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Abstract

We derive bounds on the minimal size of an input perturbation required to change
a variational autoencoder (VAE) reconstruction by more than an allowed amount,
with these bounds depending on key parameters such as the Lipschitz constants
of the encoder and decoder. Our bounds allow one to specify a desired level of
robustness upfront and then train a VAE that is certified to achieve this robustness.

1 Introduction

Variational autoencoders (VAEs) are a powerful method for learning deep generative models [1, 2],
yet like other methods [3] are susceptible to adversarial attacks. For example, VAEs can be induced
to reconstruct images similar to an adversary’s target through only moderate perturbation of the
input image [4, 5, 6]. This is undesirable since VAEs have been used to improve the robustness of
classifiers [7, 8], their encodings are commonly used in downstream tasks [9, 10], and their suscepti-
bility to input perturbations challenges an original ambition that VAEs should capture “semantically
meaningful [...] factors of variation in data” [11].

While previous work has already sought to obtain more robust VAEs empirically [12, 13, 14], this
work lacks formal guarantees. This is a meaningful worry because in other model classes, robustifi-
cation techniques showing promise empirically but lacking guarantees have later been circumvented
by more sophisticated attacks [15, 16]. Further, though previous theoretical work [17] can ascertain
robustness post-training, it cannot determine robustness a priori, before training.

Our work looks to alleviate these issues by providing VAEs whose robustness levels can be certified
by design. In particular, we show how to construct certifiably robust VAEs by enforcing Lipschitz
continuity in the encoder and decoder; we call the resulting models Lipschitz-VAEs.

We first derive a per-datapoint lower bound that guarantees a certain probability of a Lipschitz-VAE’s
reconstructions of distorted inputs being close to the reconstructions of undistorted inputs. Using
this bound we can then obtain a margin that holds for all inputs. This second, global bound means
that we can guarantee, for any input, that perturbations within the margin induce reconstructions
that fall within a ball (of specified radius) of the original reconstruction with at least some specified
probability. Since this margin does not depend on the value of the input data and can have its value
specified a priori from a small number of network hyperparameters, it enables VAEs with chosen
levels of robustness.

2 Background

VAEs Assume we want to learn a latent variable model with joint density py(x,z) = po(x|z)p(z),
parameterized by 6, that captures observations {x1,...,%,} € X generated according to an un-
known process involving latent variables z € Z. Since learning § by maximum likelihood is typi-
cally intractable, variational inference introduces inference model q¢(z|x) [11], parametrized by ¢,
which yields a tractable lower bound on the marginal likelihood,

log pg(x) = Eq, (zx) [l0g po(x|2)] — KL (g5(z[x)[p(2)) (1
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In a VAE, 0 and ¢ represent the parameters of the decoder and encoder network respectively. Having
sampled z; ~ ¢4(z|x;) on input x;, we will refer to gg(z;) as a reconstruction of x;, where gg(-)
denotes the deterministic component of the decoder [18].

Adversarial Attacks on VAEs Although much work has focused on classifiers, adversarial attacks
have also been proposed for VAEs. Given original input x,, and the adversary’s target output x;, the
attacker seeks a perturbation 6 € X such that a VAE’s reconstruction of the perturbed input (x,+ 9)
is similar to x;. The best performing attack in the current literature is a latent space attack [4, 5, 6],
where for hyperparameter A\ an adversary optimizes

Bgrgl‘rgll‘in KL (q¢(2l%0 + 8)llgs(z[x1)) + Al[0]]2- )

Defining Robustness, Lipschitz Continuity Since VAE reconstructions are typically continuous—
valued and a VAE’s encoder is usually a continuous distribution, any change to a VAE’s input will
almost surely result in a change in its reconstructions. This observation rules out robustness criteria
that specify robustness using margins around inputs within which model outputs are constant [19,

20]. Further, VAEs are probabilistic: a VAE’s outputs will vary even under the same input. To
account for these considerations, we employ the robustness criterion of [17]:

Definition 2.1. ((r, €)-robustness) For r € Rt and € € [0, 1), a model f operating on a point x and
outputting a continuous random variable is (7, €)-robust to a perturbation ¢ if and only if

Pllf(x+8)— f(x)[l2 < 7] >e?

