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Abstract

The connection between infinite-width neural networks (NNs) and Gaussian pro-
cesses (GPs) is well known since the seminal work of|Neal|[[1996]. While numerous
theoretical refinements have been proposed in recent years, the connection between
NNs and GPs relies on two critical distributional assumptions on the NN’s pa-
rameters: 1) finite variance ii) independent and identical distribution (iid). In this
paper, we consider the problem of removing assumption i) in the context of deep
feed-forward convolutional NNs. We show that the infinite-channel limit of a deep
feed-forward convolutional NNs, under suitable scaling, is a stochastic process
with multivariate stable finite-dimensional distributions, and we give an explicit
recursion over the layers for their parameters. Our contribution extends recent
results of [Favaro et al.|[2020] to convolutional architectures, and it paves the way
to exciting lines of research that rely on GP limits.

1 Introduction

Fully-connected NN are defined by an interleaved application of affine transforms and non-linear
functions evaluated element-wise. Associating a distribution to the parameters of a NN allows us to
consider the NN as a probabilistic model. Modern NNs typically operate in the over-parametrized
regime, with millions of parameters representing a standard setting. As a way forward, Neal| [1996]
established the equivalence between a certain class of shallow probabilistic NNs and corresponding
limiting GPs when the NN’s width, hence the dimensionality of its parameters, becomes infinite.
Recently, the NN-GP correspondences has been extended to deep fully-connected |Lee et al.[[2018]],
Matthews et al.| [2018]] and convolutional Novak et al.| [2018]], |Garriga-Alonso et al.| [2018]] NNs.
Two common properties of the NN’s parameters’ distribution underlay the NN-GP correspondence:
1) finite variance ii) iid distribution. In this paper we extend the results of Novak et al.| [2018]],
Garriga-Alonso et al.|[2018]] to iid parameters distributed according to a Stable distribution (SD),
effectively removing assumption i). More precisely, we study the infinite-channel limit of CNNs
in the following general setting: i) the CNN is deep, namely is composed of multiple layers; ii)
biases and scaled weights are iid according to a centered symmetric SD; iii) number of convolutional
channels in each network’s layers goes to infinity jointly on the layers; iv) the convergence in
distribution is established jointly for multiple inputs, namely the convergence concerns the class of
finite dimensional distributions of the CNN viewed as a stochastic process. The use of SDs, which
includes the Gaussian distribution as special case, is natural in this setting. Indeed, SDs are the most
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general distribution class toward which infinite sums of iid random variables can converge in law
Samoradnitsky and Taqqu|[[1994]]. Through this paper we define a deep CNN (DCNN) of the form
O =W sz 4+bM and fO = WE x (D) 45O forl =2, ..., L, where [ indexes the L
layers, {IW(W}L | are the weights, {b()} L, are the biases and ¢ is an activation function. We show
that the infinite-channel limit of the DCNN, under suitable scaling on the weights, is a stochastic
process whose finite-dimensional distributions are multivariate SDs|Samoradnitsky and Taqqul[[1994]].
This process is referred to as the convolutional stable process (CSP). Our result contributes to the
theory of DCNNGs, and it paves the way to extend the research directions that rely on Gaussian infinite
wide limits.

The paper is structured as follows. Section [2]introduces the notation and definitions. In Section [3| we
define a DCNN jointly on K distinct inputs and we specify the distribution assumptions on the model
parameters. In Section ] we compute the limiting distributions jointly over K inputs and we establish
the distribution, again over K inputs, arising from the projection of all spatial features to a single
output vector (i.e. a readout layer). In Section [5| we conclude.

2 Notation and definitions

Denote: [n] the set {1,...,n} Vn € N; fixed a size S € N, an S-tensor of dimension Dg :=
Dy x --- x Dg (where D; € NVj € [S]), is an element A € RPs; [Dg] := [Dy] x --- x [Dg];
Dg| := Hle Dg; Ay € R (where d = (dy,...,ds) € [Dg]) is the component of A at position
d; the norm [[A[|* = 37, . AZ: A(ay ;) is the (S — 1)-tensor of dimension 1 x Dy x -+ X Dg
consisting on the d;-th position of the first dimension of A and all the other positions of A; an integral
in d(Aggepg]y) is an integral in the flattened tensor A, i.e. with [Dg| variables of integration; 1 (p.)
is the tensor of all 1s in RPs and 1(p,)|d] the one with 1 in the d-th entry and zero otherwise; let
A BeRFs A B = ZeE[E] A.B. € R is the Frobenius product; let (A, B) € RPs¥Es’ x REs/|
A B € RPs is called square product under {y(where <) operates within tensors of the same size into
IR, e.g. the Frobenius product), where each position d € [Ds] of ACle, Bis A(q,.) B € R; [is simply
O and called square product; let (A, B) € RPS x REs', AAB = (ABy)jpeg,, )y € RPS*Es’
is called bias product. When we specify some dimensions over an operation, it means that the
P,K
operation is applied through all dimensions except for the specified ones, e.g. in ( B ), ] is applied
through all dimensions except for dimensions P and /. When dimensions are under the operation, the
operation is applied only to the specified dimensions; A ~ Stp (a, I') indicates that the corresponding
flattened vector has characteristic function ¢ 4 (t) := E[e! t®AS] = exp{— [gg—1 [t®@s|*T(ds)} for
all t € RPs, where T is a spectral measure on SIPsI=1 = {» ¢ RIPs| . ||z|| = 1} (more details on
“SM: Stable random variables").

