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Abstract

The current scalable Bayesian methods for Deep Neural Networks (DNNs) often
rely on the Fisher Information Matrix (FIM). For the tractable computations of the
FIM, the Kronecker-Factored Approximate Curvature (K-FAC) method is widely
adopted, which approximates the true FIM by a layer-wise block-diagonal matrix,
and each diagonal block is then Kronecker-factored. In this paper, we propose an
alternative formulation to obtain the Kronecker-factored FIM. The key insight is to
cast the given FIM computations into an optimization problem over the sums of
Kronecker products. In particular, we prove that this formulation is equivalent to
the best rank-one approximation problem, where the well-known power iteration
method is guaranteed to converge to an optimal rank-one solution - resulting in
our novel algorithm: the Kronecker-Factored Optimal Curvature (K-FOC). In a
proof-of-concept experiment, we show that the proposed algorithm can achieve
more accurate estimates of the true FIM when compared to the K-FAC method.

1 Introduction

Any information a DNN has learned from training data is encoded in its parameters or weights. The
concept of Fisher Information [19] attempts to measure such encoded information and the FIM - a
fundamental quantity that characterizes the information content of a model - manifests itself across
various domains of deep learning research. Some examples include approximate Bayesian inference
[20, 22], optimization [21, 4], continual learning [13, 27], information-theoretic understandings of
deep models and beyond [12, 18]. In particular to Bayesian methods, many recent techniques such
as Laplace Approximation [28, 17] and Variational Inference with natural gradients [22, 32] have
shown both scalability and performance by exploiting the concept of Fisher Information [7].

In this line of research, the Kronecker-Factored Approximate Curvature (K-FAC) method [21] is
widely used in practice. Approximating the true FIM by ignoring the mutual information between
each DNN layer and further assuming a Kronecker-factored FIM, the K-FAC has an advantage in
striking the balance between the computational tractability and the fidelity of approximations [1].
However, the K-FAC also makes significant assumptions, i.e, given two squared matrices A and
B, the K-FAC approximates their Kronecker-factored expectations: E [A⊗B] ≈ E [A] ⊗ E [B].
This assumption of statistical independence does not hold in general [31], and there have been
steady improvements to K-FAC in terms of efficiency and applicability across different communities
[23, 31].

In this work, we relax the given assumption in the K-FAC and develop an alternative algorithm to
obtain a more accurate Kronecker-factored FIM. To this end, we make the following contributions:

• We propose K-FOC: an optimal and scalable method for the FIM computations of neural networks
(both fully-connected and convolutional). For K-FOC, we prove that an optimization formulation
over the sums of Kronecker products is equivalent to the best rank-one approximation problem,
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and propose the power iteration method as a solution. The proof of convergence is also provided in
the paper.

• We empirically show that the proposed method can be more accurate than the K-FAC. The analysis
of computational complexities is also detailed, with which, we outline two different versions of
K-FOC that exhibit a trade-off between approximation quality and memory consumption.

In the context of continual learning for recurrent neural networks, the recent work of Kao et al.
[11] pioneers the K-FAC method as an optimization problem over the sums of Kronecker products.
However, Kao et al. [11] rely on solvers that are cubic in cost (for example, QR and singular value
decomposition) which can be prohibitively too expensive for DNN parameter space, especially for
convolutional layers. In this sense, our method presents for the first time to our knowledge, a scalable
algorithm that imposes the K-FAC method as an optimization problem. With this, we hope to augment
the FIM-based Bayesian methods for DNNs [5, 29, 14, 25].

2 Background and Notation

In this section, we introduce our notations on DNNs and provide background on the K-FAC method.

Preliminaries on Neural Networks. In this work, we adapt the notation of Grosse and Martens
[8] as follows. For defining a DNN generally, we consider a layered architecture each consisting of a
parameterized function φl followed by a non-linear activation function σl:

sl = φl(a
l−1) and al = σl(s

l), (1)

for layer l ∈ [L] := {1, . . . , L}, pre-activations sl and activations al. In the following, we consider
one specific layer l ∈ [L]. For this, we drop the layer index l and define the corresponding pre-
activation as s := sl and the activation from the previous layer as a := al−1.

For the parameterized function φ, we investigate both the fully-connected and the convolutional
layers. Firstly, a fully-connected layer is a matrix multiplication on the previous activation, i.e.