We term the probability above the r-robustness probability. The definition of (7, €)-robustness natu-
rally leads to the notion of an accompanying robustness margin [17]:

Definition 2.2. ((r, ¢)-robustness margin) For 7 € R™ and € € [0, 1), amodel f has (r, €)-robustness
margin R("¢) (x) about input x if [|§]] < R (x) = P[||f(x+8) — f(X)|]2 < 7] > e

A model with an (r, €)-robustness margin on x can only be undermined by more than r by perturba-
tions with norm less than R("»¢) (x) with probability less than (1 — ¢).

Definition 2.3. (Lipschitz continuity) A function f : R™ — R is Lipschitz continuous if for all
x1,x2 € R™, ||f(x1) — f(x2)||]2 < M||x1 — x2||2 for constant M € RT. The least M for which
this holds is called the Lipschitz constant of f, and if f has Lipschitz constant M, we say it is
M -Lipschitz.

3 Certifiably Robust VAEs

Bounding the r-Robustness Probability We now introduce a VAE whose robustness levels can
be certified by enforcing Lipschitz continuity in its encoder and decoder network. We can guarantee
that this VAE’s reconstructions will change only to a particular degree under distortions by bounding
its r-robustness probability from below. Under the common choice of a diagonal-covariance mul-

tivariate Gaussian encoder with parameterization g, (z|x) = N (z; pe(x),diag (ai(x))), where

pe @ X — R is the encoder mean and o4 : X — R‘izo is the encoder standard deviation, the
following result holds (proofs for all subsequent results provided in Appendix A).

Theorem 1 (Probability Bound). Assume q,(z|x) is as above and that the deterministic component
of the Lipschitz-VAE decoder gq(-) is a-Lipschitz, the encoder mean py(-) is b-Lipschitz, and the
encoder standard deviation o 4(-) is c-Lipschitz. Finally, let z5 ~ q4(z|x + ) and z_s ~ q4(z|x).
Then for any r € RT, any x € X, and any input perturbation § € X,

Pllgo(zs) — go(z-6)l|2 < r] > 1 — min {p1(x), p2(x)},
where

pr(x) :=min <1 a? (b10]]3 + (cl|8]]2 + 2|0¢(x)||2)2)>

7‘2
u(x)% exp{—m}
Cd) 5oL (5 = bl[]l2) > 05ds > 2iu(x) > d. — 2
1 o.W.

pa(x) :=

2We use the > norm but the following definitions could also be stated with respect to other norms.



 (zbsn)?
for u(x) == (cl18]]2+2][og (x)]]2)

> and constant C(d,) := ﬁ exp{i(d. — (d. —1)logd.)} .

Theorem 1 tells us that a Lipschitz-VAE’s r-robustness probability can be bounded in terms of r,
the Lipschitz constants of the encoder and decoder, the norm of the encoder standard deviation, the
dimension of the latent space, and the norm of the input perturbation.

Bounding the (7, €)-Robustness Margin While Theorem 1 allows the r-robustness probability
to be lower-bounded for a given input and input perturbation, we would like to guarantee a VAE’s
robustness at a given input to all input perturbations up to some magnitude (for a given €). The fol-
lowing result lower-bounds the (r, €)-robustness margin at a given input to provide such a guarantee.

Lemma 1.1 (Margin Bound). Given the assumptions of Theorem I and some € € [0, 1), the (r,€)-
robustness margin of this Lipschitz-VAE on input x,

R(T’e)(x) > max {mi(x),ma(x)} for

—4cl|os(x)l2 + \/<4c||a¢<x>||2>2 — (@ +82) (los ()2 — (1 - 0) (2)%)
2(c2 +b?)

my(x) :=

and ma(x) := sup {||8]]2 : p2(6,%x) < (1 —€)}, where ps(8,X) is as in Theorem 1.

