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Abstract

Anomaly detection (AD) is a fundamental challenge in machine learning that
finds samples that do not belong to the distribution of the training data. Recently
self-supervised learning approaches and, in particular, contrastive learning show
promising results in various machine vision applications mitigating the hunger of
traditional supervised deep learning approaches for an enormous amount of labeled
data. In this work, we adopt the idea of contrastive learning for reconstruction-
based anomaly detection models. Our contrastive learning approach contrasts the
sample with local feature maps of itself instead of contrasting a given sample with
other instances as in conventional contrastive learning approaches. Our anomaly
detection model based on contrastive generative adversarial network, AD-CGAN,
is shown to obtain state-of-the-art performance in multiple benchmark datasets.
AD-CGAN outperforms the existing reconstruction-based approaches by more
than 15% ROC-AUC in several benchmark experiments.

1 Introduction

Anomaly detection (AD), also known as outlier/out-of-distribution detection, has a long history in
artificial intelligence. Anomaly detection refers to identifying those samples that do not come from
the expected distribution. Supervised learning models address anomaly detection using classification
approaches such as outlier exposure [4]. On the other hand, unsupervised learning approaches, such
as reconstruction-based methods [13, 17], mitigate the problem of limited labeled data and unknown
anomalies. In these approaches, the model learns the distribution of the normal data and then a
reconstruction loss targets anomalies. AnoGAN [13] proposes using generative adversarial networks
(GANs) to find anomalies in the medical domain. They introduce a new anomaly score based on the
distance of the reconstructed sample and the sample itself to find anomalies. AnoGAN suffers from its
long inference procedure to find the inverse mapping of an image in low-dimensional representations.
Besides, the intrinsic problems of GANs such as mode collapse [5], catastrophic forgetting [7, 1],
unstable training, and difficulty in convergence of GAN [11] limit the ability of the model to learn a
suitable representation for the task of AD. Although recent studies tried to overcome the limitations of
AnoGAN [12, 15, 16], they achieved little performance gain. Lee et al. [10] showed that maximizing
mutual information on the discriminator side and contrastive learning on the generator side in training
GANs increases the quality of generated images by simultaneously mitigating catastrophic forgetting
and mode collapse of the discriminator and generator respectively.

In this work, we propose a reconstruction-based Anomaly Detection approach using Contrastive
Generative Adversarial Network (AD-CGAN). The proposed model contains three main sub-modules:
a contrastive GAN, an autoencoder, and a discriminator (different from the discriminator in GAN) on
the latent representations. We train all modules simultaneously on the normal (in-distribution) data

Bayesian Deep Learning workshop, NeurIPS 2021.



to learn a discriminative representation for each image while keeping each image’s local and global
features as close as possible. The other discriminator trains on the hidden representations of two
different reconstruction-based models, i.e., GAN and autoencoder, to provide more discriminative
representations. We show that having a contrastive GAN while maximizing the mutual information
between local and global features of an image provides more semantic and discriminative features
for anomaly detection. The representations obtained by a contrastive GAN in our anomaly detection
model can greatly increase the performance of reconstruction-based anomaly detection approaches.
Our work is the first to investigate using contrastive generative adversarial networks for anomaly
detection to the best of our knowledge.

2 Anomaly Detection

Reconstruction-based models are unsupervised approaches that rely on the reconstruction loss of
samples, where a higher loss implies an anomalous sample. We consider the idea of mutually
informative contrastive GAN [10] in our AD model to detect anomalous samples in images. This
model benefits from contrastive learning while maximizing the similarity of a single image’s local
and global features using mutual information. Our anomaly detection model classifies anomalies
with their higher reconstruction loss.

AD-CGAN contains a contrastive GAN, an autoencoder, and a discriminator on the latent representa-
tions which train simultaneously to learn the true distribution of normal training data, which will be
explained in Section 2.1. We introduce a new normality score using the representations obtained by
the trained AD-CGAN to separate normal and anomalous samples in Section 2.2.