3 Stable convolutional networks

Shallow CNN. The input to a convolution is a tensor x € R“*Ps where S is the number of spacial
dimensions, P; is the size of the s-th spacial dimension Vs € [S] and C'is the number of channels. The
defining property of a convolution is that the same collection of filters (weights) is applied to multiple
patches extracted from the input tensor z. The filter size must thus agree with the extracted patches
sizes. There is great flexibility in defining the specific details of a given convolutional transform,
including its striding, padding, and dilation characteristics. See |Dumoulin and Visin|[2016] for a
comprehensive account. In this paper we consider the following general setting. We define the
filters W € RY"XCxGs where G, (< P, and the equality makes the network a S-dimensional fully
connected NN) is the filter size across the s-th space dimension Vs € [S] and C” is the number of
output channels. We also define a bias term b € R, A convolution transform over  results in an
output tensor y € RE *Ps where P! is the size of the s-th spacial output dimension. P, depends on
both P, and on the convolution characteristics. We write y = W * x + b, where the product x is
defined as follows. A patch extracted from z at output position p is T, € RE*6s | Typ = T1.C,xp
where « : p +— «p is a function that depends on the moving window chosen in the structure and
returns the positions of x associated with the corresponding output position p. When extraction
happens outside of z, i.e. when an input position ¢ is such that ¢ < 1 or 2 > P, the padded values



(often a constant) are taken as input. The convolution transform at output position p is thus given by
Yp =W +bc R Finally y € R is obtained by stacking y,, over the P output positions, i.e.
the NN can be rewritten as

Y= [Wawp + ] (D
DCNN with K inputs. We extend the definition (I). A DCNN is defined by multiple layers of
convolutional transforms followed by the application of an element-wise activation function ¢. We

consider the case where all layers have the same number of channels C(") = ... = C(X) = (. Define
pl = Pg()l) forl € [L]U{0} and G = Gg()l ,, for I € [L]. Consider K inputs () € RC P

k € [K] and define 2(K) = (¢ . 20T ¢ RC"”>*PVxK For each 2(%) the convolutional
structure remains constant, that is the filters and the bias terms do not depend on k. Since they do not
even depend on the positions, a DCNN of L layers with with K inputs can be defined as follows

f(O)(l:K) _ x(l:K) c RC(O)XP(O)XK
(P(l),K)
f(l)(l:K) _ f(l)(x(u()) —w® O xilzK) +boMA ﬂ(meK) c RooxPM XK )
, _ PR
FOOH) = j0 0 o) = 10 G (0D L
A 1pw) x i) € RooxPUxK
where the last holds for I = 2,...,L and where o € (0,2], W ¢ RooxC I x6D
B0 € B for each I € (L), and 2{"™) — [ 1 el gy € RO XETET
and fil_l)(l:K) = [f(l?f))(k)]{( O k)ePOx K]} € RC'TVXGUXPOXK g0 1 — 9 L. where
*p p@, x oo L,

fa((;ﬁ) = 4 RC“TVx6Y s 4 patch extracted from f(!=1 at output position

(1:C0=1 »p®)
p) € [P(l)]. We defer to “SM: the patch operator" for a more detailed explanation.

Assumptions on the parameters and on the activation function.

iid

HD VI € [L],e) > 1,0 € 6V W, () o) P Staon) iid b~

~ St(Ot O'b) 3)
H2) ¢ : R — R with finite discontinuities: Vs € R |¢(s)| < a + b|s|” some a,b > 0 and 8 < 1
4)

4 Main theorems: infinitely wide limits

We study the limiting distribution of f(O(1:K) — (1K) ) as ¢ — oo, VI € [L]. Let

féé)(l HK) ¢ RooxPOXK pe this limit (i.e. the joint limit random variable over all (infinite) channels,

positions and inputs). By the Cramér-Wold theorem it is sufficient to prove the large C' asymptotic
behavior of any linear combination of f (lzl)l f() ’s (see, e.g. [Billingsley| [[1999] for details), where
f(l)(l K)

) is the ¢(V)-th channel of f()(1:K) and, from ( , it can be rewritten as

(p(l)7 K) o
f(cl()l()l = W((cl<)1>,;,:) ® (1 RS b(u)) Lewwry € RP XK
PY,K) —1)(1: ©)
f(31(>1 10 = Cll/a W((Qn,;,:) B( i(rl na K)) + b£<)z> Leoxry € RPFV>XK =2 L
)]

Note: fully connected NNs are special cases when P() = 1] € [L] U {0} and the patch extraction
corresponds to the whole input for each convolutional transform. Thus we prove: Theorem 1] b

fixing ¢(¥) > 1,1 € [L] and computing the limit distribution of f(lzl()l f) as C' — oo and Theorem
by applying the Cramér-Wold theorem. We denoted with —>, P and “5 respectively the convergence
in distribution, in probability and almost surely. Our proof is an alternative to the Strong Law of
Large Numbers for Stable random variables. The key point of the proof lies in recognizing the
exchangeability of the sequence ( f((igl()l’f))cmﬂ which allows us to apply the de Finetti theorem.
First, define for each | € [L] the function W(®) : RF"'*K s R Wl () := L16(z/|12[))+ 36(—=/|12[])
if z # 0 and 0 otherwise, where ¢ denotes the Dirac delta function. Recall that we don’t compute the

limit for the layer [ = 1, because f((cl()l()lzf) is referred only to the C'(?) channels of the input layer.