A global margin can now be obtained by bounding R(")(x) from below for all x € X. The
only input dependence is via o4(x), which can be lifted by setting 04(x) = o € Rizo, a chosen
hyperparameter. This can be done either during training (VAEs can be trained with a fixed encoder
standard deviation without serious degradation in performance [21]), or afterwards, since all that
matters to the bound is the value of o at test time.

Theorem 2 (Global Margin Bound). Given the assumptions of Lemma 1.1, but with 04(x) = o €
R, the (r, €)-robustness margin of this VAE for all inputs is

(- (el -a-0 )

b

R > max {mi,ms} for my:=

2
(z—0]18]]2)
o3

and mgy := sup {||8]|2 : p2(8) < (1 — €)}, where py is as in Theorem 1, but u :=

Importantly, this result provides a robustness guarantee solely in terms of parameters we can choose
ahead of training, most prominently the Lipschitz constants of the networks (as discussed in the next
section) and o, the fixed encoder standard deviation. This distinguishes ours from previous work,
which has only considered robustness in VAEs based on intractable model characteristics that must
be empirically estimated after training [17].

Implementing Certifiably Robust VAEs Previously, we have taken the Lipschitz constants of
the VAE’s encoder and decoder as given. In practice, the Lipschitz constants of feed-forward and
convolutional neural networks can be set using the approach of [22, 23]. Focusing on feed-forward
networks, [22] shows that arbitrary Lipschitz constants can be chosen by composing 1-Lipschitz
linear transformations, 1-Lipschitz activation functions, and appropriate scalings in each layer (we
offer further exposition in Appendix B). This work’s theoretical results might thus be utilized to
provide practicable a priori robustness guarantees.

4 Conclusion

We have derived theoretical bounds on the degree of a VAE’s robustness under input perturbation,
with these bounds depending on parameters such as the Lipschitz constants of the VAE encoder and
decoder networks. We have also seen that controlling these parameters, as existing methods permit,
enables certification of a VAE’s robustness ahead of training.

3We make explicit the dependence on J.
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A  Proofs

Theorem 1 (Probability Bound). Assume q,(z|x) = N (z; Ue(x), diag <03)(x))) and that the

deterministic component of the Lipschitz-VAE decoder gq(-) is a-Lipschitz, the encoder mean fi4(-)
is b-Lipschitz, and the encoder standard deviation o4 (-) is c-Lipschitz. Finally, let zs ~ q4(z|x+ 0)
and z-s ~ qy(z|x). Then for any r € R, any x € X, and any input perturbation § € X,

Plllge(z5) = go(z-5)ll2 < 7] = 1 — min {p1 (x), pa(x)},

where
o a® (0%[|8]]3 + (/|82 + 2[|og(x)||2)?)
p1(x):=min | 1, 2
and
) F exp{— 252}
u(x = exp 2 r
p2(x) = C(dZ) u(x)—d,+2 (g - b||6‘|2) > Ovdz > 2,U(X) > dz -2
1 o.W.
£—b]|8]2)*
Sforu(x) := (c\\&\(\2+2ua¢(>)c)|\ & and constant C(d,) := Texp{ —(d. —1)logd.)} .

Proof. Since gg(+) is a-Lipschitz,

ll96(21) — go(z2)||2 < allz1 — z2]|2 3)
forall zy,2z, € Z.