2.1 AD-CGAN

Our Anomaly Detection model of the Contrastive Generative Adversarial Network, AD-CGAN, uses
two discriminators to obtain more discriminative representations of normal (in-distribution) samples–a
discriminator in the contrastive GAN (Dcgan) and a discriminator on latent representations of an input
image and the input random noise to the GAN (Dz) (Appendix A.1). AD-CGAN trains on the training
set Dtrain = {x1, x2, ..., xk ∼ Pind} which contains samples drawn from Pind, normal distribution
(in-distribution). To evaluate our model we use a test set Dtest = {x̄1, x̄2, ..., x̄n ∼ Pind ∪ Pood}
including both normal and anomalous samples drawn from normal and anomalous distribution (Pood)
respectively. AD-CGAN includes a contrastive GAN which we refer to as CGAN and an auxiliary
autoencoder, AE. AE trains with the mean squared error (MSE) reconstruction loss function,
LAE = ‖x−G(E(x))‖2 where the decoder of AE and the generator of CGAN shares their weights
and G(E(x)) is the output of AE. CGAN contains a generator G and a discriminator Dcgan.
Training the CGAN incorporates two losses: a contrastive loss, Lcgan, and an adversarial loss, Ladv .
Given an image x ∈ X , we consider the penultimate and ultimate representations of Dcgan as local
(Cψ(x)) and global (Eψ(x)) features of x. Then φθ(Eψ(x)) and Cψ(x) go to the contrastive pairing
phase to create positive/negative sets for the contrastive learning. In conventional contrastive learning,
a given image x is contrasted with other samples, while in AD-CGAN, each image is contrasted with
its own local feature maps to create positive/negative sets. For a given image x, the set of positive
samples is the pair (C

(i)
ψ (x), φθ(Eψ(x))) for i ∈ A = {0, 1, ...,M2 − 1} of a M ×M local feature

map, whereas the negative samples are defined as the pairs (C
(j)
ψ (x), φθ(Eψ(x))) j ∈ A, j 6= i. The

contrastive loss of AD-CGAN follows the loss presented in [10], with a slight modification to fit the
architectural design of our model (Eq. 1).

Lcgan(X) = −E(x∈X)E(i∈A)[log p(C
(i)
ψ (x), Eψ(x)|X)]

= −E(x∈X)E(i∈A)[log
exp(gθ(C

(i)
ψ (x), Eψ(x)))∑

(x′,i)∈X×A exp(gθ(C
(i)
ψ (x′), Eψ(x)))

]
(1)

The function gθ(C
(i)
ψ (x), Eψ(x)) = C

(i)
ψ (x)

T
φθ(Eψ(x)) maps the local/global features with K

dimensions to a scalar score. We used relativistic loss [6] as Ladv. In order to stabilize training, we
constrained the discriminator Dcgan and the generator (G) to learn only from the contrastive loss of
real image and fake image features, respectively, as suggested in [10]. The final loss of the generator
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and the discriminator of our CGAN is a combination of its adversarial and contrastive losses:

LG = LadvG + αLcgan(Xf ), LDcgan = LadvD + βLcgan(Xr) (2)

We further regularized the encoded latent space of encoder, E(x), and random noise, z, with an
additional adversarially learned discriminator Dz , called Ldz (Eq. 3).

Ldz = Ez∼Pz [logDz(z, z)] + Ez∼Pz, x∈X [1− logDz(z, E(x))] (3)

2.2 Normality Score

The trained model evaluates on the Dtest to identify anomalous samples. The normality score
presented here encompasses two reconstruction losses: the generation reconstruction loss, LGr,
which involves the scores obtained from the trained CGAN , and the feature reconstruction loss, LFr,
which incorporate the scores obtained from latent representations of a given image. The normality
score for a given image x ∈ Dtest is NS(x) = LGr + LFr where the generation and feature
reconstruction losses are defined as

