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Abstract

Bayesian Neural Networks (BNNs) provide valid uncertainty estimation on their
feedforward outputs. However, it can become computationally prohibitive to
apply them to modern large-scale neural networks. In this work, we combine
the Laplace approximation with linearized inference for a real-time and robust
uncertainty evaluation. Specifically, we study the effectiveness and computational
necessity of a diagonal Hessian approximation in the Laplace approximation on
over-parameterized networks. The proposed approach is investigated on object
detection tasks in an autonomous driving scenario and demonstrates faster inference
speed and convincing results.

1 Introduction

Two major techniques used for building Bayesian Neural Networks (BNNs) are variational infer-
ence [1} [2, 3] and Laplace approximation (LA) [4}5]. In contrast to the former method, LA can
provide a post-hoc uncertainty estimation on a well-trained neural network without retraining. How-
ever, the LA method encounters a severe computational burden and memory constraint when dealing
with deeper networks due to the increasing size of the Hessian matrix. A most simple solution is to
take a diagonal approximation of the Hessian. This work demonstrates that a diagonal Hessian ap-
proximation not only brings computational convenience on large-scale problems but also overcomes
limitations of the ill-posedness and overestimation of the Laplace approximation.

2 Methodology

2.1 Laplace approximation and linearized inference

Our approach utilizes LA for Bayesian uncertainty estimation. Let us denote the dataset for training
by D, the weights of a neural network by w, and the Maximum a Posteriori (MAP) estimation of
well-trained weights by wyap. Then, the second-order Taylor expansion of the log posterior p(w|D)
at wyap can be approximated as

In(p(w|D)) ~ In(p(wmap|D)) — %(w — wyap) | H(w — wyiap), (1)
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where H stands for the Hessian matrix of the negative log posterior — In(p(w|D)) at wmap. Expo-
nentiating two sides of Eq. (), p(w|D) admits the form of N (wmap, H 1) [3].

Foong et al. [6] demonstrate that the feedforward function in a BNN at wyap can be approximated by
a linear Gaussian model. Hence, for a certain input-output pair x*, y*, the probability of feedforward
output p(y*|z*, D) after training is described by N (f(2*, wyap), g(z*) T H 1g(a*)), where g(z*)
is the gradient of the feedforward output w.r.t. the network parameters. The variance of the Gaussian
distribution can be interpreted as the uncertainty of y* at wyap-

2.2 Posterior Hessian inverse calculation

Accurate modeling of prior According to Bayes’ theorem, the posterior probability can be for-

mulated as p(w|D) = %, where p(w) resembles the weight initialization before a training

process. Taking the negative log-likelihood and applying the second derivative w.r.t. weights w of
both sides of the aforementioned Bayesian equation yields
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where H corresponds to the Hessian matrix of the negative log-likelihood p(D|w). H can be
approximated as the negative Fisher information matrix under the criterion that the loss function
resembles the negative log-likelihood — In(p(D|w)) [7]]. The Fisher matrix is therefore employed as
a negative equivalence to the Hessian matrix H due to its lower computational cost [S]]. Note that, in
the case of uniform weight initialization, H=H remains valid in all circumstances.

Ill-posed problem Calculating H ! is known to be computationally expensive due to the huge
number of network parameters. In addition, it can be ill-posed and may require regularization, as is
further explained in Appendix Therefore, a diagonal approximation of the Hessian H can be a
potentially simple solution.

2.3 Diagonal approximation with over-parameterization

1-D regression problem Our toy dataset is generated with 30 uniformly distributed points x ~
U(—4,4) and samples y ~ A (x3,32). The network contains a single hidden layer with 30 hidden
units and uses SiLU activation function [8]]. The over-parameterization property of the network is
obvious since the number of data points is much smaller than the number of parameters.
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Figure 1: 1-D regression uncertainty results with the different approximated Hessian matrix and HMC
ground-truth. The black dots represent the data points, the black line shows the noiseless function
2?3, and the blue line shows the mean of our prediction output. Each shade of orange visualizes one
additional standard deviation.

Fig.[I|shows the uncertainty of four methods: full Hessian Laplace approximation (FHLA), block-
diagonal Hessian Laplace approximation (BLA), pure diagonal Hessian Laplace approximation
(DLA), and Hamiltonian Monte Carlo (HMC). The majority of blocks here in BLA are 30 x 30
in size. Detailed discussion of BLA can be found in the Appendix [A.2] where the block size is
determined by the network structure. The uncertainty generated by HMC can be considered as the
ground truth [9]]. The uncertainty changes between the first three methods are consistent: FHLA and
BLA tend to overestimate the uncertainty, as the Laplace approximation becomes brittle when the
true posterior is multimodal [[10]. DLA exhibits smaller variance after discarding part of the Hessian
matrix information, resulting in a more similar approximated uncertainty to the true posterior.
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Figure 2: The visualized inverse Hessian matrix. The over-parameterization case exhibits significantly
fewer inter-dependencies than the under-parameterization case.