Theorem 1. [SM A] Foreachl =2, ..., L, f{%l HO 4 pO(LK)

oo (oD ™ Stpay o i (@, FS,Q) as C — oo,

being F( ) equal to
o Ly 1 ¥ (Lpoy )+ [ 32 oLy 180 (6(F0) )a "V Fgoeiony)

ghe G(U]
where f,a) € RPYXK for each g € GV, gU—1) = StP(lfl)XK(OQF(()lo_l)), and
IO =TW =0y Lpar ey [TV Ly v )
4 z HUW(Iil:K))(c(O),g(U)”aqj(l)((xiLK))(c(U) (1))>

(c(©),g(1)e[CO xGD)]

Theorem 2. [SM B] For each | € [L], fO0K) = fO 1K) ¢y 4 B0
Qo1 Stpay i (v, F(Olo) ) as C — oo, where the symbol Q) denotes the product measure.

Readout layer on positions. Fix | = L. We found that f(1)(1:6) 4 (L)1)
a sequence of R>*P" XK _yalued random variables. To gather information on the positions P we
consider a linear combination with respect to PP e we project the co x P") x K dimensional

vector f(F)(1K) — £(L) (1K) ") into one co x K dimensional, and we take the limit as C' — oo.
For a detailed explanation we defer to the “SM C".

,l.e. a convergence of

5 Conclusions

We showed that an infinite-channel DCNN with scaled Stable parameters defines a stochastic process
whose finite-dimensional distributions are multivariate SDs. The finite-dimensional distributions
can be evaluated via an explicit recursion over the layers of the NN. We also established the finite-
dimensional distributions arising from the NN readout layer. Several interesting theoretical develop-
ments are possible. Firstly, the results provided so far constitute the first step in establishing an NTK
limit |Arora et al.[[2019] arising from Stable distributed parameters in convolutional architectures.
Secondly, all the established convergence results are limited to the finite dimensional distributions of
the NN layers. This is not enough to guarantee the convergence of the NN seen as a random function
of the input space, i.e. to establish a functional limit. Further effort is thus needed to extend the
results of |Bracale et al.|[2021]] to the Stable and convolutional setting for 0 < v < 2. Doing so will
also provide estimates on the (reduced, compared to the Gaussian case) smoothness proprieties of
the limiting stochastic processes. Finally, it is necessary to devise efficient inference algorithms that
allows to apply the stochastic processes introduced in this paper to current computer vision problems.
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SUPPLEMENTARY MATERIALS

SM: Stable random variables

Fix 0 < a < 2 and o > 0 and define the following distributions.
Definition 1. A R-valued random variable A is distributed as a SD with index o, skewness T €
[—1, 1], scale o and shift i € R, and we write A ~ St(«, T, 0, 1), if the characteristic function is

oat) = B[] =e?®, teR  where

—o®[t|*[1 4+ i7tan(SF )sign(t)] +ipt o #1
—olt|[1 +iT2sign(t)log(|t)] +ipt a=1

vt ={

As the property 1.2.16 of [Samoradnitsky and Taqqu! [1994] shows if A ~ St(a, 7,0, u) with 0 <
a < 2then E[|A]"] < oo for 0 < r < a, and E[|A|"] = oo forr > a.

Definition 2. A R-valued random variable A is distributed as the symmetric a-stable distribution with
scale parameter o, and we write A ~ St(«, o), if it is stable with T = j = 0, i.e. the characteristic
function is

pa(t) =E[e =" I1" teR

By property 1.2.3 of Samoradnitsky and Taqqu|[[1994], aSt(c, 0) = oSt(«, |a|o) for every a € R.

Definition 3. A R”-valued random vector A is distributed as the symmetric D-dimensional a-stable
distribution with scale (finite) spectral measure I' on SP~1 = {z € RP : ||z|| = 1}, and we write
A ~ Stp(a,T), if the characteristic function is

oalt) = E[ei<t’A>] P |<t:5>|ar(ds)’ t e RP

Definition 4. A RPs-valued random S-tensor A is distributed as the symmetric D g-dimensional
a-stable distribution with scale (finite) spectral measure T on SPsI=1 = {2 € RIPsl . ||z|| = 1},
and we write A ~ Stp,(,T'), if the flattened tensor A is distributed as St|p,|(a,T'), i.e. if the
characteristic function of A is

(pA(t) _ E[eit®A] — e Jsipgi—1 \t®s\“F(ds), t € RPs

where d s is considered flattened.

SM: some useful inequalities

During the proofs we will use without any mention the following inequality:

Lemma 1. For any real values «, 21, . . . z, > 0 there exists a constant C = C(«, n) such that

(2o 20) S OGR4t 25)

Proof. Let Z = max{z1,...,2,}. Thus we get

(z14+2)<(MZ)=nZ <n“(zF+--+2z)
In particular C' = C(«o,n) = n*. O
We give an important intuition of the reason why the proofs that will follow work. Intuitively we will
provide an alternative proof of the strong law of large numbers for Stable random variables using
the de Finetti theorem regarding the exchangeability of sequences of random variables. To this end

we will have to require that the expected value of the stochastic process is finite. Using the above
Lemmal(T] from assumption (@) we get

|6(5)|* < (a+b|s|”)* < 2%(a +b|s|7)
When s is a-stable distributed with any skewness, scale and shift parameters, then

Ell¢(s)*] < 2%a® + 26 E[|s|”*] < 00



which is finite since 8 < 1 thus Sa < «. Then, the assumption S < 1 is essential to guarantee the
existence of the expected value of the stochastic process. However, this assumption also allows us to
apply Jensen’s inequality in the following sense: for any positive random variable s,

E[s”] < (E[s))”

We will use these inequalities repeatedly during the proofs.