φ(a) = W

(
a
1

)
=: Wā, (2)

where the activations and pre-activations are vectors, s ∈ Rdl ,a ∈ Rdl−1 , and the weight matrix
contains the bias in the last column W ∈ Rdl×(dl−1+1). On the other hand, convolutional layers are
linear transformations on tensors with weight sharing among the spatial positions. To ease the notation,
we use a multi-index notation for the spatial position, i.e. sk,(i,j) := sk,i,j for the pre-activation
s ∈ Rcl×hl×wl . Similarly, the activation is also a three-tensor a ∈ Rcl−1×hl−1×wl−1 and we use
T = [hl]× [wl] as the set of spatial positions. The weight is a four-tensor W ∈ Rcl×cl−1×h∆

l ×w
∆
l

with corresponding spatial positions ∆ = [h∆
l ]× [w∆

l ]. Then the convolutional layer is defined as:

φ(a)k,t = bk +

cl−1∑
k′=1

∑
δ∈∆

Wk,k′,δak′,ζ(t,δ) (3)

with the index function ζ(t, δ) = (t− 1)� r− p + δ using stride r ∈ N2, padding p ∈ N2 and �
to denote the Hadamard product. We define ak′,t′ := 0 if t′ /∈ [hl−1]× [wl−1]. By transforming the
activations into a |T | × (cl−1|∆|+ 1)-sized matrix â where row t is defined by the row-vector

ât = vec((ak′,ζ(t,δ))k′∈[cl−1],δ∈∆, 1)T (4)

and the weight into an cl × (cl−1|∆| + 1)-sized matrix Ŵ by the vectorization of the last three
dimensions and appending of the bias vector to the last row, the layer is equivalent to the matrix
product:
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ŝ = â(Ŵ)T . (5)

In contrast to Martens and Grosse [21], we use row vectorization (consistent with PyTorch [24]).

Kronecker-Factored Approximate Curvature. Having defined a DNN, we now describe the K-
FAC [8], which is a popular method to compute the FIM of neural networks. Consider a conditional
probability density p(y|x, θ) given by a neural network with the weight-vector θ = vec

(
(Wl)l∈[L]

)
,

where Wl is the weight matrix corresponding to layer l. Then the FIM is defined as

F = Ex∼Qx
Ey∼p(·|x,θ)

[
d ln p(y|x, θ)

dθ

d ln p(y|x, θ)
dθ

T
]
, (6)

with the unknown data distribution Qx [21]. This is usually approximated with the empirical
distribution over the training data Q̂x and it is computed over batches Bp = ((xpk,y

p
k))

Kp

k=1
with

x ∼ Q̂x and y ∼ p(·|x, θ) for p ∈ [P ]. For the sake of an easier notation, we write E instead of
Ex∼Qx

Ey∼p(·|x,θ) and D· = d ln p(y|x,θ)
d· for the derivative of the log-likelihood in the following.

The full FIM and even a block-diagonal approximation without correlations between different
layers are usually not feasible to store or compute for modern neural networks [21]. Common
approximations of the block-diagonal form are by a diagonal or a Kronecker-factored matrix. The
second approximation comes from the fact that for a single sample, the FIM is the sum of Kronecker-
factored matrices. For fully-connected layers, the derivative after the weight matrix can be computed
as DW = Ds(ā)T . With this, the block of the FIM corresponding to layer l is given by

Fl = E[Ds(Ds)T ⊗ ā(ā)T ]. (7)

As convolutional layers share the weight tensor among the spatial positions, the derivative is a sum of
outer products: DŴi,k =

∑
t∈T Dst,iât,k. Therefore, the FIM block for layer l can be formulated

as

Fl = E[
∑
t∈T

∑
t′∈T
Dst(Ds)Tt′ ⊗ ât(ât′)

T ]. (8)

The K-FAC [21, 8] approximates this FIM of a fully-connected layer and a convolutional layer by

Fl ≈ E[Ds(Ds)T ]⊗ E[ā(ā)T ] and Fl ≈ E[(Ds)TDs]⊗ 1

|T |
E[(â)T â], (9)

respectively. This herein estimation of the expectation of the Kronecker product by the Kronecker
product of the expectation is used to leverage the benefits of Kronecker factorization. For example,
the Kronecker factorization enables the storage of two smaller matrices rather than a prohibitively
large matrix [21]. However, these factorizations assume that the activations and the corresponding pre-
activations of DNNs are statistically independent, which is usually not met in practice. Furthermore,
additional assumptions like the independence of the first and second order statistics of the spatial
positions are used for convolutional layers, which might impair the approximation quality of the
method.

