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Abstract

In this work, we propose a new formulation for multimodal VAEs to model and
learn the relationship between data types. Despite their recent progress, current
multimodal generative methods are based on simplistic assumptions regarding the
relation between data types, which leads to a trade-off between coherence and
quality of generated samples - even for simple toy datasets. The proposed method
learns the relationship between data types instead of relying on pre-defined and
limiting assumptions. Based on the principles of variational inference, we change
the posterior approximation to explicitly include information about the relation
between data types. We show empirically that the simplified assumption of a single
shared latent space leads to inferior performance for a dataset with additional
pairwise shared information.

1 Introduction

For weakly-supervised multimodal data, generative models such as Variational Autoencoders (VAE)
are successful approaches to learn meaningful representations as well as conditional generation of
missing data types [Wu and Goodman, 2018, Shi et al., 2019, Sutter et al., 2021]. While previous
works show promising results, they also share a simplistic model based on a single joint latent space
for the relation between data types. As a consequence, information is averaged across all dimensions
of all modalities in the latent space which results in a conceptually suboptimal and limited model.
This becomes particularly problematic if information is shared only pairwise or shared information is
unevenly distributed between modalities. Over-restrictive assumptions on these relations may lead to
inferior generative performance, i.e. coherence and quality of generative samples. However, enabling
less restrictive relations comes with new challenges, as the structure of inter-dependencies between
data types is complicated in general and not known a priori. Additionally, the number of possible
relations increases exponentially with the number of modalities and ground truth on the true relation
between data types is difficult to collect for real-world datasets.

We propose a new framework which is able to learn and automatically model any relation between
data types. For a dataset of multiple data types, information can be specific to a single data type,
shared between a subset of data types or even shared between all data types. We model these subsets
of shared information with additional latent subspaces where the existence and dimensionality of
subspaces is not known a priori. Hence, we need to infer the size of every subspace and select
latent factors accordingly. The straightforward way would be to marginalize out all combinations of
subspace sizes and subset selections of latent variables. However, this is computationally infeasible
due to its combinatorial nature.

We introduce a hierarchical VAE to learn the relation between data types, which approximates the
additional intractable distributions with a variational inference procedure as well. The additional
level of hierarchy not only allows the modelling of any relation between data types but also precise
aggregation between latent factors which encode the same information.
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2 Notation

We consider a dataset {X(i)}Ni=1 of N i.i.d. samples, each of which is a set of M data types
{x(i)

j }Mj=1
1. Let XA ∈ P(X) define a subset of modalities, where P denotes the powerset and

A ⊆ M = {1, . . . ,M} a set of indices defining the respective subset XA. Every subspace SA
corresponds to a latent subspace that contains the set of generative factors shared by modalities
xj ∈ XA. A latent variable zj belongs to each modality xj and every zj consists of Dj factors.
For every subspace SA, nA latent factors are selected from each modality xj ∈ XA. The number
of elements of a subspace nA takes values in {0, . . . , |SA|} where |SA| = minj∈ADj and is the
same for all modalities xj ∈ XA. For every modality xj , the selection of latent factors yj is the
assignment of latent factors z(k)j , k ∈ {1, . . . , Dj} to one of the subspaces SA, A 3 j. We denote
the set of all nA as n, i.e. n = {nA}A⊆M, and respectively, the set of all yj as y = {yj}j∈M and
z = {zj}j∈M.

3 Method

Inferring subspaces requires the estimation of the dimensionality per subspace and the selection of
the respective amount of latent factors from every modality contributing to this space. Hence, the
posterior approximation qφ(z) becomes qφ(z,n,y) where qφ(n) describes the distribution over the
dimensionality for all subspaces and qφ(y) describes the distribution over the selection of latent
factors per subspace for all modalities.