Now assume z; ~ ¢4(2z|x1) and zo ~ g4 (z|x2) for some x1,x2 € X, such that gg(z1) and gg(z2)
are random variables. Eq. (3) then implies

{llgo(z1) — go(z2)ll2 < 7} 2 {al|z1 — z2l|2 <7},

which in turn implies
P(llgo(z1) — go(z2)ll2 < 7] = Plal|z1 — 2z2[|2 < 7]. 4)
Letting x; = x + 0 and xo = x such that z; = 25 and zo = z_5, ¢o(z|x) =
N (z;;w(x),diag (02(){))) means
z5 ~ qp(2[x + 8) = N (ug(x + ), diag (03 (x +9)))

and
75 ~ 45(2]%) = N (up(x), diag (02 (x))) -

Further, since samples from ¢4(z|-) are drawn independently in every VAE forward pass, we also
know zs and z_s are independent, and thus, because the difference of independent multivariate
Gaussian random variables is multivariate Gaussian,

25 — 25 ~ N (hy(x + 8) — pg(x),diag (05 (x + 6)) + diag (05(x))) -
Returning to (4), since ||zs — Zz—s|2 is a continuous random variable, we can write
Pllgo(zs) — go(z-s)ll2 < 7] = P {HZ& —2z-5]|2 < ﬂ =1-P [Ilza —z_gl|2 > ﬂ )
The proof now diverges, yielding p; (x) and p»(x) respectively.

Obtaining p;(x): Recall Z = R, apply the definition of the £, norm, and invoke Markov’s
Inequality to obtain

d. 2
d, r 2 ]E [ijl (Z5 — Zﬁa)j:|
P ||[zs — z-s]l2 = } P Z 5—Zﬁ5 (*) < -

(6)



Now note that
dz

: (25 — 7-5);
(z5 — 2~ (x+68) +05(x)). . )
2 o= 2 7o), (730 +8) +03(x)

so that by the linearity of expectations,

U

(25 — 2-5);
=E (x+96)+ ,
j:1 + ( ))j (U¢(X+5)+U¢( ))

J

(Z5 — Zﬁ5)?
2! (o20c+0) +02(x))

(7

J

Because zs — z_s is dlagonal covariance multivariate Gaussian, the (zs — zﬂ;) are jointly inde-
pendent forall j = 1,...,d., and so we recognize that

(25 — 7-5);
(a;(x L)+ a;(x))
has a non-central x? distribution with one degree of freedom and non-centrality parameter
(o (x + 8) = pg(x))*
(Ui(x +8) + U(i(x))j .

J

Since for a non-central x? random variable Y with n degrees of freedom and non-centrality param-
eter € [24], E [Y] = n + ¢, we have

. (25 — 2-5)’ L et 9) )]
o2(x+8)+oi(x o2(x +8) + 02(x))
(20 +8) +02(x)) (20 +8) +02x))
and so plugging into (7),
dz
E (Z(s—z_.,;)j
j=1

d. .
=D (03(x+0) +03(x)), Z(M¢(X+5)—M¢(X))
Using )
(o (x + 8) = p16(x))7 = || (x + 8) — o (x)[[3

(the definition of the /5 norm), and
[lp1g (3 + 8) — pg (x)][2 < b][8]]2,



(since p14(-) is b-Lipschitz), we obtain
d-

(1o (x +8) = 19(x))] = Il (x4 8) — po(x)I[3 < (0]16]]2)* = 61815 ®)

Jj=1

Similarly, using

d.
(Ui(x +0)+ Ui(x))j )
j=1
d.
SZ i(X—F(S) +O’¢( ) —|—20’¢(X+6)j0'¢(x)j (10)
j=1
d.
=) (0s(x+8) +04(x))] (1)
=1
! 2
d.
= (0p(x+8) +o4(x ))2 (12)
Jj=1
= [log(x +8) +op(x)|13 (13)

(where the above inequality follows from oy : X — Rizo, and the last equality follows from the
definition of the #5 norm), and B

llog(x +0) + 0 (x)|]2

= [|op(x +0) — 0p(x) + 204(x)]|2

< lop(x +8) — gp(x)[]2 + 2[|og(x)[|2
< c[|8]]2 + 2o (x)] |2

(where the first inequality follows by the triangle inequality, and the second follows from the as-
sumption that o4(-) is c-Lipschitz), we find

i(”i(X+5)+ai(X)) < log(x+8) + 05 ()3 < (clldll2 +2llop(x)ll2)*.  (14)

