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Abstract

Probabilistic inference of Neural Network parameters is challenging due to the
highly multi-modal likelihood functions. Most importantly, the permutation invari-
ance of the neurons in the hidden layers renders the likelihood function unidenti-
fiable with a factorial number of equivalent modes, independent of the data. We
show that variational Bayesian methods that approximate the resulting highly
multi-modal posterior by a uni-modal Gaussian distribution are biased towards
approximations with identical (e.g. zero-centred) weights. This is in line with the
commonly reported empirical observation that, in contrast to MCMC methods, vari-
ational approximations often collapse most weights to the typically zero-centred
prior, resulting in severe underfitting. We propose a simple modification to the like-
lihood function that breaks the symmetry using fixed semi-orthogonal matrices as
skip connections in each layer. Initial qualitative results show improved uncertainty
estimation and reduced underfitting.

1 Introduction

The probabilistic approach to learning deep neural networks promises several appealing advantages
compared to point estimates, s.a. reducing overfitting, estimating epistemic uncertainty [3[], and
enabling online/continual learning methods [} 16]]. Despite a growing scientific interest, Bayesian
neural networks (BNN) are still rarely used in practical applications. Although variational methods
s.a. Bayes by Backprop [[1] scale well to larger models and datasets in terms of computation, they often
result in severe underfitting, especially for small dataset sizes or large models [2]. We hypothesize
that underfitting is primarily caused by the entropy term in the evidence lower bound (ELBO) for
variational approximations that do not take into account the non-identifiability of the posterior.

Neural networks are known to be invariant wrt. a factorial number of permutations of the neurons in
every hidden layer, resulting in an identical likelihood function for different parametrisations. For
commonly used priors such as the standard normal distribution or mixtures of zero-centred diagonal
Gaussians, the resulting posterior is therefore also a symmetric mixture with a factorial number of
equivalent modes. We show that a hypothetical symmetric mixture posterior approximation that takes
into account these symmetries provides a tighter ELBO than a uni-modal approximation, despite an
equivalent likelihood. The gap between the corresponding ELBOs is tighter/looser if the symmetric
modes of the posterior are overlapping/well separated. A notable special case in which all modes
overlap is in case where the distribution over the weights is centred at zero, i.e. collapsing to the prior.

Reducing this additional bias in the ELBO objective is essential to avoid underfitting; this could
potentially be achieved through one of the following (non-exclusive) routes:

* likelihood: "hard’ symmetry-breaking by modifying likelihood function.

* prior: 'soft’ symmetry-breaking by assigning low probability to symmetric modes.

* variational: approximate the symmetric-mixture posterior.

* objective: modify the ELBO to reduce the bias, e.g. approximate the additional gap between
single-mode and symmetric-mixture posterior.
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In this work, we focus on breaking the permutation and sign-flip symmetries through skip connections
with fixed semi-orthogonal matrices. We formulate the permutation invariance problem in Sec. 2}
describe approach to break the symmetries in Sec. 3] and show initial results in Sec. 4]

2 Permutation symmetries and variational posterior approximation

Neural networks are known to be invariant wrt. permutations of the neurons in every hidden layer.
This implies that the likelihood function of neural networks is non-identifiable and has no global
optimum. For maximum likelihood/a posteriori point estimation through stochastic gradient descent,
this does not pose a significant problem since any of the equivalent optima suffices. However, the
non-identifiability complicates probabilistic inference, especially the variational Bayesian approach.