In the following, we use the superscript k to denote the correspondence of the (pre-) activation and
their gradients to the sample (xpk,y

p
k) ∈ Bp for p ∈ [P ]. Moreover, we assume the FIM to be

block-diagonal.
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3 The Proposed Method

Now, we present K-FOC, which is the proposed method for computing the FIM of DNNs. In this
section, we first formulate the FIM computations as an optimization problem over the sums of
Kronecker products, followed by its connection to the best rank-one problem and the power iteration
method as its solution (section 3.1). Then, we discuss the derived Algorithm (section 3.2)

3.1 Approximation of Sums of Kronecker Products

The FIM approximated on a batch Bp is a sum of Kronecker-factored matrices for
both fully-connected and convolutional layers, namely

∑Kp

k=1Dsk(Dsk)T ⊗ 1
Kp

āk(āk)T and∑Kp

k=1

∑
t∈T

∑
t′∈T Dskt(Dsk)Tt′ ⊗ 1

Kp
âkt (âkt′)

T . The resulting approximation of the FIM is in
general not Kronecker-factored. Nonetheless, a Kronecker-factored approximation brings many
advantages like low memory consumption, easy computations of the inverse, and a fast sampling
from the corresponding matrix variate distribution [21]. Hence, we aim to find Kronecker-factors that
better approximate the FIM. This boils down to approximating a sum of Kronecker-factored matrices
(similar to Kao et al. [11]) by one Kronecker-factored matrix, i.e. for M,N,K ∈ N, Lk ∈ RM×M
and Rk ∈ RN×N for k ∈ [K] we aim to find:

L̂, R̂ ∈ arg min
L∈RM×M ,R∈RN×N

‖
K∑
k=1

Lk ⊗Rk − L⊗R‖F . (10)

In general, a solution of equation 10 is not unique. This can be seen by scaling the left factor L̂ by
α 6= 0 and R̂ by 1

α . Thus, in the following, we additionally assume that L̂ is normalized, ‖L̂‖F = 1.
The choice that L̂ is normalized is arbitrary and one could achieve all results presented in this work
when instead R̂ would be normalized. As it turns out, the problem is equivalent to a rank-one
approximation as proven in the lemma below.
Lemma 3.1. Let M,N,K ∈ N, Lk ∈ RM×M and Rk ∈ RN×N for k ∈ [K]. Then

‖
K∑
k=1

Lk ⊗Rk − L⊗R‖F = ‖
K∑
k=1

vec(Lk) vec(Rk)T − vec(L) vec(R)T ‖F . (11)

Proof. See Appendix A.1.

Therefore, one can use the power method to solve this problem. Nonetheless, each step of the
plain power method consists of a matrix multiplication with an M2 × N2-sized matrix, which is
in general not feasible for layers of modern neural networks. The complexity can be reduced by
utilizing that the matrix is a sum of few rank-one matrices. This is shown in Algorithm 1. With this,
the convergence properties of the power method are achieved with a computational complexity of
O
(
nmaxK(N2 +M2)

)
. Also, only O

(
K(N2 +M2)

)
memory is needed. Here, we assume that

a matrix multiplication AB for A ∈ Rm×n and B ∈ Rn×k has the complexity O(mnk) while a
Hadamard product A�C for C ∈ Rm×n can be computed inO(mn). The correctness of Algorithm
1 is shown in Lemma 3.2.
Lemma 3.2. Let A =

∑K
k=1 vec(Lk) vec(Rk)T and A =

∑r
i=1 σiuiv

T
i be its singular value

decomposition with σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and uTi uj = vTi vj = 1[i = j]. Then there is a
solution of equation 10 with

vec(L̂) = u1, vec(R̂) = σ1v1. (12)

If σ1 > σ2, the solution is unique up to changing the sign of both factors and Algorithm 1 converges
almost surely to this solution.
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Proof. See Appendix A.2.

Remark. Lemma 3.2 shows that algorithm 1 is equivalent to the power method for the corresponding
best rank-one problem. Therefore, convergence rates and error bounds are directly inherited from the
power method, see e.g. [26].

Algorithm 1: Power method for sums of Kronecker products

input :

(Lk)k∈[K] left matrices
(Rk)k∈[K] right matrices
nmax = 100 maximal number of steps
δ = 10−5 stopping precision

output : L̂, R̂ ∈ arg minL,R ‖
∑K
k=1 Lk ⊗Rk − L⊗R‖F

1 function kronecker_power_method((Lk)k∈[K], (R
k)k∈[K])

2 vec(L̄(0))← N (0, I) . standard normal initialization of L̄(0)

3 L(0) ← L̄(0)

‖L̄(0)‖F
. normalize L̄(0)

4 for n ∈ nmax do
5 R̄(n) ←

∑K
k=1〈Lk,L(n−1)〉FRk . first power iteration step

6 R(n) ← R̄(n)

‖R̄(n)‖F
. normalize R̄(n)

7 L̄(n) ←
∑K
k=1〈Rk,R(n)〉FLk . second power iteration step

8 L(n) ← L̄(n)

‖L̄(n)‖F
. normalize L̄(n)

9 if ‖L(n) − L(n−1)‖F < δ then
10 break
11 L̂← L(n)

12 R̂←
∑K
k=1〈Lk,L(n)〉FRk . first power iteration step

3.2 Kronecker-Factored Optimal Curvature

Now, we present K-FOC for both fully-connected and convolutional layers. For fully-connected
layers, one can apply Algorithm 1 with Lk = Dsk(Dsk)T and Rk = āk(āk)T for k ∈ [Kp]
for batch p ∈ [P ] to obtain the optimal Kronecker factors for this batch. The resulting computa-
tional complexity is O

(
nmaxKp(d

2
l−1 + d2

l )
)

with a memory consumption of O
(
Kp(d

2
l−1 + d2

l )
)
.