LGr = λLGD(x) + (1− λ)LGR(x), LFr = ρLFE(x) + (1− ρ)LFL(z) (4)

Here, LGr includes discrimination loss, LGD(x) =
∑
|fD(x)− fD(G(E(x)))| with intermediate

representation of a given image x from Dcgan as fD(x), and residual loss, LGR(x) =
∑
|x −

G(E(x))|, similar to the loss presented in [13]. It should be noted that fD(x) here refers to the
internal representation of image x obtained from the penultimate layer of the Dcgan. LFr contains
encoded, LFE , and latent, LFL, feature reconstruction losses (Eq. 5).

LFE(x) =
∑
|E(x)− E(G(E(x)))|

LFL(z) = ‖Dz(E(G(z)), z)−Dz(E(x), E(G(z)))‖1
(5)

where E(x) is the encoded representation of x from the encoder E, z is the input random noise to
the generator G of CGAN, and G(z) is the generated output of G.

all-vs-one one-vs-all

Datasets ALAD ADGAN AE-GAN AD-CGAN ALAD ADGAN AE-GAN AD-CGAN

CIFAR-10 51.1± 0.08† 48.3† 55.5 84.5± 0.05 60.7 60.6 61.1 86.0± 0.04

fMNIST 50.8± 0.12† 54.0† 52.2± 0.18† 87.7± 0.04 78.1± 0.12† 75.4† 69.0± 0.16† 93.9± 0.02

MNIST 53.9± 0.13† 62.5† 55.7 85.0± 0.05 62.4± 0.09† 91.5 69.3 92.3± 0.03

CatsVsDogs - - - - 53.4† 49.0† 51.6† 89.8± 0.04

Table 1: ROC-AUC (%) comparison of reconstruction-based models on all four datasets with one-vs-all and
all-vs-one schemes. The symbol † represents results reported from our implementations. All of the results
from our implementations are averaged over three different runs. We use 0.3 for α and β for the losses of the
generator and discriminator, respectively, of our CGAN. λ = 0.1 and ρ = 0.5 are used for all the experiments.

3 Experiments and Results

We considered four benchmark datasets in our experiments: CIFAR-10 [8], FashionMNIST (fM-
NIST) [14], MNIST [9], and CatsVsDogs [3]. All of the datasets except CatsVsDogs include 10
classes. In order to evaluate the model on AD tasks, we employ two different schemes. We considered
soft (one-vs-all) and hard (all-vs-one) anomaly detection experiments. In one-vs-all, one of the
classes is chosen to be normal and the rest forms the anomalous class, and reverse in all-vs-one.

We compare the performance of our model with several state-of-the-art reconstruction-based methods
(Table 1). ALAD [16], ADGAN [2], and AE-GAN [12] are the recent AD methods use GANs as
their reconstruction models. As illustrated in Table 1, AD-CGAN outperforms all the baselines. The
improvement is more notable on CIFAR-10 and FashionMNIST by a minimum of 15% on the soft
and 30% on the hard scheme of ROC-AUC. As expected, the performance in the hard scheme is
lower compared with the soft scheme since the normal class contains multiple labels, each having
a different distribution. This is more notable in FashionMNIST and MNIST datasets with around
7% drop in the performance. We argue that given the similar pattern in several labels of these two
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datasets, even AD-CGAN with its discriminative representations obtained by the contrastive loss
may have difficulty in the hard scheme. More details on the two proposed soft and hard schemes, the
experimental setup, and the results on each individual class are presented in the Appendix A.2, A.3,
and A.4.

In order to have a better understanding of the effect of each of the components in the proposed
normality score, in various experiments, we measure their effects in different anomaly detection
settings (see Appendix A.5).
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A Appendix

A.1 AD-CGAN

For the adversarial loss, we used relativistic loss [6] which is shown in Eq. 6.