2.1 Symmetric-mixture posterior

Consider a multi-layer perceptron (MLP) with L hidden layers. Written in pre-activations form, each
layer indexed by [, computes the representation

hi = Wifi(hi—1) + by )

using weights W, € RV:*Ni-1_biases b; € R™V! and element-wise activation functions f;. The first
activation is the input data, that is, hy := = and f; is the identity function. This parametrisation is
invariant to permutations of the neurons in each hidden layer /. The permutation of the neurons can
be written in terms of permutations to the incoming and outgoing weights:

hiy1 = Wit fig1 (P Pihy) + biga
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where P, € RV i a permutation matrix for which each row consists of all *zeros’ except a single
’one’. The permutation invariance follows from the activation functions being applied element-wise

s.t. the permutation matrix P in Eq. (2) can be "pulled out" of f;41. VVl/ 11 Wl/ and b; then denote
the weights and biases corresponding to one of the equivalent modes. For every hidden layer [, there

are N;! possible permutations, totalling HzL=1 N,! equivalent modes

In the Bayesian approach, we put a prior p(w) over the weights and biases of the MLP and aim to
infer the posterior p(w|D) o p(w)p(D|w) given a dataset D. For common priors such as a Gaussian
or a Mixture of Gaussian (MoG) with the mean(s) centred at the origin and diagonal covariance(s),
the posterior incurs the factorial number of modes from the likelihood function p(D|w). The resulting

posterior is thus a symmetric mixture distribution consisting of N = Hlel N;! mixture components

1 N
p(wD) =+ > pn(w[D). 3)
n=1

If we are interested in predictions only, it suffices to approximate a single mode p,, (w|D), e.g.
through markov chain monte carlo methods. Variational Bayesian methods however compute the
entropy of the approximate posterior. In the subsequent section, we describes how the entropy of a
variational approximation that does not take into account the model degeneracy causes underfitting.

2.2 Variational Bayesian approximation

Consider a simple diagonal Gaussian variational approximations for the posterior of the weights
and biases of the neural network gg, (w) = N (w; po, Xo), 0o = {0, Xo}. Inference amounts to
maximizing the ELBO

['Gauss (Dv 9) = qug (w) [log p(D|U)) + IOg p(’U))]

4
— Eyy, (w)[log go, (w)]- “4)

'Note that, if f; was linear, the degeneracy would include all invertible transformations. If f; is symmetric
wrt. the origin, flipping the signs of in- and outgoing weights (i.e. a "-1" in P;) provides 2™ further sign-flip
symmetries. Furthermore, piece-wise linear activations such as ReLU result in continuous scaling symmetries.



Notice again that the likelihood term is invariant wrt. the permutations in gg, (w) as shown in Eq. ().
Similarly, for zero-centred symmetric priors, the term involving the prior is also identical for each of
the symmetric modes.

Consider now a symmetric-MoG posterior approximation gg(w) = & EnN:1 o, (W), where gg, (w)
is a diagonal Gaussian as before, and the other symmetric modes are given by the permutations from
Eq. (Z). In the corresponding ELBO objective, the terms related to the model take the posterior

expectations over only one of the modes gy, (w):
Lo (D, 0) = By, (w)[log p(D|w) + log p(w)]
— Eqy () [log go (w)].

For the likelihood term, each of the symmetric modes computes an identical function by the def-
inition of the non-identifiability/permutation-invariance in Eq. @), that is E,, (,,)[logp(D|w)] =
Egy, (w)log p(Plw)], Vn. Similarly, E,, ()[logp(w)] = Ey, w)[logp(w)], Vn in case of the
isotropic Gaussian prior or a MoG prior with zero-centred means and diagonal covariance.

&)

Comparing the ELBO corresponding to the diagonal Gaussian and a hypothetical symmetric-MoG
posterior approximation, we note that they differ only by the entropy term, which can be quantified as

Lo (D7 9) - Z:Gauss(Da 0) = quo (w) [IOg 46, (’LU)] - qu(w) [IOg q9 (w)]

N
1
= Eg, () 108 a8, (w) —log == >~ go, (w) (6)
n=1

= KL g9, (w) [| g0 (w)] -

Here we made use of the symmetry again by taking the expectation in the neg. entropy of the MoG
over gg, only. The resulting KL divergence is bounded between zero and the log of the number of

modes, 0 < KL [gg, (w) || go(w)] < log [T}, Ni!.

