images along a path on the ELBO. The
mode-connectivity property is explained with a heuristic argument about statistical
degeneracy, which is related to over-parametrization in neural networks. This study
corroborates and extends the empirical experience that topic modeling has many
optima, providing a loss-landscape-based explanation for the “no best answer"
phenomenon experienced by practitioners of LDA.

1 Introduction

Topic models are hierarchical statistical models used to discover latent structure in a dataset. Latent
Dirichlet Allocation (LDA), introduced by [7], is a simple topic model that considers each document
as having unique proportions of K topics, where each topic is associated with a distribution over
words in a vocabulary. See Appendix A or [7] for details. The statistical inference problem is
to optimize the parameters of the model, which is often done using variational inference (VI). In
Bayesian inference, one usually seeks the posterior distribution, but in practice it is intractable to
compute. VI circumvents this problem by optimizing the parameters of an approximating distribution
to be close to the exact posterior. See Appendix B or [15].

There is typically no “best answer" to the task of topic modeling: words take different meanings
based on context, and different groupings of words can lead to very different, and yet satisfactory
topic assignments [16]. This is the folk intuition of VI performed on LDA, but little is known about
the optimization landscape that leads to such results. Though remedies have been proposed, e.g. by
allowing users to inject constraints to control the topic outputs [17], there is no formal explanation of
the “no best answer" phenomenon.

The objective function of VI is the Evidence Lower Bound (ELBO). It is the sum of an expected
log joint and a KL divergence term. To maximize the first term is to find MAP parameters for the
model, whereas maximizing the second term is to find an approximate posterior that is close to the
prior distribution. VI balances these two goals. However, VI is a bit of a black box: the ELBO is
high-dimensional, with a parametrization highly dependent on the model, and thus rather opaque.
Gaining a better understanding of the ELBO and its geometry is a key step to our further use of VI in
increasingly complex applications.
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We are inspired by the neural net literature, where there has been an increasing fascination in the loss
landscapes of neural nets. The ELBO has similarities to neural net loss functions, the goal of both VI
and DNNs being to maximize a conditional log likelihood of a hierarchical model with hidden layers.
Thus we expect similar properties between the ELBO and neural net losses for analogous models.

One particularly interesting property of neural net loss functions is mode-connectivity: recent results
indicate that there often exist paths of almost constant loss between local optima. Empirical evidence
for mode-connectivity is presented in [11], [12], [14]. Further exploration of neural net loss landscapes
and mode-connectivity can be seen in, for example, [12] which relates the nonlinear unit of neural
networks to the connectedness of optima, while [8] and [9] suggest that saddle points proliferate
in parameter space as dimensions increase. The mode-connectivity property has been exploited
to develop new ensembling methods [14]. Furthermore, it is suggested that the MEPs become
increasingly flat with wider and deeper neural net architectures [11].

In comparison to neural net loss functions, there has not been much theoretical study of the ELBO.
We both provide empirical evidence for mode-connectivity of the ELBO, with a method resembling
that of [11]. Our theoretical discussion is closest to [13], who shows that overparametrization and
resilience are related to mode-connectivity.

To find MEPs in the ELBO landscape, we use the simplified string method (SSM), introduced by [5].
The SSM is an iterative gradient-based method that sets a straight path between two optimal parame-
ters defined by n beads along it, then alternates 1) a gradient ascent step and 2) a reparametrization
step that allow the path to climb to a MEP between local maxima. We apply the string method with a
coordinate ascent step which is typical when maximizing the ELBO.

Our theoretical discussion of MEPs draws from analogous discussion on neural net loss functions. It
has been shown that overparametrization, i.e. superfluous complexity, leads to near-optimal MEPs in
neural networks [13]. We show here that the same holds for the LDA ELBO. In experiments, we show
that increased model complexity in LDA also corresponds to increasingly optimal MEPs. However,
we argue that there is a more pathological source of mode-connectivity in the ELBO: continuous
statistical degeneracy, meaning there is no single optimum but rather a connected set of optimal
model parameters. This explains why, as seen in the experimental section, near-optimal MEPs in the
ELBO still show up in an underparametrized model.

It is also known that neural net MEPs become increasingly flat with not just wider, but deeper
architectures [11]. Analogously, we expect the MEPs to exist (and be even more optimal) in VI for
deeper hierarchical models than LDA, which contains only a single hidden layer. Experiments with
MEPs in other hierarchical models is left for future work.