3.1 Dimensionality of subspaces

Definition 1 (Probability distribution over subspace dimensions). For every modality xj , we define
the prior distribution qφ(nj), nj = {nA|A 3 j} over the set of number of elements nA per subspace
SA contributing to modality xj as a central multivariate hypergeometric distribution. The posterior
distribution qφ(nj |z) follows a non-central multivariate hypergeometric distribution with weights
ωj = {ωj,A|A 3 j}.
The number of elements n to draw is equal to the modality’s latent space size, i.e. n = Dj . The total
number of elements N to be drawn from is equal to the sum of maximum number of elements per
subspace SA, i.e. N =

∑
A3j |SA|.

The hypergeometric distribution [Upton and Cook, 2014] offers a way to formalize the inference
of subspace dimensionality constrained to limited resources. Different to the non-central case, the
prior probability on the number of factors to be chosen per subspace only depends on the maximum
dimensionality of every subspace, i.e. nA ∝ |SA|. The non-central hypergeometric distribution
introduces an additional property ωj,A for every subspace SA denoting its relative importance. For
identical ωj,A, A 3 j, the non-central distribution reduces to the central hypergeometric distribution.
Depending on the application and prior knowledge, we can also choose a non-central version of the
distribution as prior.

We denote the approximate distribution for qφ(n|z) as rψ(n|z). As different modalities share
different subspaces, the number of elements assigned to shared subspaces must be equal for all
modalities contributing to this subspace. Hence, it follows

rψ(n|z) = rψ({nA|zA}A⊆M) (1)

where we define every rψ(nA|zA) as categorical distribution taking values in {0, . . . , |SA|}. For
differentiability, we use its continuous relaxation [Jang et al., 2016, Maddison et al., 2016] (see
Appendix E.1 for details).

3.2 Selection of subspace elements

Independent of the inferred distribution over dimensionalities nA, each z(k)j , k ∈ {1, . . . , Dj} will
be assigned to one of the subspaces {SA|A 3 j}, which describes a categorical distribution over
subspaces SA.

1from now on we drop the superscript (i) to reduce clutter
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Definition 2 (Prior distribution qφ(y
(k)
j ) and posterior distribution qφ(y

(k)
j |z)). For every modalityxj ,

we define the prior distribution qφ(y
(k)
j ) for every latent factor z(k)j as a categorical distribution over

subspaces {SA|A 3 j} with uniform weights s(k)j,A = 1
2M−1 . The posterior distribution qφ(y

(k)
j |z) is

defined as a categorical distribution with weights s(k)j where
∑
A3j s

(k)
j,A = 1 and s(k)j,A ≥ 0

For the prior distribution qφ(y
(k)
j ), the value of the category weights s(k)j,A follows the inverse of

the number of subspaces SA every modality xj contributes to, which is 2M−1 for M modalities.
Depending on application and prior knownledge, the weights for the prior distribution can be skewed
as well.

The number of factors nA per subspace SA needs to be the same across all modalities xj contributing
to this subspace, which is difficult to achieve and expensive to compute using the formulation in
Definition 2. Therefore, we model the assignment of latent factors z(k)j to a subspace SA as a subset
sampling procedure. The inference of the number of latent factors nA per subspace SA enables
the formulation as sampling of nA out of |SA| latent factors. Xie and Ermon [2019] state that any
top-k relaxation can be used as subset sampling. Hence, we approximate the true posterior with the
following approximative distribution

rψ(yj |n, z) = rψ({yj,A|nA, zA}A3j),∀j ∈M (2)

where every rψ(yj,A|nA, zA) is the output of a top-k relaxation scheme which allows to sample the
top nA values given zA. We use the framework by Grover et al. [2019], a relaxed subset sampling
method, which allows the integration into a fully differentiable model (see Appendix E.2 for details).

3.3 ELBO Formulation

To approximate the intractable qφ(z,n,y), we introduce an additional posterior approximation
rψ(n,y | z).