SM: the patch operator

Referring to the definition (2) of DCNN we said that for each | € [L], f(l_(li) ROV x6Y g g
1

patch extracted from f(=1) at output position p!) € [P] and is defined by fil (z%) f(1 Cl=1) 4p0)y:

The patch operator is a map « : [PY] — (Zy x --- x Zsufl))G(” that for each p»), returns xp(*)
that is a SU~1) tensor of dimension G" containing some spatial indexes of f(!~1) depending on the

moving window chosen in the structure (padding, stride etc). Refer to “SM: the patch operator” for a
more detailed explanation.

More precisely, for each g0 € G, *p;l(),) = (i1,...,0g0-1) € Z1 X -+ X Zgu-1) where we

could have i,q-1) < 1 ori,qa-1y > P,u-1) for some sU-1 ¢ [S(l’l)] because extraction could
happens outside of f(*~1). Thus, two possibilities are allowed: 1) there exists s~ € [S(l_l)]

. . -1 -1
such that ¢ ,a-1) < 1 oriza-1 > P,u-1). In that case (f£p<l)))(6”*“*9(”) = f((ca )1) *p(” )=

for each "1 € [CU=V];2) i a1y € [Pyu-v] for all sU—D € [SC=D]. In that case there exist
— - l _ 1— 1—

pl—b ¢ [P(l 1)] such that *pégl) = p(=1) then (f,(,p(zp)(ca—w,g(w) = f((c(i)n,p(,,l)) = 0 for each

=1 c [C(l_l)].

SM A

Here we compute the limit distribution of f fﬁ?fﬂf) as C' — oo. First we prove the following two

theorems (see the corresponding appendix for the proof):

Theorem 3. [SM A.1] f( (1()1 )K ~ Stpo) o i (@, I'W), where

I‘(l) :Ho'b ]l(P(l) x K) Ha\ll(l)(]l(})(l) ><K)>

+ Z llow(z$ (1: ))(c(o),g(l))”a\ll(l)((xiLK))(c(O),g(l)))

(c(®),g()e[CO xGD)]

LK k
where (x& ))(c(‘”,g“)) = I:(xip)(l))(c(o) 9(”)]{(;;(1) k)e[PD x K]}

Theorem 4. [SM A.2] For1 =2,..., L, f0 £ ~ Stpar (@, ), where

= llov Lpwr i) ||a‘1’(l)(]1(p<1>x1<) )

> ||%¢(f£lil)(1:K))(cu—m,ga)) |*w® <¢(f£l71)(1:K))(cu—l),g(z)))

(ct=1) ,g(l))E[CxG(l)]

+

Q=

. (I-1)(1:K) _ (I-1)(k)
with (f* )(6(171)79(0) = [(f*p(z) )(C(l—l)yg(l))j| {(p“),k)e[P(l)xK]}'

Now, for [ € [L] we compute the limit distribution of f((l(l()1 ;Q as C' — oo. First recall that for
l = 1, being f (1(1)1 f() referred only to the C(©) channels of the input layer, then f (1(1:K)

e )



() — (). Thus we compute the

1) (1:K)
(c,2)

Stp) i (@, Fg)) constantly as C' — oo, where we have defined I'sg

limit for all the others layers. We prove that foreach! = 2,..., L, f
C' — oo, where

rY =y Lipw x iy ||a\I/(l)(]1(P(”XK) )+

+/ Z ||%¢(fg<L>)Ha‘1’(l)(¢(fg(z>))q(l_l)(df{ga)e[(;(w]})

g e[GW)]

*) StP(l)XK(a F(l))

with f,o) € RP”XK for each g € G and ¢ =) = Stpu-s) g (@, 7).

For the proof we will need the following proposition which is a direct consequence of Exercise 2.3.4
of Samoradnitsky and Taqqu| [1994].

Proposition 1. If A ~ Stp(a,T) then for each u € RP the 1-dimensional rv. (u,A) ~
St(a, (u), o (u), pu(u)) where

ow) = ([ Mwsrrias)

) = o)™ [ Jws) sign((u.s)T()
_J0 a#l
ul) {—,%ISD1<u,s>1og<|<u,s>>r<ds> o=

Proof. Fixl = 2,..., L and, for each C, let hg) denote the de Finetti random probability measure of

the exchangeable sequence ((f,(,l)(LK))(C(z),:))6(1)21, ie. ( f,l)(l:K))(c<L>7:)|h(Cl) g h(cl). Consider the
induction hypothesis that as C' — oo

h(cl—l) g q(zq)
where ¢=1) = Stpa-1), (o, T ™) and the finite measure I

)
any t0) = [t,(,()zg )]{(p(U,k)E[P(”XK]} € RFXK,

will be specified. For [ > 1 and

. t®
P

=FE {exp { it @ f(lml ?H
[ e {1400 £ 0

= [exp{ — /S\pU)XK‘,l |t(l) ® s(l)\oT(C{) (d S(l))H

ag _ .
X E eXP{ el > tO @ (£ 1)(1.K))(c(l*1),g(l))|a}:| (6)
(et=1), (l))e[CxG(l)]