LadvD = −E(xr∈Xr, xf∈Xf )∼(P,Q)[log(σ(C(xr)− C(xf )))]

LadvG = −E(xr∈Xr, xf∈Xf )∼(P,Q)[log(σ(C(xf )− C(xr)))]
(6)

where LadvG and LadvD are the losses of the generator and the discriminator of the CGAN, σ is the
sigmoid function, Xr and Xf represent sets of real and fake images respectively, P is the distribution
of the real data, Q is the distribution of the fake data, and C is the critic.

A schematic view of the proposed AD-CGAN is also presented in Fig. 1.

A.2 Datasets

In order to evaluate the model on AD tasks, we employ two different schemes. We introduce soft
and hard anomaly detection experiments. In the soft experiments, we consider one-vs-all scheme.
In this scheme, a dataset with C classes will lead to C different anomaly detection experiments. A
given class 1 ≤ cind ≤ C is considered as the normal class, while cood defines anomalous class of
the rest of C − 1 classes. In the hard AD scheme, we introduce all-vs-one scheme. Similar to the soft
scheme, each dataset with C classes will lead to C different experiments. However, in contrast with
the soft scheme, 1 ≤ cood ≤ C includes only a single class while cind contains the remaining C − 1
classes. The soft and hard schemes were not applicable to the experiments on CatsVsDogs, as it has
only two classes (either Cats or Dogs). Hence, each of the two classes was treated as normal in a
separate experiment.

A.3 Experimental Setup

The detailed hyperparameters of the AD-CGAN are presented in Table 2. We used the same
hyperparameters for MNIST and fashionMNIST with the same image size (28× 28). All the images
of CatsVsDogs are rescaled to 64 × 64. For the one-vs-all scheme, we trained the models for 15
epochs with 5 warm-up epochs for the autoencoders for each dataset. The model trained with ADAM
optimizer, latent size of 100 for all of the datasets except CatsVsDogs with latent size of 200, batch
size of 32, and learning rate of 3 × 10−4 and 2 × 10−4 for CGAN and AE respectively. For the
all-vs-one, we used the same configuration, except that we trained the models on each dataset with 35
epochs plus 15 warm-up epochs for AE. All of the experiments were conducted using Python 3.7
with the Pytorch library on a GeForce GTX 1080 Ti GPU.

We use 0.3 for α and β for the losses of the generator and discriminator, respectively, of our CGAN.
λ = 0.1 and ρ = 0.5 were chosen based on validation sets (10% of the training sets) from each of the
datasets.

Figure 1: AD-CGAN; different components of our anomaly detection model are depicted on the left. On the
right, a zoom-in view of the discriminator of AD-CGAN is shown.
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Table 2: Architecture and hyperparameters of AD-CGAN on each dataset; the generator of the GAN and
the decoder of autoencoder use weight sharing. Conv represents convolutional layers, Deconv represents
deconvolutional layers, and Linear represents dense layers.

Module CIFAR10 fMNIST/MNIST CatsVsDogs
Conv Deconv Linear Conv Deconv Linear Conv Deconv Linear

Encoder (E) 5 - - 5 - - 5 - -
Generator/Decoder (Gz/G(E(x))) 3 4 - 2 4 - 2 5 -
Critic (Dcgan) 6 - 2 4 - 2 6 - 2
Dz - - 3 - - 3 - - 3

A.4 Results

The detailed performance of each of the models, in soft and hard schemes, for each of the classes of
cind is presented in Table 3.

A.5 Ablation Study

AD-CGAN comprises several training components as well as multiple normality score components.
We believe that each of the training/normality score components is critical in the models’ performance.
In order to have a better understanding of the effect of each of the components in the proposed normal-
ity score, in various experiments, we measure their effects in different anomaly detection settings (see
Table 4). Feature reconstruction loss is added to the normality score to measure how discriminative
the latent representations of the two reconstruction models are. Several experiments on MNIST and
FashionMNIST on soft and hard AD schemes showed that adding Dz leads to more discriminative
latent representation, which affects the normality scores obtained by the feature reconstruction loss.
We defined four distinct models of AD-CGAN based on the normality score components they have ac-
cess: AD-CGANLG represents AD-CGAN with only generation reconstruction loss; AD-CGANLFL
represents AD-CGAN with only latent feature reconstruction loss, LFL; AD-CGANLFE represents
AD-CGAN with only encoded feature reconstruction loss, LFE ; and AD-CGANGF contains both
LGr and LFr in its normality score. It should be mentioned that in each of these models, generation
reconstruction loss is considered as part of the normality score.