Hence, returning to (6), we see
E [Zi 1 (26 — ws)ﬂ
2
(%)
S (7300 +8) +030x)) X5 (rolox +6) — o))
2
(%)
< V118113 + (clld]]2 + 2||o(%)]]2)*
i r 2
(%)
a® (b]18]13 + (clldll2 + 2[lo(x)[I2)?)
r2 ’

|3

such that
d. 2
E [ijl (zs — zﬂs)j] - a? (2]|613 + (c||8]|2 + 2[|o(x)]]2)?)
)’ - r |
Noting that the right-most term is non-negative, and wanting to have a well-defined probability, we

take
2 (12 2 9 2
pr () = min <La (02[[8113 + (cll8]]2 + 2l|op (x)]|2) )>’

,
Pl||zs — z-sl|2 > *} <
a

r2



such that .
Pllzs ~z-slle = =] <pi(x).
Obtaining po(x): Return to Eq. (5). By the triangle inequality,
1Zs — z-sll2 < |26 — Z-5 — (Hp(x + &) — po(x)) [|2 + [[1o(x + ) — po(x)|]2,

and hence

P [||z5 — 2-sll2 > -] (1s)
P [(|[25 — 25 = (s(x+8) = ps () 12 + o+ ) = ps(x)ll2) = =] (16)
=P [[l25 — 25 = (o (x+ ) = p5(x)) 12 > (= = s+ 8) —uo(ll2)] .~ (1)

Then, again recalling Z = R%,

P“VJ—Lﬁ—WMX+&—N()H|2(*—W%@+5) o)1) | (18)
d. 2
=P | (25 — 26— (ol + 8) = o)) 2 (7 = o+ 8) = s(x)]l2)
QPfﬁu—mrw%@+a—w@mizg—m%@+®—%@yw o
o (At toi) (cll8llz + 2o ()l |2)

where the first equality uses the definition of the /5 norm, and the above inequality between proba-
bilities uses the inequality from (14).

Now, since
zs —2-5 ~ N (u¢(x +90) — py(x),diag (U;(X + 6)) + diag (U;(X))) , (20)

it follows that
(25 — 25 — (no(x + 6) — py(x))),

\/(a;(x 1)+ a;(x))j

In particular, note that since zs — zs is diagonal-covariance multivariate Gaussian, the

(25 — 2-5 — (no(x + 0) — pg(x))),;

\/(Ug(x +6)+ ag(x))j

are jointly independent for all j = 1,...,d,. Hence, because the sum of squares of d, independent
standard Gaussian random variables has a standard x? distribution with d., degrees of freedom,

& (26 — 25 — (po(x +8) — us(x));]
= (gg(x +0) + oi(@)j

~ N(0,1).

=Y ~ Xi.

Letting

2 2
L 4) — L —b||é
RS P ) O -t ) ) M
(cl6]]2 + 2[log(x)[|2) (cll6]]2 + 2llo(x)ll2)
we have u/(x) > u(x) by the assumption that y4(-) is b-Lipschitz, since

(116 (x + 8) — p1g(x) |2 < B]8][2,

and therefore

(5~ llglx+8) — o)) = (= ~lall.)



(note also that (c||d]|2 + 2| \a¢(x)||2)2 > 0). Then, using (19) with the requirement that

T r
(£ = llox+8) = ps()ll2) = (= = bl3l2) = 0
to ensure the inequality in (18) is meaningful,
PY >u/(x)] <P[Y > u(x)].

The tail bound for standard x? random variables in (3.1) from [25] (which requires u(x) > d, — 2
and d, > 2) then yields

u(x)% eXp{—@}
PY > u(x)] < C(d,) u(x) —d, + 2

for constant C(d.) := —=exp {1(d. — (d. — 1)logd.)}. Since the expression on the right-hand

T
side is non-negative under the above conditions, we define

d
u(x)Tz expd — wx) ”
O(d) 2P (2 bfj5]]y) > 03, > 2iu(x) > d. — 2

1 0.W.

pa(x) :=

to ensure a well-defined probability. Then, by the inequalities starting from (15),
T
P [llzs — z-all > 7] < pa(x).