{-o
[
—exp{ = o7 1t) @ 1w ) | }
| .
{-
|

<E |E [exp{ _ %w 3 1t & ¢(fgfl><1:z<>)(C(lfl)’gm)‘QH ‘hg*”}

(ct=1) g)e [ngﬂ)]

otV @ Lpw ey I }

(0

X E (/eXp{ - %“ >o® ®¢(fg<l>)|O‘}hg71)(df{g“)e{G”)]}))C}

PIOPSE0)



where f ) € RPY %K for each g e G Hereafter we show the limiting behaviour. In order to do
this we need the following lemmas:

L1) Foreachl=2,...,Lsupe [ Y0 g 16(Ffs0)1hE 1 (d fyo cgn) < o0

L1.1) There exists € > 0 such that, SupCE[ZgU)e[Gm] X *(rlfl)(liK))(c(lil)yg(l))||a+e|hg72)] <
oo foreachl =2,...,L

L2) [Y,0eeot? ® o(fa)l*hd Vdfiocen) B [ 0cc0 0 ®
O(fy0)|*q"=I(d fyw cpey) as C — o0

L3) fzg(l)g[(;(l)] ||¢(f (1))”0‘[
¢(fg“>)|a}]h( Y (df Wee®]) B oasC — oo

exp{—% X weew) [t ®

Proof of L1

For | = 2, for each ¢!) > 1, from assumptions (3) and (4) and from Lemmawe get

E[ Y 1eU M) o o]

g@e [G(2)]

:E[ Z Z Z |o(f *p(2> (C“)’g(z))l}

gD e[GD] p@ e[P?)] ke[K]

— Z Z Z [|¢ *p@) <1>,g<2>)|a]

g[GP p@ PP ke[K

< > > Z E [ a+0[(f,, Ry )c<1>,g<2>)|ﬁ)a}

9D E[GP)] p@ e[P)] ke[K

< 9o Z Z ZE{a +0%( S])(g)))(c(lxg@)ﬂaﬂ}

g e[G@] p@ e[P@] ke[K]

=GR+ 2 Y S 3 B[ e o]
g e[G@] p@ e[P?@] ke[K]
< 00

where we used that ( fi;)(glf))(cu),g(z)), by Proposition || is distributed according to a SD
with index « (and some skewness, scale and shift parameters) and then, being af < a,

{|(f(;)(2) ) C(l)’g<2))|aﬁ} < 400 . Now assuming that L.1) is true for [ — 2 we prove that it is
true for | — 1. First, from assumptions (3) and @) and from Lemmal|I] we compute the following

E[ Y o) -

gWe[GM]

S Y S I o2

gW[GW] pO e[PW] ke[K)]

= > >, D E [‘QS (lp<$ " ) (et gy *| f

gD e[6W] p e[PD] ke[K]

< XX Y E[@r bl e g0 SN )]

gMelGW] pe[p®] ke[K]

<2%G l)HP l)|Ka + 2% Z Z Z [ *p(,) )(c<z71>’g(z))|ﬁa

gD e[V p e[PW)] kE[K]

(l 2) 1: K)}

e

(1-2)(1:K)
f(l:C,:) :|



Recall that for each p") e [PV, (fil;(l%)(k))( (-1 gy could be equal to 0 or there exists an unique

position p(!=1) € [PU~1] such that (f(l ¥ e g0y = f(iul)lgkpu 1)» thus we get

1-1)(1:K 1-2)(1:K
E[ Y et V) o, G250
g e[GW)
@ @ apo 1-1)(k a 1-2)(1:K
<22GOIPY Ka +2ob S0 ST R[N e 2]

p—De[pi-D] k€[K]

Moreover, from theorem |4 we know that f(l (¢ 1K)|f(l DLK) -, Stpai-1)y g (@, TE1)

ca-v.y e

and from proposition l denoted U (p!—Y k) = Dpa-ve @, k)], for each

P00k e POV K] we have S Ay = U k) @
I=1)(1:K) | p(1-2)(1:K _
SISO ~ st(a U, ), (U K, UG )~

(U (pU=D), k))St(a, (U, k), 1, p(U(pt-D, k))). Since Ba < o we get

(1— K (1 K
E[ Y 1600 o gon 12 £E8]

PIOTSTIO)

< 221GV | PO|Ka®+

v Y Y (Ut 0) R ISt U ). LU, )]

p(-D[P(-1] ke[K]

<00
< 2%GW||PY|Ka®+

+ 29 M Z Z </Sp(l1)><K|1

p(l—l)e[P(l—l)] ke[K]

B
U=V k) @ s‘ r¢=ba s))

where M = max - gyeqpi-—b i E [[Sta, (U@, 8), 1L a(U I, k)] < oo
Then,

E[ Y etV

gMe[GM)]
(I—1)(1:K =2
—E[E[ X 160V g 1|y [pe ]
g e[GW]
< 2a|G(l)||P(l)|Kaa+

+ 29 M Z Z E [(/sl’””“(l

(l 1)E[P(l 1)]k€[K

hg:@]

B
U(pY, k) @ s| T ds) g 2>]

< 271G [PV |Ka*+

+ 24> M Z Z ( [/SP(LI)Xxl

pi-De[pt-D] ke[K]

B
U k) @s| T (ds) \hg%] )

(7

where we used the Jensen’s inequality. Moreover,
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&=

/S\P(lfl) XK|—1

J?‘U(p(l_l)v k) @ ]l(P(l*UxK) ‘a—’_

U=V k) @ s‘ r=b(ds)

hgm]