As the results reveal, removing the feature reconstruction loss (ignoring Dz) negatively affects the
performance of AD-CGAN. The impact is more severe in the case of the all-vs-one (hard) scheme.
This effect can be interpreted by the idea that removing Dz diminishes the power of AD-CGAN to
obtain more discriminative representations, which can be more important in the hard scheme. On the
other hand, AD − CGANLFE that trains with Dz with only encoded feature reconstruction loss,
improved AD − CGANLG with a large boost in both datasets. The results on AD − CGANLFL,
which substitutes the encoded feature reconstruction loss with the latent feature reconstruction loss,
show similar behaviour. However, it is important to note that in all the experiments, ignoring any
training and/or normality score component results in lower performance. It also should be considered
that the best results are achieved when all the components with the right amount of contributions are
considered, as it is shown in AD − CGANGF .

MNIST (%) fMNIST (%)

model all-vs-one one-vs-all all-vs-one one-vs-all

AD − CGANLG 56.8± 0.13 72.3± 0.12 68.7± 0.11 80.8± 0.11
AD − CGANLFE 66.6± 0.12 84.4± 0.11 70.4± 0.13 86.1± 0.08
AD − CGANLFL 73.2± 0.09 84.9± 0.05 74.5± 0.08 87.0± 0.05
AD − CGANGF 85.0± 0.05 92.3± 0.03 87.7± 0.04 93.9± 0.02

Table 4: Ablation studies on MNIST and FashionMNIST given different normality score components of
AD-CGAN. We used λ = 0.1 in cases where the generation reconstruction loss had been used. We set ρ = 1 and
ρ = 0 for AD − CGANLFE and AD − CGANLFL, respectively. The ROC-AUC (%) results are averaged
over three different runs.
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all-vs-one one-vs-all

Datasets Class ALAD ADGAN AE-GAN Ours ALAD ADGAN AE-GAN Ours

0 61.2± 0.02 44.3 63 89.8± 0.12 67 62.7 67 83.8± 0.04
1 61.1± 0.02 39.6 63 89.5± 0.13 46 54.6 49 87.2± 0.03
2 40.7± 0.00 58.2 60 84.7± 0.06 64 56.1 63 80.1± 0.10
3 48.8± 0.01 44.7 54 78.6± 0.09 63 59.5 56 86.0± 0.07

CIFAR-10 4 35.5± 0.01 66.1 35 81.7± 0.14 66 58.6 73 85.4± 0.04
5 53.5± 0.02 44.5 52 72.8± 0.01 53 62.8 52 81.6± 0.02
6 47.8± 0.01 61.5 60 87.6± 0.06 78 60.4 72 94.6± 0.03
7 49.7± 0.01 47.4 51 90.7± 0.03 52 62.3 63 81.7± 0.04
8 52.9± 0.03 45.7 54 82.6± 0.02 75 70.2 68 89.3± 0.06
9 59.4± 0.01 31.3 63 86.9± 0.02 43 59.1 48 90.7± 0.04