Obtaining the final bound: Choosing the least of p;(x) and p2(x) to obtain the tighter upper
bound on P [||zs — z-5||2 > L], we can plug in to (5), which gives

Plllge(zs) — go(z-s)ll2 < 7]

T
> 1P ||lzs — z-sll2 > -

> 1 — min{p; (x),p2(x)}.

Lemma 1.1 (Margin Bound). Given the assumptions of Theorem I and some € € [0, 1), the (r, €)-
robustness margin of this Lipschitz-VAE on input X,

R(“)(x) > max {m; (x), ma(x)}

for

~llou )|+ (ellnsl)* 42+ 82) (Aloull — (1 - ) (5)7)
2(c? 4 b?)

my(x) 1=

and mo(x) := sup {||8]|2 : p2(8,x) < (1 —€)}, where p2(8,x) is as in Theorem 1.

Proof. By Theorem 1, for any input perturbation § € X and any input x € X,

Plllge(z5) — go(z-5)ll2 < 7] = 1 — min{p:(x), p2(x)}.

Hence, for our Lipschitz-VAE to be (r, €)-robust to perturbation  on input x for threshold e € [0, 1),
by Definition 2.1 it suffices that

1 — min{p; (x),p2(x)} > e
Recalling Definition 2.2, since for a model f, R(™)(x) is defined by
16112 < RT9(x) = P[|f(x+8) ~ f(x)ll2 < 1] >,
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for our Lipschitz-VAE R(™)(x) is at least the maximum perturbation norm such that
1 — min{p1(8,x),p2(d,%)} > ¢,

or equivalently,

max {sup {|8][2 : p1(8,%) < (1 =€)}, sup {[[]]2 : p2(8,x) < (1 - €)}} 2n
(where we make explicit the dependence on 9).
Denoting m1(x) := sup {||d]|2 : p1(d,%x) < (1 — €)} and rearranging, m (x) becomes

2
sup{|6||2 : (2 4+ %) 119113 + dellos (0) |2 18]l + 4llos () = (1 =€) (2] < o}.

Excluding the degenerate case of ¢ = 0, that is assuming ¢ > 0, this is attained at the maximum root
of the quadratic equation

ry 2
(+ 1) 181 + 4ello GOl N8 + allow (ol B — (1 =) (£) =0,

provided a root exists, and so by the quadratic formula,

—dcllos(x)]|2 + ¢ (4ellog (x)][2)* = 4 (e + ) (4llos )]z — (1 - ) (2)*)
2(c2+02) '
The second case does not admit a closed-form solution, so we will simply write
my(x) = sup {||8]|2 : p2(8,x) < (1 —€)}.
Choosing the maximum of m4 (x) and mg(x) then yields

R (x) > max {m1(x), ma(x)} .

miq (X) =

Theorem 2 (Global Margin Bound). Given the assumptions of Lemma 1.1, but with 04(x) = o €
R, the (r, €)-robustness margin of this VAE for all inputs is

R > max {my,ma},

J- (el - -9 )

b

where

my =

2
(z—0]18]]2)
413

and mgy := sup {||8]|2 : p2(8) < (1 — €)}, where py is as in Theorem 1, but u :=

Proof. Given a fixed encoder standard deviation, that is substituting o(x) = o € R%, we first
have to derive a lower bound on the r-robustness probability to then bound the (r, €)-robustness
margin globally. We do this using the machinery of Theorem 1, which — lifting the now-redundant
requirement that the encoder standard deviation be c-Lipschitz — can be invoked without loss of
generality.

In the case of p; (recall the two bounds in the proof of Theorem 1), plugging in o yields
d. 2
E [Zj:l (zs — Zﬁé)j}
(2)°

ity (02 +02) 4+ 352 (1e(x + 8) — 1g(x))?