(a) Error: Under-param (b) Error: Over-param

Figure 3: The error images of the inverse Hessian matrix.

MNIST classification task Two neural networks are designed and compared on the MNIST
dataset [11]], one under-parameterized with about 750 parameters and one significantly over-
parameterized with about 15000 parameters. Fig. 2] and [3|demonstrates that covariances between
different weights in the over-parameterized case diminishes significantly, proving the feasibility of the
diagonal approximation. The error images are produced by taking the absolute value of difference of
the dense Hessian inverse and the diagonalized Hessian inverse. It can be observed that the diagonal
approximation is more precise as the number of network parameters increases. As modern neural
networks are typically intensely over-parameterized, we conclude that this method is applicable
in common deep learning scenarios. Supplementary discussions regarding Hessian structures, e.g.
kernel diagonal can be found in Appendix

3 Experiment: object detection on Kitti

The proposed approach is applied on Single Shot Multibox Detector (SSD) [12] with Kitti dataset [[13].
Both Laplace approximation and Variational Inference, specifically HMC Sampling techniques are
employed and compared in our experiment. We use all of the weights for backpropagation as well as
uncertainty deduction in Laplace approximation, while 20 full forward propagations are adopted in
the MC Sampling case to produce the optimal results [14]]. We used a NVIDIA GeForce RTX 2080
Graphics Card for our experiment. It is demonstrated that uncertainty estimation using our proposal
can process a Kitti image in 0.42s in average, significantly faster than MC Sampling’s 2.62s.



Car: 0.58 6.5e-3

Figure 4: Bounding box classification uncertainty description on Kitti dataset using SSD. The first
value in the bounding box is the softmax score, whereas the second value portrays the deducted
uncertainty. On the far right of the picture, the correct bounding box of the car has a low score (0.58)
and a low classification uncertainty (6.5 x 10~3), whereas the wrongly classified bounding box of a
van in the middle shares the same score, but suffers from a much higher uncertainty (1.82 x 1072).

4 Conclusions

We present the superiority of the diagonal Laplace approximation in over-parameterized deep neural
networks through experiment results, which requires less computation and produces better real-
time performance. We also investigate that this approximation method is more accurate than the
full Hessian Laplace approximation. More empirical analysis regarding the Hessian structure of
different network structures and the corresponding calculation simplification are expected in the
future. Potential engineering acceleration of the diagonal Laplace approximation is also beneficial.
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A Appendix

A.1 Ill-posed matrix inverses and Tikhonov regularization

For an ill-posed question, Tikhonov regularization can be particularly useful. In principle, applying a
ridge regression on the matrix could effectively mitigate the inverse problem.
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Figure 5: The sum of absolute values of all elements inside the inverse of the regularized Hessian
matrix. The result forms a L-curve, which is typical for an ill-posed matrix inverse problem.

The sum of absolute values of all elements inside (H + )\1)71 is plotted in Fig. [5| It is pointed
out in [[15] that the ‘vertex’ of the L-curve should be the optimal A to solve the ill-posed question.
While this lambda is highly dependent on the network structure, the dataset, and the loss function,
introducing such regularization to the matrix can also severely impact the structure and the diagonal
property of the Hessian as well as its inverse. Hence, it is essential to find a universal approximation
of the Hessian matrix to solve this inverse issue.

A.2 The structures of the Hessian matrix

(a) Under-param kernel structure (b) Under-param (c) Over-param

Figure 6: The visualized Hessian matrix of an under- and an over-parameterized network. While
some dependencies still exist between blocks in the under-parameterized network (b), less covariance
is found in the over-parameterized scenario (c). Fig. (a) shows the blocks whose information can be
extracted from the Hessian matrix in Fig. (b), which saves substantially more memory and calculation
than the layer-block approximation proposed by [16]].

The Hessian matrix has a specific structure that corresponds to the structure of the network especially
when dealing with under-parameterized networks. It can be observed in Fig. [f] that the information of
both Hessian likelihood matrices are concentrated in certain blocks, giving rise to the block diagonal
approximation. Inferring from this figure, we may assume that for convolutional layers (CNN), the
elements within a single kernel are interrelated and kernels are independent of each other. The fully
connected layers, or multilayer perceptrons (MLP), exhibit independence between each output layer.
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