Compared to fully-connected layers, convolutional layers involve a sum over |T |2 = h2
lw

2
l

Kronecker factors in equation 8. Hence, the complexity of directly applying Algorithm 1 with
Lk,t,t

′
= Dskt(Dsk)Tt′ and Rk,t,t′ = âkt (âkt′)

T would be O
(
nmaxKp|T |2((cl−1|∆|+ 1)2 + c2l )

)
and would use O

(
Kp|T |2((cl−1|∆|+ 1)2 + c2l )

)
memory, which is usually not feasible especially

for high-resolution images. To reduce the complexity, one can incorporate that each Kronecker factor
is an outer product of two vectors and that the summation is over all combinations of t ∈ T and
t′ ∈ T . With this, line 7 of Algorithm 1 can be computed as

Kp∑
k=1

∑
t,t′∈T

〈Dskt(Dsk)Tt′ ,L
(n−1)〉F âkt (âkt′)

T =

Kp∑
k=1

(Dsk)T âkL(n−1)(âk)TDsk. (13)

Line 5 can be computed similarly. Altogether, one can pre-compute the matrix

Xk ← (Dsk)T âk for k ∈ [K] (14)

in advance and in each iteration, lines 5 and 7 can be replaced by

R̄(n) ←
Kp∑
k=1

XkL(n−1)(Xk)T and L̄(n) ←
Kp∑
k=1

(Xk)TR(n)Xk, (15)
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respectively. The full adaption of Algorithm 1 for convolutions is shown in Algorithm 2.

Algorithm 2: Power method for convolutions

input :

(Dsk)k∈[K] pre-activation derivatives
(âk)k∈[K] activations
nmax = 100 maximal number of steps
δ = 10−5 stopping precision

output : L̂, R̂ ∈ arg minL,R ‖ 1
k

∑K
k=1

∑
t∈T

∑
t′∈T Dskt(Dsk)Tt′ ⊗ âkt (âkt′)

T − L⊗R‖F
1 function kronecker_power_method_convolutions((Dsk)k∈[K], â

k)k∈[K])
2 vec(L̄(0))← N (0, I) . standard normal initialization of L̄(0)

3 L(0) ← L̄(0)

‖L̄(0)‖F
. normalize L̄(0)

4 Xk ← (Dsk)T âk for k ∈ [K] . pre-compute Xk

5 for n ∈ nmax do
6 R̄(n) ←

∑K
k=1 XkL(n−1)(Xk)T . first power iteration step

7 R(n) ← R̄(n)

‖R̄(n)‖F
. normalize R̄(n)

8 L̄(n) ←
∑K
k=1(Xk)TR(n)Xk . second power iteration step

9 L(n) ← L̄(n)

‖L̄(n)‖F
. normalize L̄(n)

10 if ‖L(n) − L(n−1)‖F < δ then
11 break
12 L̂← L(n)

13 R̂← 1
k

∑Kp

k=1 XkL(n)(Xk)T . first power iteration step

The computational complexity hence reduces to O(Kp(cl−1|∆|+ 1)|T |cl + nmaxKp(cl−1|∆|+ 1)
cl((cl−1|∆| + 1) + cl)). Moreover, only O

(
(cl−1|∆|+ 1)2 + c2l +Kp|T |((cl−1|∆|+ 1) + cl)

)
memory is needed. This is of the same order as K-FAC if |T | > nmax max{cl−1|∆| + 1, cl}.
Furthermore, we note that the adaption of the power method for convolutions can also be applied
to fully-connected layers by viewing them as convolutional layers with T = {(1, 1)}. While the
complexity usually increases to O (Kpdl−1dl + nmaxKpdl−1dl(dl−1 + dl)) with this approach, the
memory needed is reduced for large batch sizes to O

(
d2
l−1 + d2

l +Kp(dl−1 + dl)
)
.