Note that the ELBO is to be maximized, whereas neural net losses are to be minimized. In this
paper, we refer to the neural net objective functions interchangeably as loss or energy functions.
Similarly, MEPs refer to maximum or minimum energy paths in the case of the ELBO or neural net
loss function, respectively.

1.1 Contribution and Significance

Contribution We demonstrate mode-connectivity of the ELBO landscape, paralleling recent results
in the neural network literature. The MEPs of the ELBO become increasingly optimal as data size and
model complexity increase, indicating that ELBO MEPs, like neural net MEPs, are encouraged by
overparametrization. Along the way, this provides an optimization-centric viewpoint of the “no best
answer" phenomenon of topic modeling and statistical degeneracy. Practitioners can feel reassured of
their results, which are black-box and which may vary based on different initializations.

Significance As a black box model, VI and its objective function, the ELBO, are not well-understood.
By unveiling mode-connectivity, we seek deeper understanding of the ELBO landscape itself, beyond
merely what parameter properties the ELBO encourages, as is done in [22]. Furthermore, by
indicating that MEPs abound with increasingly complex models, we conjecture that mode-connectivity
holds in deeper probabilistic models. Last, we point out that statistical degeneracy is important:
the AI literature often assumes the existence of a single best parameter, but in practice, model
misspecification and overparametrization can lead to abundant optima, which may be connected
in parameter space. This can lead to unexpected and interesting behavior when it comes time for
statistical inference.
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2 Finding paths between modes

We employ the simplified string method (SSM), introduced by [5], to compute MEPs in the ELBO
landscape. The SSM was originally designed to search for chemical transition states, the most proba-
ble path of transition between two energetically stable states of a physical system [4],[5]. Applied
to the topic modeling inference problem, the potential energy is the ELBO, and optimal transition
paths give continuous deformations between two distinct, locally optimal topic configurations. From
a statistical degeneracy perspective (see Section 3), these paths occur in connected sets of optimal
parameters.

To find a MEP, we first obtain two distinct local maxima of the ELBO using stochastic variational
inference (SVI) [23] on the New York Times dataset, which consists of two million text documents.
SVI is the stochastic variant of batch variational inference, which alternately updates the global and
local parameters in an expectation-maximization fashion (see [15]) using the natural gradient of the
ELBO with respect to each of the parameters. SVI gives us optimized global parameters (topics’
distributions over words), which are then used to find optimal local parameters (topic proportions
for each document) for a smaller held-out dataset. SSM is done on the held-out dataset because the
ELBO requires both global and local parameters. See Appendix C for the SSM algorithm.

3 Explaining MEPs

It is not easy to mathematically prove conditions for the existence of MEPs in neural net losses and
the ELBO. Its realization is dependent on the statistical model and the data itself.

However, there exist heuristic arguments explaining the existence of MEPs in neural networks, as
discussed by [11], [13]: in an overfitted model, perturbing a single parameter may be “made up for"
by changes in the many other parameters, a resilience that is exploited by Dropout [3] and ensembling
[14].

The topic modeling analogue would be the following: re-assigning a single word to a different topic
corresponds to a slight shift in the topics’ identities themselves. As seen in the diagram below, a set
of topics can be continously reconfigured to a different set of topics while retaining its descriptive
power. The overfitted setting in LDA corresponds to specifying K > K∗, or a larger number of
topics in the LDA model than actually exist in the corpus. In truth there is no “true number of topics"
K∗, but our experiments with synthetic data indicate that MEPs are more optimal as the number K
of topics in the model grows.

This lends a straightforward analogy to overfitting in neural networks, in which K > K∗ corresponds
to overfitted LDA.
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A Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a hierarchical, latent-variable model which aims to discover the
hidden semantic structure in a collection of text documents [7]. LDA supposes that there are K topics
in a set of documents, and that each document is made up of a different proportion of topics. Each
kth topic is associated with a vector of word proportions, βk, sampled from a Dirichlet distribution
over the vocabulary, and each ith document is associated with a vector of topic proportions, sampled
from a Dirichlet distribution over the topics.