− log qφ(z |X) ≥ −Eqφ(n,y|z)[log qφ(z,n,y)− log rψ(n,y | z)] (3)

The approximation of qφ(z |X) using Equation (3) leads to the new multimodal ELBO formulation
presented in Definition 3.
Definition 3. Let rψ(n,y|z) be the posterior approximation to qφ(n,y|z). Then, the objective
L(θ, φ, ψ;X) for learning a joint distribution of multiple data types X and the relation (n,y)
between them is defined as

L(θ, φ, ψ;X) = Eqφ(z,n,y|X)

[
log pθ(X | z)− log

qφ(z|n,y)
pθ(z)

− log
qφ(n,y)

rψ(n,y|z)

]
(4)

Lemma 1. The objective L(θ, φ, ψ;X), defined in Definition 3 is a valid multimodal ELBO, i.e.
log pθ(X) ≥ L(θ, φ, ψ;X).

The proof to Lemma 1 can be found in Appendix B. The proposed ELBO L(θ, φ, ψ;X) draws
inspiration from Ranganath et al. [2016]. Nonetheless, the proposed model significantly differs from
the original work as we are interested in learning the relation between multiple sets of latent factors
compared to learning more expressive distributions in the original paper.

4 Related Work

Previous work on multimodal VAEs put focus on how to aggregate posterior approximation in a
single joint latent space [Wu and Goodman, 2018, Shi et al., 2019, Sutter et al., 2021]. Every
modality or data type consists of shared as well as modality-specific information. The connection
between different data types can be seen as how much and what information is shared between
two modalities. Aggregating over all dimensions in the latent space is only desirable if the amount
of shared information is relatively high compared to the amount of modality-specific information.
Another line of research explicitly split the latent space into a shared and a modality-specific part
[Hsu and Glass, 2018, Daunhawer et al., 2020, Sutter et al., 2020]. Besides introducing a lot of
hyper-parameters, these works are only able to model a star-like relation between modalities.
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5 Experiments

We evaluate the proposed multimodal relational VAE (mrVAE) using the recently proposed
PolyMNIST dataset [Sutter et al., 2021] in this work. Additionally, we propose an extension
to the vanilla version that adds pairwise shared information between images. In our extension, we
add digit information to two corners of every modality. Every corner digit is shared between two
modalities only. See Figure 2 in the appendix for examples and differences of the two datasets.

Table 1: Comparison between mrVAE and MoPoE-VAE on two different versions of the PolyMNIST
dataset, vanilla and extended, regarding their coherence of generated samples. The coherence of
generated samples is assessed using pre-trained classifiers, see Sutter et al. [2021] for details. xj
denote input or output modality andXA input sets.

Accuracy

Input Output mrVAE MoPoE

x0 x0 0.50 0.47
X{0,1} x0 0.51 0.51
X{0,1,2} x0 0.51 0.53

(a) PolyMNIST vanilla

Accuracy

Input Output mrVAE MoPoE

x0 x0 0.40 0.31
X{0,1} x0 0.44 0.32
X{0,1,2} x0 0.44 0.32

(b) PolyMNIST extended

Tables 1 and 2 show the results of the proposed mrVAE in comparison to the MoPoE-VAE [Sutter
et al., 2021] with respect to their generative sample quality and coherence. For the vanilla version of
the dataset, mrVAE is able to reach the performance of the MoPoE-VAE regarding the coherence
of samples (see Table 1a). If we evaluate the two models on the extended version of PolyMNIST,
we see a drastic decrease of coherence for the MoPoE-VAE, while mrVAE-s performance remains
comparable(Table 1b). Notice that we only evaluate with respect to the main digit. The proposed
mrVAE reaching the same performance as the MoPoE-VAE on the vanilla PolyMNIST dataset is
even more remarkable, if we consider that the vanilla version of the dataset applies to the restrictive
assumptions for relations between modalities.

Regarding the quality of generated samples, we see another effect of the limiting assumptions of
previous work. The averaging across all dimensions may lead to a decrease in quality of samples if we
generate samples of a modality which is not given as input (see Table 2a). Even more surprising, the
additional relations between modalities lead to a further decrease in the quality of generated samples
for the MoPoE-VAE (see Table 2b). The proposed mrVAE on the other side is able to consistently
generate high quality samples for the vanilla and extended version of the PolyMNIST dataset (see
Tables 2a and 2b).