So far, with this method, optimal factors for a batch of samples can be found with a practical
complexity and memory consumption. However, the optimal factors (Lp,Rp) for the batches
Bp, p ∈ [P ] additionally need to be aggregated to obtain the FIM. Similar to K-FAC, independence
between different batches can be assumed and the FIM could be estimated as Fl ≈ (

∑P
p=1 Lp)⊗

( 1
P

∑P
p=1 Rp), denoted as K-FOC_approx in the following. Empirically, this does not hold in general

and the approximation quality worsens for small batch sizes. Another possibility is to collect all factors
in one step. In a second step the optimal factors L̂, R̂ ∈ arg minL,R ‖

∑P
p=1 Lp⊗ 1

P Rp−L⊗R‖F
can be computed using the power method and the estimate of the FIM is given by Fl ≈ L̂⊗ R̂. A
drawback of this method is that the factors of all batches need to be kept in memory.

A trade-off between approximation quality and memory consumption is approximating the running
average L̂, R̂ ∈ arg minL,R ‖L̂p−1⊗ p−1

p R̂p−1 + Lp⊗ 1
pRp−L⊗R‖F with L̂1 = L1, R̂1 = R1

for each batch. The FIM can then be approximated as Fl ≈ L̂P ⊗ R̂P and only the running average
and the current matrices need to be kept in memory resulting in the same memory consumption as
K-FOC_approx with a small additional computational overhead. We denote this variant of K-FOC as
K-FOC_running. Next, we evaluate the proposed approaches empirically.

4 Experiments and Results

We now present our experiments, which are designed to check the approximation quality of the
K-FOC when compared to the K-FAC. To compute the FIM, we draw one sample from the model’s
predictive distribution for each data point and use the same samples for the ground truth block
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Figure 1: Comparison of the relative Frobenius error for diagonal approximations (orange), K-FAC
(green) and K-FOC (blue and red) for different batch sizes for the first (left) and second (right) layer
of the relative network architecture. The two fully-connected layers trained on the Boston Housing
dataset are in the first row and the convolutional layers learned on MNIST are in the second row. The
light area shows the minimal and maximal values among ten independent runs while the thick lines
are the mean errors. For K-FOC, both aggregation strategies as described in section 3.2 are depicted.

diagonal FIM as for all approximations. To this end, we compare the relative Frobenius error with
respect to the ground-truth FIM. All experiments are implemented in PyTorch [24] on top of the
curvature library [17, 10, 30] and are run on an Nvidia RTX 3060 GPU.

4.1 Fully-Connected Layers

Experiment Set-up. To validate the method on fully-connected layers, we train a fully-connected
neural network with one hidden layer on the three UCI datasets Boston Housing, Concrete Compres-
sion Strength and Energy Efficiency, following Hernández-Lobato and Adams [9] and Lee et al. [17].
Similar to their work, the hidden layer also consists of 50 units. For all three datasets, the FIM is
computed over the full dataset.

Results. The first row of Figure 1 shows the results of the fully-connected network for the Boston
Housing dataset. The results on the other UCI datasets show a similar qualitative behavior and are
shown in Appendix A.3. For each method, the mean error is depicted with a thick line in addition
to the minimal and maximal value among the ten runs in the light area. One can observe that
K-FAC is strictly better in terms of the Frobenius error compared to the diagonal approximation. The
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K-FOC approximation with the independence assumptions (K-FOC_approx) usually improves with
an increasing batch size and surpasses K-FAC starting at around a batch size of 10. The K-FOC
approximation that estimates the running average (K-FOC_running) performs best even though the
difference between the two K-FOC methods diminishes for large batch sizes. The runtime for this
experiment is analyzed in Appendix A.4.

4.2 Convolutional Layers

Experiment Set-up. For convolutional layers, the method is validated on the first two convolutional
layers of a LeNet-5 [15] architecture on the MNIST dataset [16]. The FIM and its approximations
are computed over the training split of the dataset.

Results. In the second row of Figure 1, one can see the relative error on the first two convolutional
layers. Similar to the fully-connected experiment, one can observe that K-FOC_approx is usually
closer to the block-diagonal matrix than the K-FAC and the diagonal approximation. Nonetheless,
the approximation quality highly depends on the specific run and the variance between the runs is in
general high. K-FOC_running consistently outperforms all other methods by a large margin and has
a lower variance than K-FOC_approx. For both K-FOC methods, the relative error decreases with an
increasing batch size, which is not the case for K-FAC or the diagonal method.

5 Conclusion

In this paper, we propose the Kronecker-Factored Optimal Curvature (K-FOC) in order to compute
the Fisher Information Matrix (FIM) more accurately, while preserving the Kronecker structure. Our
algorithm relies on an optimization formulation over the sums of Kronecker products. Concretely,
we show that this formulation is equivalent to the best rank-one approximation problem and prove
that the power iteration method can converge to an optimal rank-one solution. While the analysis of
computational complexities is detailed in the paper, we perform experiments to demonstrate that the
K-FOC can yield higher accuracy than the widely adopted K-FAC method.