Average 51.1± 0.08 48.3 55.5? 84.5± 0.05 60.7? 60.6? 61.1? 86.0± 0.04

0 54.0± 0.02 48.4 45.3± 0.09 89.5± 0.06 79.4± 0.02 74.1 74.4± 0.03 93.3± 0.04
1 68.2± 0.04 63.7 32.8± 0.12 85.8± 0.03 94.1± 0.04 92.3 92.3± 0.01 95.9± 0.04
2 55.5± 0.03 40.4 57.9± 0.08 90.4± 0.07 60.6± 0.09 71.1 67.7± 0.03 94.0± 0.06
3 47.9± 0.04 60.5 23.0± 0.05 81.7± 0.10 79.5± 0.05 81.6 80.0± 0.03 93.7± 0.03

fMNIST 4 60.3± 0.13 47.8 34.9± 0.07 81.4± 0.02 76.4± 0.06 73.6 82.5± 0.01 93.1± 0.02
5 22.2± 0.01 66.9 80.4± 0.02 93.8± 0.04 85.5± 0.01 77.3 36.5± 0.06 93.5± 0.02
6 45.1± 0.01 34.5 52.1± 0.06 92.1± 0.02 61.2± 0.08 70.0 55.1± 0.04 91.7± 0.03
7 44.1± 0.05 67.1 55.5± 0.09 87.0± 0.09 94.9± 0.02 91.0 77.9± 0.07 98.5± 0.01
8 50.2± 0.09 54.1 76.0± 0.02 83.8± 0.01 62.6± 0.03 50.3 49.9± 0.06 91.6± 0.08
9 60.7± 0.07 56.6 63.6± 0.09 91.1± 0.06 86.5± 0.13 73.2 73.4± 0.13 93.7± 0.07

Average 50.8± 0.12 54.0 52.2± 0.18 87.7± 0.04 78.1± 0.12 75.4 69.0± 0.16 93.9± 0.02

0 61.0± 0.05 42.7 73 94.6± 0.07 74.7± 0.12 97.2 85 97.1± 0.02
1 87.1± 0.03 93.1 56 85.8± 0.11 69.8± 0.16 99.7 98 95.7± 0.02
2 44.5± 0.04 39.7 61 91.6± 0.05 50.4± 0.09 87.4 54 92.1± 0.03
3 47.7± 0.05 61.2 55 86.6± 0.08 65.7± 0.05 84.8 69 91.2± 0.03

MNIST 4 56.7± 0.05 70.2 49 77.4± 0.04 63.6± 0.06 91.0 72 95.5± 0.01
5 50.1± 0.06 53.1 49 82.8± 0.03 56.1± 0.04 91.6 54 87.8± 0.02
6 51.8± 0.11 59.8 55 86.9± 0.08 53.0± 0.08 95.7 60 88.6± 0.06
7 56.4± 0.09 75.2 44 76.1± 0.02 49.6± 0.01 93.7 68 92.5± 0.01
8 41.2± 0.08 58.5 59 83.9± 0.02 75.3± 0.07 81.6 69 87.2± 0.05
9 42.4± 0.02 71.1 56 84.5± 0.06 65.2± 0.09 92.4 64 95.2± 0.02

Average 53.9± 0.13 62.5 55.7? 85.0± 0.05 62.4± 0.09 91.5? 69.3? 92.3± 0.03

Cats - - - - 52.6 53.1 51.7 92.7± 0.03
CatsVsDogs Dogs - - - - 54.1 44.9 52.1 86.9± 0.05

Average - - - - 53.4 49.0 51.6 89.8± 0.04

Table 3: ROC-AUC (%) comparison of reconstruction-based models on all four datasets with one-vs-all and
all-vs-one schemes. In the one-vs-all scheme, the class number defines cind, while in all-vs-one, it refers to cood.
The results are averaged over three different runs. λ = 0.1 and ρ = 0.5 are used for all the experiments. The
symbol ? represents results reported from the original paper. For simplicity, for each of the classes of CIFAR-10
and FashionMNIST (fMNIST), we use ordinal numbers instead of their label.

8


	Introduction
	Anomaly Detection
	AD-CGAN
	Normality Score

	Experiments and Results
	Appendix
	AD-CGAN
	Datasets
	Experimental Setup
	Results
	Ablation Study