Table 2: Comparison between mrVAE and MoPoE-VAE on two different versions of the PolyMNIST
dataset, vanilla and extended, regarding their quality of generated samples. The quality of samples is
assessed using the FID [Heusel et al., 2017]. xj denote input or output modality andXA input sets.

FID

Input Output mrVAE MoPoE

x0 x0 105.8 108.7
x1 x0 129.9 216.6
X{1,2} x0 139.6 221.5

(a) PolyMNIST vanilla

FID

Input Output mrVAE MoPoE

x0 x0 95.1 157.9
x1 x0 182.4 265.5
X{1,2} x0 189.0 311.6

(b) PolyMNIST extended

6 Conclusion

In this work, we propose a new formulation to learn from multimodal datasets. Our formulation does
not rely on simplistic assumptions between data types and is able to learn relations between data
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types. In our empirical evaluation, we show the limitations of previous work if the simple relations
between data types are made slightly more complicated. The proposed method shows promising
results towards overcoming these limitations. Nevertheless, this is still work in progress and there is
additional research needed to fully understand the dynamics of such relations. Also, the formulations
for the approximation distributions are not ideal yet and will be worked on in future steps.
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A Hierarchical Posterior Approximation

Ranganath et al. [2016] propose to use a hierarchical posterior approximation instead of a "flat"
approximation. They use the additional level of hierarchy to increase the expressivity of their posterior
approximation. A hierarchical model allows for breaking of the mean-field assumption (we refer to
their paper for more details). We propose to use the additional level of hierarchy to learn the structure
of the latent space. For multimodal learning problems, we are interested in knowing which modalities
share information between each other. Such that only information is aggregated which is connected.

For this, we introduce two additional latent variables, n and y which define how many and which
latent factors are shared between the different modalities.

qφ(z) =

∫
qφ(n,y) · q(z | n,y)dndy (5)

=
∑

qφ(n,y) · q(z | n,y) (6)

where Equation (6) follows from n and y being discrete random variables. In general, this summation
is computationally intractable. Hence, we use the variational inference procedure twice to create
a computationally feasible objective which approximates the joint probability of all our data types
log pθ(X).

A.1 Variational Inference for q

To approximate the intractable qφ(z,n,y), we introduce an additional posterior approximation
rψ(n,y | z). We can approximate qφ(z) either by taking the expectation over rψ(·) or by taking the
expectation over qφ(·). The first case leads to

log qφ(z |X) ≥ Erψ(n,y|z)[log qφ(z,n,y)− log rψ(n,y | z)] (7)

This would lead to an Expectation-Maximization-type like learning procedure.

The second case leads to the following approximation

log qφ(z |X) ≤ Eqφ(n,y|z)[log qφ(z,n,y)− log rψ(n,y | z)] (8)

We will focus on this second case.

B Proof to Lemma 1

Proof. We start with the standard ELBO-formulation

log pθ(X) ≥ Eq(z|X) [log pθ(X, z)− log qφ(z|X)] (9)

We add an additional level of hierarchy in the ELBO formulation [Ranganath et al., 2016] to introduce
latent variables for the number of factors per subspace n and the subset selection y:

log qφ(z |X) ≤ Eqφ(n,y|z)[log qφ(z,n,y)− log rψ(n,y | z)] (10)

from where it directly follows:

− log qφ(z |X) ≥ −Eqφ(n,y|z)[log qφ(z,n,y)− log rψ(n,y | z)] (11)

Combining Equations (9) and (11), we get

log pθ(X) ≥Eqφ(z|X)

[
log pθ(X, z)− Eqφ(n,y|z)[log qφ(n,y, z)− log rψ(n,y|z)]

]
(12)

=Eqφ(z|X)

[
Eqφ(n,y|z)[log pθ(X, z)− log qφ(n,y, z) + log rψ(n,y|z)]

]
(13)

=Eqφ(z,n,y|X)

[
log pθ(X | z)− log

qφ(z|n,y)
pθ(z)

− log
qφ(n,y)

rψ(n,y|z)