Acknowledgments and Disclosure of Funding

We would like to acknowledge the support of Helmholtz Association, the project ARCHES (contract
number ZT-0033), the Initiative and Networking Fund (INF) under the Helmholtz AI platform grant
agreement (ID ZT-I-PF-5-1) and lastly, the EU Horizon 2020 project RIMA under the grant agreement
number 824990.

References
[1] J. Ba, R. B. Grosse, and J. Martens. Distributed second-order optimization using kronecker-factored

approximations. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

[2] D. Bindel. Power iteration, 2016. URL https://www.cs.cornell.edu/~bindel/class/
cs6210-f16/lec/2016-10-17.pdf.

[3] A. Blum, J. Hopcroft, and R. Kannan. Best-Fit Subspaces and Singular Value Decomposition (SVD), page
29–61. Cambridge University Press, 2020. doi: 10.1017/9781108755528.003.

[4] F. Dangel, F. Kunstner, and P. Hennig. Backpack: Packing more into backprop. In International Conference
on Learning Representations, 2020.

[5] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. Laplace redux–effortless
bayesian deep learning. arXiv preprint arXiv:2106.14806, 2021.

[6] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1
(3):211–218, 1936. ISSN 0033-3123. doi: 10.1007/BF02288367. URL https://link.springer.com/
article/10.1007%2FBF02288367.

[7] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel, P. Jung, R. Roscher,
et al. A survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342, 2021.

8

https://www.cs.cornell.edu/~bindel/class/cs6210-f16/lec/2016-10-17.pdf
https://www.cs.cornell.edu/~bindel/class/cs6210-f16/lec/2016-10-17.pdf
https://link.springer.com/article/10.1007%2FBF02288367
https://link.springer.com/article/10.1007%2FBF02288367


[8] R. Grosse and J. Martens. A kronecker-factored approximate fisher matrix for convolution layers. In M. F.
Balcan and K. Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 573–582, New York, New
York, USA, 2016. PMLR. URL http://proceedings.mlr.press/v48/grosse16.html.

[9] J. M. Hernández-Lobato and R. P. Adams. Probabilistic backpropagation for scalable learning of bayesian
neural networks. In Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, page 1861–1869. JMLR.org, 2015.

[10] M. Humt, J. Lee, and R. Triebel. Bayesian optimization meets laplace approximation for robotic introspec-
tion. arXiv preprint arXiv:2010.16141, 2020.

[11] T.-C. Kao, K. T. Jensen, A. Bernacchia, and G. Hennequin. Natural continual learning: success is a journey,
not (just) a destination. arXiv preprint arXiv:2106.08085, 2021.

[12] R. Karakida, S. Akaho, and S.-i. Amari. Universal statistics of fisher information in deep neural networks:
Mean field approach. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
1032–1041. PMLR, 2019.

[13] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ra-
malho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 114(13):3521–3526, 2017.

[14] A. Kristiadi, M. Hein, and P. Hennig. Learnable uncertainty under laplace approximations. arXiv preprint
arXiv:2010.02720, 2020.

[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Back-
propagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989. doi:
10.1162/neco.1989.1.4.541.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. ISSN 00189219. doi: 10.1109/5.726791.

[17] J. Lee, M. Humt, J. Feng, and R. Triebel. Estimating model uncertainty of neural networks in sparse
information form. In H. D. III and A. Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 5702–5713. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.press/v119/lee20b.html.

[18] J. Lee, J. Feng, M. Humt, M. G. Müller, and R. Triebel. Trust your robots! predictive uncertainty estimation
of neural networks with sparse gaussian processes. In 5th Annual Conference on Robot Learning, 2021.

[19] A. Ly, M. Marsman, J. Verhagen, R. P. Grasman, and E.-J. Wagenmakers. A tutorial on fisher information.
Journal of Mathematical Psychology, 80:40–55, 2017.

[20] D. J. MacKay. A practical bayesian framework for backpropagation networks. Neural computation, 4(3):
448–472, 1992.

[21] J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored approximate curvature.
In F. Bach and D. Blei, editors, Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 2408–2417, Lille, France, 2015. PMLR.
URL http://proceedings.mlr.press/v37/martens15.html.

[22] K. Osawa, S. Swaroop, M. E. E. Khan, A. Jain, R. Eschenhagen, R. E. Turner, and R. Yokota. Practical
deep learning with bayesian principles. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[23] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, and S. Matsuoka. Large-scale distributed second-order
optimization using kronecker-factored approximate curvature for deep convolutional neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12359–
12367, 2019.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

9

http://proceedings.mlr.press/v48/grosse16.html
https://proceedings.mlr.press/v119/lee20b.html
http://proceedings.mlr.press/v37/martens15.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


[25] C. S. Perone, R. P. Silveira, and T. Paula. L2m: Practical posterior laplace approximation with optimization-
driven second moment estimation. arXiv preprint arXiv:2107.04695, 2021.