Unsurprisingly, the ELBO corresponding to the more complex symmetric-MoG approximation
provides a tighter lower bound. The non-identifiability of the neural network likelihood induces an
additional gap in the ELBO if the symmetries are not considered in the posterior approximation.
This gap between the two corresponding ELBOs can be significant even if the posterior is locally
Gaussian, and, most importantly, this gap is not a constant: i) the KL is minimised if the components
of the MoG are identical and thus overlap to yield single Gaussian; ii) the KL is maximised if the
components of the MoG are well separated. The components of the MoG are identical if they are
centred at zero, similar to the prior. It follows that the Gaussian posterior approximation provides an
almost equally tight bound compared to the symmetric-MoG if most weights collapse to the prior.
We therefore hypothesise that the variational Bayesian approach to inference in BNNs causes most
weights in the approximate posterior to collapse to the zero-centred prior.

3 Symmetry-breaking through skip connections

We address the degeneracy/symmetry problem by modifying the likelihood function s.t. the modes are
no longer equivalent. Previous work enforces a bias-ordering constraint, bl(l) < bl(2) < ... < bl(N’),
by parametrising the log-differences between the scalar biases [8]]. However, if the biases take (near)
zero values, the degeneracy remains (mostly) intact. Here, we modify each layer to include skip

connections with fixed matrices O;:
hi = Othi—1 + Wi fy (hi—1) + by (7

With this simple modification of the likelihood function, it is not possible to permute the neu-
rons/activations, since only the corresponding weight parameters are inferred variables, but the

matrices O; remain fixed. Omitting the biases for simplicity,
hi = Othi—1 + fi (PFPWihi—1) = Ohy—1 + P f (BWihy_1) ®
# PF(Othi—1 + fi (PEWihy—1)).

The last line would be needed if we want to ’group’ P” with the subsequent layer’s weights W ;.



—— mean
- train data

stddev model
stddev emission

gy

—— mean
«  train data
stddev model
stddev emission

-15 -1.0 -0.5 0.0 0.5

(a) No skip & no bias constr.

-0.5 0.0

(b) Bias constr.

0.5

— mean
- train data

stddev model
stddev emission

—— mean
«  train data
stddev model
stddev emission

-15 -1.0 -0.5 0.0 0.5 10 15 -15 -1.0 -0.5 0.0 0.5 10 15

(c) Orthogonal skip (d) Ortho. skip & bias constr.

Figure 1: Predictive distribution (1 stddev) for sinc-function regression. The model is an MLP with 5 layers of
32 units and SELU activation functions. The dataset consists of 128 samples (marked red), drawn uniformly in
[—1, 1], mapped through the (scaled) sinc-function with additive noise with std. dev 0.2. The stddev is separated
in model/epistemic uncertainty given by the randomness of the weights, and emission/aleatoric uncertainty given
by the likelihood noise model.

It has been shown previously that models with residual connections break the symmetry and argued
that this improves the learning dynamics in ResNets [7]]. Since identity residual connections can
be used only for layers with the same number of neurons, we instead use fixed random (semi-)
orthogonal matrices, i.e. non-square matrices for which the rows or columns are orthonormal.

4 Experiments

We trained an MLP with 5 hidden layers of 32 units each on 128 data points from a (scaled) sinc-
function with additive noise. We used an isotropic Gaussian prior and a diagonal Gaussian posterior
approximation. Inference is performed using the local reparameterisation trick [4] with 64 samples
for training and 256 for testing. The model is trained for 200.000 full-batch iterations, with a
linear annealing schedule for the KL divergence in the first half of the iterations. The predictive
distributions for a standard BNN, a model with a bias ordering constraint, our proposed orthogonal
skip connections, as well as the combination of both, are shown in Fig. m It can be seen that the
baseline results in severe underfitting, while orthogonal skip connections fit the data well and provide
better out of distribution uncertainty.
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