]
(14)
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C Detailed Model

C.1 ELBO

log pθ(X) ≥Eqφ(z|X)

[
log pθ(X, z)− Eqφ(n,y|z)[log qφ(n,y, z)− log rψ(n,y|z)]

]
(15)

=Eqφ(z|X)

[
Eqφ(n,y|z)[log pθ(X, z)− log qφ(n,y, z) + log rψ(n,y|z)]

]
(16)

=Eqφ(z|X)[Eqφ(n,y|z)[log pθ(X|z) + log pθ(z)− log qφ(z|n,y)
− log qφ(n,y) + log rψ(n,y|z)]] (17)

=Eqφ(z,n,y|X)

[
log pθ(X | z)− log

qφ(z|n,y)
pθ(z)

− log
qφ(n,y)

rψ(n,y|z)

]
(18)

=Eqφ(z,n,y|X)

[
log pθ(X | z)− log

qφ(z|n,y)
pθ(z)

]
− Eqφ(z,n,y|X)

[
log

qφ(n,y)

rψ(n,y|z)

]
(19)

=Eqφ(n,y)qφ(z|n,y)

[
log pθ(X | z)− log

qφ(z|n,y)
pθ(z)

]
− Eqφ(n,y)qφ(z|n,y)

[
log

qφ(n,y)

rψ(n,y|z)

]
(20)

=Eqφ(n,y)

[
Eqφ(z|n,y)

[
log pθ(X | z)− log

qφ(z|n,y)
pθ(z)

]]
− Eqφ(z|n,y)qφ(n,y)

[
log

qφ(n,y)

rψ(n,y|z)

]
(21)

=Eqφ(n,y)

[
Eqφ(z|n,y)

[
log pθ(X | z)− log

qφ(z|n,y)
pθ(z)

]]
− Eqφ(z|n,y)

[
Eqφ(n,y)

[
log

qφ(n,y)

rψ(n,y|z)

]]
(22)

C.2 Graphical Models

Figure 1 shows graphical models of the generative process for previous works (Figure 1a) as well
as the proposed work (Figure 1b). They highlight the differences and extensions from a modelling
perspective.

D Example for M=3

Let us write the terms above in a more detailed form as we constrain (without loss of generality) the
number of modalities to M = 3 for now. For ease of notation we write the set of indices for a subset
without the curly brackets, e.g. z123 instead of z{123}. We start with pθ(X|z):

pθ(X|z) = pθ(x1,x2,x3|z) (23)
= pθ(x1,x2,x3|z123, z12, z13, z23, z1, z2, z3) (24)
= pθ(x1,x2,x3|z123, z12, z13, z23, z1, z2, z3) (25)
= pθ(x1|z123, z12, z13, z1) · pθ(x2|z123, z12, z23, z2) · pθ(x3|z123, z13, z23, z3) (26)

The step from Equation (25) to Equation (26) follows from the conditional indepence between
modalities given the latents. Additionally, by definition modalities are independent of subspaces they
do not contribute to. From the Bayes’ rule, it follows:

rψ(n,y|z,X) =rψ(y|n, z,X) · rψ(n|z,X) (27)
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(a) Previous Works (b) Proposed Work

Figure 1: Graphical Models of previous works and the proposed model.

Following Definition 1 and Definition 2, we can write the distribution over subspaces more explicit
for M = 3:

rψ(n|z,X) =rψ(n123, n12, n13, n23, n1, n2, n3|z,X) (28)
0.

rψ(y|n, z,X) =rψ(y1,y2,y3|n, z,X) (29)
=rψ(y1|n, z,X) · rψ(y2|n, z,X) · rψ(y3|n, z,X) (30)
=rψ(y1|n123, n12, n13, n1, z,X) · rψ(y2|n123, n12, n23, n2, z,X)

· rψ(y3|n123, n13, n23, n3, z,X) (31)
=rψ(y1,123,y1,12,y1,13,y1,1|n123, n12, n13, n1, z,X)

· rψ(y2,123,y2,12,y2,13,y2,2|n123, n12, n23, n2, z,X)

· rψ(y3,123,y3,13,y3,23,y3,3|n123, n13, n23, n3, z,X) (32)

E Implementation Details, Experiments and Evaluation

E.1 Number of elements per latent subspace

All distributions are implemented as neural networks with the conditioning set being the input to the
neural net and the output being the parameters of the respective distribution. This is similar to the
unimodal VAE where the posterior approximation qφ(z|x) is a neural network which outputs µ and
Σ: µ,Σ = fφ(x).