« . @ _
+ > U@, k) @ o(f P 0) he 2)]
(c=2) g(-D)e[CxGI~D]
o _
=E |oy + Vel Z |¢(f(p<z 1) )(c<lfz>,g<1—1>)|a h(cl 2)]
(0(1—2)79(1—1>)e[c><(;(l*1)] (8)
a 05 1-2)(k o 1—
=0t Z E [|¢(f£p(12_)1(> ))(Cu—2>,g<z—1>)| ‘h(c 2)}
(C(L—Z),g(l—l))E[CXG(l—l)]
ol —92)(1: —
=of + % > E {80200 oma gy 2]
(C(l—z)7g(l—1))€[CXG(l—1)]
_ o, % ap(i-2)
o+ % 18000 I*hEd £ egga-n)

(c(l—2))g(l—l))e[CXG(lfl)]

o [ Bl fyenggeny)

gU=De[GU-D)]

Note that we have used the inequality |z;| < ||ac|| and that ( (1_2)(11{)) ci-2) )|h(l 2) i h(l 2
(with respect to ¢“~1) > 1). Putting together (7) and . ) we have shown that

B[ D ST o g

gWelG®]

<2°|GY|PY | Ka™ + 200" M Y > &@

p=1) e[PU-D] ke[K]

B
+ o smo/" > H¢Q&unﬂPhgm(df¢FUemum)>

gU-De[G-1)

which is finite by induction hypothesis. Now we conclude:

swp [ 3 160 InE D Sy

gWe[GM]

—swpE[ Y oAV camn g I2|nE ]
gelcW]

=supE [SHPIE [ E ||¢(fi((l_1)(1:K))(c(l_1)7g(l))||a‘hg_2):| ‘h(cl_l)}
C C
g e[GM]

< 400

that is finite by previous step.
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Proof of L1.1

The proof of L1.1) follows by induction, and along lines similar to the proof of L1). In particular, let
€ > 0 be such that S(a + €) < . It exists since S < 1. For [ = 2, for each D >1

El D 16tV ) e g 7]

g@e[G?)

E[ DOREED DR DRIt <c<1>,g<2>>|a+}

q(2>e[(}(2>] p(2)e[]>(2)] kE[K]

Z Z Z E _\¢(f£p(2>))(c<1>,g<z>)|a+5}

9@ eGP p@ [P®)] kE[K]

< Z Z Z E (a+b|(f(p(2) ), g<z>)|ﬁ)(a+€)}

g E[GD)] p@ c[P?)] ke[K]

QaT€ a—T€ lk: a—T€
< XY Y [ eI iy 4]

g e[G@] p) e[P@] ke[K]

< 2(&+6)|G(2)||P(2)|Ka(oc+e) + (2b)(a+e) Z Z Z [ f(1(2) C(1)7g(2))|(oz+6)5]

9D E[GD] p@ c[P@)] ke|K)]

< 0

where we used that ( f&{i’f))(cm,g@)), by Proposition |1| is distributed according to a SD with
index « (and some skewness, scale and shift parameters) and then, being (o + €)f < «,
|:|(f(1(2) ) 0(1)79(2))|(a+6)ﬁ:| < +o00. Moreover the bound is uniform with respect to C' since

the law is invariant with respect to C'. Now assuming that LL1.1) is true for [ — 2 we prove that it is
true for [ — 1. As in the previous lemma, we can write the following inequality

(1K atel, (=2
B[ 30 100800 e g | [s2)]
dDe[GW]
I-1)(1:K ate 1-2)(1:K -2
:E[E[ Z ||¢(f¢(( I ))(c(l—m,g(l))” + f((1;c7?)( )th )}
I e[GW]

< o(ate) |G(l)||P(l)|Ka(a+€) 4 glate)plate) p\q Z

pU=1 g[PU-1)]
E /
sPU=1 x K| -1

B
a+te
U k)@ s r”—l)(ds)) \hg%]
ke[K]

< 9(ate) |G(l)||P(l)|Ka(a+€) 4 9late)plate) g Z

pU—1 g[PU-1)]
> (=]
sPU=D x K| -1

B
a+te
Up'=Y, k) ®5‘ F(ll)(ds)’hg_2)1>
ke[K]

©))

Moreover, following the same steps as in the previous lemma (just replacing « + € instead of «), we

get
pi=2)
E l/S|P(l1)XK1 ©

=0y + Ufﬁ“/ S e RE A fe ega-n)

g(lfl)E[G(lfl)]

a+te
U0, k) @ s‘ T (ds)
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and

ST el a- )P REP (A fyanepea-ny)

gD [GU-1)]
1-2)(1:K a—te
- ]E{ > (820 amay gay[*F

g(lfl)e[G(L—l)]

=E[E[ X 1o g o

g—De[GU-1)

<E [E [ Z ||¢(f£l72)(1:K))(c(172)7g(171))||a+€
g=-De[cU-D)]

hg—%]

e

]

Thus taking the sup in (9), by previous inequalities, it is less or equal than

2(a+6)|G(l)||p(l)|Ka(Oé+6) + olate)plate) g Z Z (G?+E+

p—De[PU-D] ke[K]
B
toStE[mpE[ 3 6( ) g 17| \h%‘”})

9= e[Gl-1)

which is bounded by hypothesis induction.

Proof of L2

By induction hypothesis, h(Cl_l) converges to h(!~1) in distribution with respect to the weak topology.

Since the limit law is degenerate on h(*~1) (in the sense that it provides a.s. the distribution ¢(*~1)),

then for every sub-sequence (C”) there exists a sub-sequence (C") such that hg;l) CONVerges a.s.