Plllge(zs) — go(z-s)ll2 < 7] 21—

- BE
2015112 2

>1- b |5||? 4;24|°'||2

=1-m
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a2 2 2 o 2 .
for p, := w, where the penultimate step follows by (8) and (14). In the case of po,

we can directly substitute, obtaining

Plllgo(z5) — go(z-5)lla < 7] > 1 —p2

for
F on{-}
pg 1= C(dz)u%T; (£—b||5||2) 20,d222,u>dz_2
1 0.W.
o 2
and u := %. Theorem 2 then follows by identical reasoning to Lemma 1.1. ]
2
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B Implementing Lipschitz-VAEs

Previously, we have taken the Lipschitz constants of a VAE’s encoder and decoder as given. In
practice, ensuring the Lipschitz continuity of a deep learning architecture is non-trivial. Using [22]
as a guide, we outline how to provably control the Lipschitz constants of an encoder and decoder
network.*

We define a fully-connected network with L layers as the composition of linear transformations W;
and element-wise activation functions ;(-) for [ = 1,..., L, where the output of the [-th layer

hl = QDI(Wlhl—l)-

We let network input x =: hg and network outputy :=hy.

Ensuring Lipschitz Continuity with Constant 1 We would like to ensure a fully-connected net-
work is M -Lipschitz for arbitrary constant M. It has been shown that a natural way to achieve this
is by first requiring Lipschitz continuity with constant 1 [22].

As 1-Lipschitz functions are closed under composition, if we can ensure that for every layer [,
W, and ¢;(-) are 1-Lipschitz, then the entire network will be 1-Lipschitz. Most commonly-used
activation functions, such as the ReL.U and Sigmoid, are already 1-Lipschitz [26, 27], and hence we
need only ensure that W is also 1-Lipschitz.

This can be done by requiring W; to be orthonormal, since W, being 1-Lipschitz is equivalent to
the condition
||Wl||2 = Sup ||W1XH2 < 1, (22)
l1x[[2<1
where ||[W||2 equals the largest singular value of W;. The singular values of an orthonormal matrix
all equal 1, and so the orthonormality of W, implies (22) is satisfied.

In practice, W; can be made orthonormal through an iterative algorithm called Bjorck Orthonor-
malization, which on input a matrix A finds the “nearest” orthonormal matrix to A [22]. Bjorck
Orthonormalization is differentiable and so allows the encoder and decoder networks of a Lipschitz-
VAE to be trained using gradient-based methods, just like a standard VAE.

Ensuring Lipschitz Continuity with Arbitrary Constants Now that we can train a 1-Lipschitz
network, we would like to generalize this method to arbitrary Lipschitz constant M. To do so,
note that if layer [ has Lipschitz constant M, then the Lipschitz constant of the entire network is
M =TI, M; [3].

Hence, for our L-layer fully-connected neural network to be M -Lipschitz, it suffices to ensure that
each layer [ has Lipschitz constant M . This is actually simple to achieve, because if we continue
to assume ¢ (+) is 1-Lipschitz, Lipschitz constant M T in layer [ follows from scaling the outputs of
each layer’s linear transformation by M T,

Selecting Activation Functions While the above approach is sufficient to train networks with
arbitrary Lipschitz constants, a result from [22] shows it is not sufficient to ensure the resulting
networks are also expressive in the space of Lipschitz continuous functions. Informally, the result
states that the expressivity of a Lipschitz-constrained network is limited when its activation functions
are not gradient norm-preserving. Since activation functions such as the ReLLU and the Sigmoid do
not preserve the gradient norm, the expressivity of Lipschitz-constrained networks that use such
activations will be limited.

To address this, [22] introduces a gradient norm-preserving activation function called GroupSort,
which in each layer [ groups the entries of matrix-vector product W;h;_; into some number of
groups, and then sorts the entries of each group by ascending order. It can be shown that when each
group has size two,

(1 0)GroupSort ((g)) = ReLU(y)

for any scalar y [22].

*For simplicity, we focus on fully-connected architectures, although the same ideas extend, for example, to
convolutional architectures [23].
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