Here, we have individual networks for all rψ(nA|zA) which output the weights of the respective
categorical distribution cA:

cA = fψ,A(zA), with zA = {zj}j∈A (33)

To handle missing modalities, the function fψA consists itself of |A| subfunctions gψ,A,j which take
the modalitities zj as input and are blocks of one fully-connected layer followed by a ReLU activation
function. The outputs of gψ,A,j are again averaged and fed into a linear layer followed by a ReLU
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activation function:

fψ,A(zA) =ReLU

FC

 1

|A|
∑
j∈A

fψ,A,j(zj)

 (34)

=ReLU

FC

 1

|A|
∑
j∈A

ReLU(FC(zj))

 (35)

where FC denotes a fully-connected layer. The values cA can be used as the input for a Gumbel-
Softmax model [Maddison et al., 2016, Jang et al., 2016]. The output will be a one-hot vector
denoting the number of elements nA per subspace (see Bengio et al. [2013]).

E.2 Selection of latent factors

And similarly for the selection of latent factors yj . As stated in Xie and Ermon [2019], the subset
sampling procedure is equivalent to a ranking scheme where the ranking determines the probability
of being selected for a subset. The random variable yj,A is a matrix where the first nA rows are
one-hot-vectors with element to be sampled being one. For more details on the relation between
subset sampling, top-k relaxation and continuous sorting and ranking, we refer to [Grover et al.,
2019, Xie and Ermon, 2019, Kool et al., 2020]. The implementation of the respective building blocks
follows a similar principle as in Appendix E.1 to enable missingness of modalities.

wj,A = gψ,A,j(zA) with zA = {zj}j∈A (36)

and more detailed, similar as in Appendix E.1

gψ,A,j(zA) =ReLU

(
FC

(
1

|A|
∑
i∈A

gψ,A,j,i(zi)

))
(37)

=ReLU

(
FC

(
1

|A|
∑
i∈A

ReLU(FC(zi))

))
(38)

The weightswj,A are reparameterized using Gumbel-noise and then fed to the neuralsort building
block [Grover et al., 2019]. neuralsort outputs a permutation matrix where every row is a one-hot
vector (or a continuous relaxation version of it, see Bengio et al. [2013]). Using nA it is possible to
use the top-nA elements in a fully-differentiable pipeline.

E.3 Further Details on the Experiments and their Evaluation

(a) PolyMNIST vanilla (b) PolyMNIST extended

Figure 2: Examples of the two PolyMNIST dataset variations we use in this work, vanilla and
extended.

We use the same architectures and capacities for enccoder and decoder in all experiments, as well
as the latent space dimensionalities. This lays the ground for a fair comparison between models.
Figure 2 shows samples of the used versions of the datasets.

We also looked into model selection criteria. We strongly believe that for real-world multimodal
datasets it is difficult to collect ground-truth labels with respect to the relation between datasets,
but also all possible downstream tasks. Hence, we selected the models the evaluation based on
unsupervised metrics only. For this submission, we evaluated the model at the point in training which
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leads to the lowest test loss. This does not necessarily lead to the best scores with respect to metrics
like generation accuracy or FID-scores, but - in our opinion - is a fair way to evaluate models based
on their optimization objective. Also, this model selection criteria would work in case there is no
access to expert labels, which is an important direction for future work. Therefore the performance
numbers of the MoPoE-VAE differ compared to the experiments in previous work.

Nevertheless, model selection in multimodal VAEs is still an open research question which requires
more work.
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