By the induction hypothesis, (!~ 1) is absolutely continuous with respect to the Lebesgue measure.

Since ¢ is almost everywhere continuous, and by L1.1) uniformly integrable with respect to (hg_l))
then we can write the following

S 06,0 hEn (A fyweemy) = / S 1t0@6(f,0)* ¢V (d fyo g

gD elG®] gD e[GW)]

Thus

S 1t9®e(fy0) | hE V(A fywegan) B / Yo 12e(f0)1"a A fyw egon)

gMe[GW) g e[GM)]

as C' — +o0.

Proof of L3

Lete >0asinLl.1),r = O‘TJFG and g such that % + % = 1. Thus, by Holder inequality and by the
fact that, being ¢ > 1, for every y > 0 it holds that (1 — e ¥)? < (1 —e™¥) < y, we get
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« 0—3 a -
> el h—ep{=2 3 1t @ e(f0)l HhE (A Sy o)
g e[GO g elc®]

- [/”qﬁf” 1" he™ 1)(dfq<l>)] "

gWE[GW]

1

X [/[1 — exp{f% Z |t(l) ® ¢(fq<l>)|a}]qh(cl_1)(dfg“))

g e[GW]
. :
g _
< Vllcé Jo)lerhi” 1)(df<'>)] lc“/ SO @ é(f,0) "RV (d fyw)
gV e[GW] g e[GM)]
- [/Hqs Fo)I°T R 1)(dfq<l>)] g
g e[GW]
%
[nt“ [ / ST el lohE ”(dfgm]
g e[GD]
oo+ ™
- (Ht(l”'aﬁw)q l/”@ﬁ fow)l Ia“h(l 1)(dlfm)] .
g e[GD)]

1

q

[ 3 ||¢(fg<l>)||ah(cl_1)(dfgm)] %0

gWelG®]

as C' — oo by L1) and L1.1).

Conclusion: L1 +L1.1+L2+L3

By Lagrange theorem for y > 0 there exists 6 € (0,1) such that e™¥ = 1 — y + y(1 — e ¥9).
In our case, for y = yo(fyweew)) = & Zg(z)e GO it @ d(fym)|*, for any C there exists a
0c € (0,1) such that, from @ the follow equality holds
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)
%] 1 t
) )

—get® « . _ c
= I e g [(/e "C(f-q“)dG(”])h(cl 1)(df{g(1)e[(;u)]})) }
Y ) a
—e b ‘t ®]1(p(l)><K) | ]E |:<1 — /yc (f e G(l)])h (d f{g(l)e[G(l)]})

_ _ C
Jr/yc (ng)e[G(’)]) [1 _ o Peve (fg(L)E[G(Z)])}hg 1)(d f{g<l>e[G<‘>]})) }

:eXp{ — 0'?|t(l) ® ﬂ(P(l)XK) ‘Q}X

O'g ar (I—
F <1 - 6/ Z itV & ¢ fyw)l h(C 1)(d Frgwegon)+
POPTIO)
i a o5 a
7/ S0 @ é(f0)l [1 . exp{ —0c% Y 10 @ (f0)] }] X
ghe G l)] g(l>€[G(l)}

c
x h((,lil) (d f{gu)e[(;u)]}))

The last integral tends to 0 as C' — oo since by Cauchy inequality |t ® o(fyw)|* <
€] [|¢( fyw)[|* we have

/ Z |(l)®¢(fg(,,))|°‘[1—exp{—90% Z |t(l)®¢(fg<L>)|aHx

gWe[GM] gWe[GM]
x it (df{ga)e[gm]})

1)« a 3 l «
<O [ 3 et [t-ew{ =0T 3 KO0 ots0)}x

gD e[GW)] gD e[GO
x h((,l:l) (d frgweory)

< [ Y Ietoltt-en{-% ¥ 1ot}

PIOTSCIO) PIOTSCIO)
1—
x h(c 1)(d f{gmg[(;m]})

which tends to O in probability by L3). Thus, by using the definition of the exponential function
e® = lim, (1 + x/n)", and by L2), we get

t®
<P(f(z>(§)1 I)o)( )

- eXP{ — otV ® Lpw ey |* — 02?/ Z 1t @ ¢(f,0)*¢" D (d f{gu)e[(;(l)]})}

g(”E[G(”]
]l «
(P(l)xK)
_ exp{ — |l Lpr e ||a‘t(l> ® Mool +
PO XK
P(fyw)

— o8 / S oo e

i 164,
= exp{ - / 1tV @ sO)er(d s(l))}
sPW x K| —1
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where

IO =llow 1pox ) ||a‘1’(l)<11(P<l>xK) )+

- / > llowd Uyl (6(£,0)) a0 (A Fryoegopy)

gD elGD]

SM A.1

We prove that f(l()l)1 )K) ~ Stpa) y g (@, TM), where

T'D =0y 1pew gy [T (L )
+ Z HGw(l‘il:K))(CW),g(l))||a\1’(1)((«TS}:K))(C(O),g(l)))

(@ g e[CO® xGM)]

Proof. For | = 1, from definition and assumption we have that, for any t =

1)(k) 1)
[tixz)( ]{(p<1>,k)€[p<1)XK]}€RP XK

@(fu)(l:m) (t(l))