[26] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics, volume 37. Springer, 01 2007. ISBN
978-1-4757-7394-1. doi: 10.1007/b98885.

[27] H. Ritter, A. Botev, and D. Barber. Online structured laplace approximations for overcoming catastrophic
forgetting. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[28] H. Ritter, A. Botev, and D. Barber. A scalable laplace approximation for neural networks. In 6th Inter-
national Conference on Learning Representations, ICLR 2018-Conference Track Proceedings, volume 6.
International Conference on Representation Learning, 2018.

[29] A. Sharma, N. Azizan, and M. Pavone. Sketching curvature for efficient out-of-distribution detection for
deep neural networks. arXiv preprint arXiv:2102.12567, 2021.

[30] K. Shinde, J. Lee, M. Humt, A. Sezgin, and R. Triebel. Learning multiplicative interactions with bayesian
neural networks for visual-inertial odometry. arXiv preprint arXiv:2007.07630, 2020.

[31] Z. Tang, F. Jiang, M. Gong, H. Li, Y. Wu, F. Yu, Z. Wang, and M. Wang. Skfac: Training neural networks
with faster kronecker-factored approximate curvature. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13479–13487, 2021.

[32] G. Zhang, S. Sun, D. Duvenaud, and R. Grosse. Noisy natural gradient as variational inference. In J. Dy
and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 5852–5861. PMLR, 10–15 Jul 2018.

10



A Appendix

A.1 Proof of Lemma 3.1

Lemma 3.1. Let M,N,K ∈ N, Lk ∈ RM×M and Rk ∈ RN×N for k ∈ [K]. Then

‖
K∑
k=1

Lk ⊗Rk − L⊗R‖F = ‖
K∑
k=1

vec(Lk) vec(Rk)T − vec(L) vec(R)T ‖F . (11)

Proof. Let i, j ∈ [MN ]. Then the i, j-th entry of the left matrix is(
K∑
k=1

Lk ⊗Rk − L⊗R

)
i,j

=

K∑
k=1

Lki1,j1R
k
i2,j2 − Li1,j1Ri2,j2

=

(
K∑
k=1

vec(Lk) vec(Rk)T − vec(L) vec(R)T

)
M(i1−1)+j1,N(i2−1)+j2

, (16)

with i = N(i1 − 1) + i2, j = N(j1 − 1) + j2. Hence, both matrices have the same entries and only
the order of the entries is in general different. Therefore, the sum over the squared entries and thus
the Frobenius norm is the same

‖
K∑
k=1

Lk ⊗Rk − L⊗R‖2F =

M2∑
i=1

N2∑
j=1

(
K∑
k=1

Lk ⊗Rk − L⊗R

)2

i,j

=

N∑
i1,j1=1

M∑
i2,j2=1

(
K∑
k=1

Lk ⊗Rk − L⊗R

)2

N(i1−1)+i2,N(j1−1)+j2

=

N∑
i1,j1=1

M∑
i2,j2=1

(
K∑
k=1

Lki1,j1 ⊗Rk
i2,j2 − Li1,j1 ⊗Ri2,j2

)2

=

N∑
i1,j1=1

M∑
i2,j2=1

(
K∑
k=1

vec(Lk) vec(Rk)T − vec(L) vec(R)T

)2

M(i1−1)+j1,N(i2−1)+j2

= ‖
K∑
k=1

vec(Lk) vec(Rk)T − vec(L) vec(R)T ‖2F (17)

A.2 Proof of Lemma 3.2

Lemma 3.2. Let A =
∑K
k=1 vec(Lk) vec(Rk)T and A =

∑r
i=1 σiuiv

T
i be its singular value

decomposition with σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and uTi uj = vTi vj = 1[i = j]. Then there is a
solution of equation 10 with

vec(L̂) = u1, vec(R̂) = σ1v1. (12)

If σ1 > σ2, the solution is unique up to changing the sign of both factors and Algorithm 1 converges
almost surely to this solution.