The LDA generative model is as follows:

1. For each topic k = 1, . . . ,K: draw word-proportions βk ∼ DirV (η)
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2. For each document i = 1, . . . , D: draw topic-proportions θi ∼ DirK(α)

3. For each word j = 1, . . . ,Mi in document i:
(a) Draw assignment zij ∼ Mult(θi)
(b) Draw word xij ∼ Mult(βzij )

The observed data are the words xij for i = 1, . . . , D. Equivalently, step 3 could be described as a
generation of count-data, which is more computationally efficient and which we use in implementa-
tion:

3. For document i and vocabulary word v: draw word counts civ ∼ Mult(piv)

where civ denotes the number of times word v appears in document i. Here, piv is the probability
that a given word in document i is word v, and is given by piv =

∑
k θikβkv . Note that the latents z

are marginalized out in this case.

As the name suggests, the inference problem for LDA is to allocate the Dirichlet parameters to
the latent variables, which are the document-specific topic proportions and the topic-specific word
proportions. Inference is often done with variational inference (VI), outlined in Appendix B.

B Variational Inference

The central goal of Bayesian inference typically involves maximizing the posterior distribution for a
statistical model and dataset. However, computing the posterior is often intractable.

Variational inference (VI) is an inference algorithm that aims to approximate the posterior distribution
of a given model and data, by finding the closest distribution to the posterior out of a given family
of distributions Q [15]. The distance from the posterior is measured by the Kullback-Leibler (KL)
divergence, or relative entropy, defined between probability distributions µ and ν to be

KL(µ||ν)
∫

log

(
µ(x)

ν(x)

)
µ(dx).

Thus the objective of VI is to find

q∗(β, θ, z) = argmin
q∈Q

KL(q(β, θ, z)||p(β, θ, z|x)). (1)

The objective functionKL(·||p(β, θ, z|x) can be rearranged using Bayes’ rule, and removing constant
terms [15] to give the equivalent objective which is called the ELBO:

L(λ, γ, φ) = Eq[log p(β, θ, z, x)]− Eq[log q(β, θ, z)]. (2)

The first term is the expectation of the LDA log joint with respect to the variational distribution q,
and the second term is the negative entropy of q. Thus VI encourages distributions q that yield a high
expectation of the joint and have high entropy (spread).

In practice, Q usually chosen to be the mean-field family, which assumes variables are independent.
Thus distributions q ∈ Q take the product form

q(β, θ, z) =

K∏
k=1

q(βk;λk)

D∏
i=1

q(θi; γi)

N∏
i=1

Mi∏
j=1

q(zij ;φij).

In other words, the mean-field family consists of distributions q in which all the topics β, documents’
topic proportions θ, and word topics z are independent of each other. The parameters λ, γ, and
φ are called the variational parameters, which are to be optimized over. They take the forms
λ ∈K×V , γ ∈D×K , and φ ∈D×V×K , with interpretations as follows.

λk ∈V is the parameter governing topic k, and is a vector of frequencies of words. It is a V -
vector, where the vocabulary is of size V . The mean-field distribution posits that the topic βk is
a Dirichlet(λk) random variable. This is of the same form as the LDA model, except with the
assumption of independence. Specifically,

q(βk;λk) = Dir(λk).
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Similarly, the parameter governing document i is γi, which are proportions of the K topics in
document i:

q(θd; γd) = Dir(γd).

The observed variables are governed by the parameter φ, so that φijk is the probability that word j in
document i is assigned to topic k:

q(zij ;φij) = Cat(φij)

or equivalently in the case of count data,

q(civ;φiv) = Mult(φiv,Mi).

Though the independence assumption seems strong, it is flexible., and a reasonable assumption in
topic modeling.

The variational parameters are optimized according to a coordinate ascent algorithm [15] or a
stochastic variational inference (SVI) which uses stochastic natural gradient ascent [23]. In our
experiments, we opt for SVI which is scalable to massive dataasets.

C Description of the simplified string method

Two runs of SVI from random initializations give two distinct optimal global parameters λ1 and λ2.
Batch VI is run for the same held-out dataset to obtain optimal local parameters with respect to each
of the optimal global parameters, to obtain two optima m1 = (λ1, γ1, φ1) and m2 = (λ2, γ2, φ2) in
parameter space.

N equally-spaced points (“beads") between m1 and m2 are interpolated. Each natural gradient step
on a bead (λ, γ, ϕ) is equivalent to a batch VI update on all three parameters.

The SSM algorithm:

1. Initiate N = 15 beads equally spaced along the line segment between two optima.
2. Gradient step: each bead takes a natural gradient ascent step, which has a closed form for

exponential family models.
3. Reparameterization step: to prevent beads from running off to maxima, slide them along the

string so they are equally-spaced along their piecewise linear path.
4. Repeat steps 3 and 4 until convergence.
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