Proof. The main idea of the proof is to use Lemma 3.1 to identify the problem with a best rank-one
approximation. The algorithm then corresponds to the power method that utilizes the Kronecker
factorization for a faster and memory-efficient computation of the matrix-vector products in the
Kronecker matrix space.
By the Eckart–Young–Mirsky theorem [6], an optimal rank-one approximation for A in the Frobenius
norm is

σ1u1v
T
1 ∈ arg min

Â∈RM2×N2 :rank(Â)=1

‖A− Â‖F , (18)
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which is unique up to changing the sign of both factors if σ1 > σ2.
Therefore, the matrices L̂ and R̂ that satisfy equation (12) are optimal solutions of equation (10).
Moreover, the left factor is normalized, e.g. ‖L̂‖F = ‖u1‖2 = 1.
The equivalence of Algorithm 1 with the power method can be seen by multiplying AAT with
vec(L(n−1)) for L(n−1) ∈ RN2

:

AT vec(L(n−1)) =

K∑
k=1

vec(Rk) vec(Lk)T vec(L(n−1)) (19)

=

K∑
k=1

〈Lk,L(n−1)〉F vec(Rk) (20)

= vec(R̄(n)) (21)

and

AAT vec(L(n−1)) =

K∑
k=1

vec(Lk) vec(Rk)T vec(R̄(n)) (22)

=

K∑
k=1

〈Rk, R̄(n)〉F vec(Lk) (23)

= ‖R̄(n)‖F
K∑
k=1

〈Rk,R(n)〉F vec(Lk) (24)

= ‖R̄(n)‖F vec(L̄(n)). (25)

Hence, Algorithm 1 computes the same iterations as the standard power method:

AAT vec(L(n−1))

‖AAT vec(L(n−1))‖2
=
‖R̄(n)‖F vec(L̄(n))

‖R̄(n)‖F ‖L̄(n)‖F
=

vec(L̄(n))

‖L̄(n)‖F
= vec(L(n)). (26)

The final right factor then corresponds to AT vec(L(n)) ≈ σ1v1.
For σ1 > σ2, the convergence properties are inherited from the power method, see e.g. [2].

Remark. Even in the case when the first singular value is not (much) larger than the other singular
values and no convergence is achieved, the resulting matrices of Algorithm 1 are with high probability
in the span of the singular vectors corresponding to the set of large singular values [3]. Hence, in this
case, the approximation will still converge to good Kronecker factors with high probability.
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A.3 Further Results

100 101 102 103
0

0.2

0.4

0.6

0.8

1

batch size

re
la

tiv
e

er
ro

r

100 101 102 103

batch size

100 101 102 103
0

0.2

0.4

0.6

0.8

1

batch size

re
la

tiv
e

er
ro

r

100 101 102 103

batch sizeDiagonal K-FAC K-FOC_approx K-FOC_running

Figure 2: Comparison of the relative Frobenius error for diagonal approximations (orange), K-FAC
(green) and K-FOC (blue and red) for different batch sizes for the first (left) and second (right) layer
of the relative network architecture. The rows correspond to the fully-connected layers trained on the
Concrete Compression Strength (top) and Energy Efficiency dataset (bottom), respectively. The light
area shows the minimal and maximal values among ten independent runs while the thick lines are the
mean errors. For K-FOC, both aggregation strategies as described in section 3.2 are depicted.
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Table 1: Runtime in ms
Batch size

Name Approximation 1 10 100 full

Boston
Housing

K-FAC 180.7± 5.5 18.5± 1.7 3.2± 0.8 1.3± 1.1
K-FOC_approx 727.1± 12.8 118.0± 7.5 22.9± 10.8 3.0± 0.8
K-FOC_running 1262.6± 14.5 175.6± 6.8 25.2± 7.4 2.6± 1.0

Concrete
Compression
Strength

K-FAC 366.8± 19.0 35.8± 2.9 4.0± 1.1 0.2± 2.1
K-FOC_approx 1462.3± 17.0 225.2± 17.8 37.2± 10.8 1.4± 1.3
K-FOC_running 2503.6± 34.6 314.6± 11.9 55.0± 17.6 1.5± 2.7

Energy
Efficiency

K-FAC 266.7± 20.4 27.2± 3.4 3.6± 1.6 0.7± 1.5
K-FOC_approx 1072.7± 15.8 256.7± 40.1 28.4± 8.1 4.5± 5.4
K-FOC_running 1908.1± 20.4 346.5± 29.0 41.1± 11.9 4.5± 4.7

A.4 Runtime

Table 1 shows the runtime of each approximation method on the UCI datasets. K-FOC_approx and
K-FOC_running need around seven and nine times as much computational time compared to K-FAC,
respectively. In general, each iteration of the power iteration has a similar runtime as K-FAC but
usually multiple iterations are needed to converge which then corresponds to a multiple of the runtime
of K-FAC. In return, this shows that usually much less iterations are needed than the maximal number
of steps nmax = 100. The additional runtime from K-FOC_running compared to K-FOC_approx
comes from the aggregation of the factors for different batches utilizing again the power method to
compute an estimate of the running mean. Still, both K-FOC algorithms are in the same complexity
classes as K-FAC and only have a small linear overhead compared to K-FAC.
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