B [ox {1000 50000
0 N SIEN
:]E {lt ® ( (1) ) ® +b (1) (P(I)XK))}}
K) (C(O),G(l)) )
=E eXP{ (c<1> (t(l) © m(*l'K)) O @ T H
=E |exp {b% ® ]1(p<1> < K) H
X H E [GXP { iW((cl<)1),C(o>7g(1>)t(1) ® (xil:K))(cw%g“))) H

(c(o) ,g(l))E[C(O) xG(l)]
@M x k) I H
(c(®,gM)e[C( xGD)]

= exp{ — Jl‘ﬂt(l) @ Lpw) x k) |* — o Z ‘t(l) ® (iril:K)>(c(0)7g(l))
(c©),g)e[CO xGD))

a

—oS VREE) Lo o)

70—3“(1)@1
=€

)}

a a Lpwxr) |2
= exp{ =0 [ Lp iy |l ‘t(l) ® ]1( RN
1L p sy |l
a (1:K) ale(1) (xil:K))(cm) gy |¥
— ol 3 @) o g 1|0 @ ——7 s }
(c(®,gM)e[C® xGW)] (@ ) e g0l

—exp{ - / ) & s }oT M (50}
siPM) x K| -1

(1:K)

where (z, and

)(c(© g1y = [(xil;)<1>)(c(0>,g‘”)]
{(pW,k)e[PM x K]}

T =llow L e ey |“ D (Liparr )
N Z HO’w(xiLK))(dO),g(l))||a\11(1) ((l‘il:K))(c(O),g(l)))

(@ g e[CO® xGM)]
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SM A.2

We prove that for eachl = 2,..., L, f((l)(1 K)|f(l D(1:K)

0 (1.0 ~ Stpa) y g (o, TD), where

l o
re =|oy Lpw sy | ‘I’(l)<1(P<l>xK) )+

1 _ . _ .
te Z lowd(fs 1Kl'K))(cu—lxgu))||‘X‘I’(l) (¢(f,£l 1)(1'K))(C<z—1>,g<z>))

(=1 ,g1)E[CxGW]

Proof. For | > 2, from definition and assumption we have that, for any t =
Uk ) .
[t;()lg )]{(p(L>,k)€[P(l)><K]} € RP <K ‘it holds

l
Pg) )

1
=F exp{lt(l) ®f(c<z>1 ;QUC((IC1 )(lK H

PV, K) .
l I-1)(1:K
th) (Cl/a W((C()l)7:,:) ® ¢(f£ )( )) + b£<2> Lipw x k) ) H

PW K) (c,cM)
= E exp { 1 Ci/a c(l) ) ® (t( ) ® (b(f (=1 K))> + (bil(z)t(l) ® ]l(P(l) X K) ) }:|
=F exp {b(l) tV o1 (PO x K) H X

X H E {exp{ Ol/a W(cl<)1> c(l=1) g(0)) (t(l) ® Mfilil)(l:m)(6“*1)’90’)) H
(c=1) gM)e[C'xGD)]

— (]
— oo t®L ) ey I H

(c=1),g1)€[CxGW]

=K exp

@

o I— :
- % [(Dee(ry V) Lay Lo,

(0%

o _ . (03
_ exp{ 21D & 1 g ) [ — Fw Z ‘t(z) ® (f{ 1)(1'K))(C<L—1>,g<t>) }
(ct=1,g0)e[CxGW]
1 «
(PO XK)

:exp{—a 10 ‘tl —_—

b H PHXK) H ” ]I(P(Z)XK) ”

g Y(1:K) ale() ( Elil)(lzm)(c“*”yg(”) ¢
D S 0 el P (=D }
(c=1),gM)e[Cx6W) lo(fs )(et-1, g0 |

_ exp{ _ / 0 @ OO 5(1))}

sIP) x K| —1
where

l o
re =|oy Lpw sy \P(l)(]l(P”)xK) )+

1 —1)(1: ~1)(1:
To > lowd(fy 1)(1'K))(c<l71>,g<z))||a\1’(l)<¢(f£l 1)(1'K))(C<L—1),g<z>))

(=1 ,g)e[CxGWD]

. (1-1)(1:K) _ (I-1)(k)
with (f* )(6(171)79(1)) = [(f*p(z) )(C(l—1)7g(l))i| {(p(l>7k)e[P<l>><K]}' O
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SM B

We prove that for each [ € [L], 1K) = £ (1K) ) 4 Qo —1 Stpw) (e, r')asc —
00.

The symbol ) here denotes the product measure. The proof follows by the Cramér-Wold theorem
for finite-dimensional projection of f()(1:K) — f()((1:K) ) for which it is sufficient to prove the

DK ror ¢ e £ N. See, e.g.

large C asymptotic behavior of any linear combination of the f (el )

Billingsley| [[1999] for details.

Proof. Following the notation of Matthews et al.|[2018]], consider a finite linear combination of the
function values without the bias, i.e. fix z = (2,0 ){Cmeﬁ} and define

TOL,2,2070,C00) = 37 20 [£a5) = b0 Lo o)
cheL

The case | = 1 is easy since it does not depend on C, indeed we get

, VR,
T(l)(£’27x(1~K)70(0)) = Z Zc<1)W((Cl<)1) L ©® xil‘K)
cWer
and, following the same steps as in Theorem for any t(V) := [t&igk)]{(pu),k)e[pu) x K]} € RP” <K

called [|z[|* = > ) [200]%, we get

1)
SO(T(U(Az,z(l:K) ,C(0>)) <t( )

=F [exp { it @ TW (L, z, (1) C(O))H

(P, K)

=F [exp { it ® ( Z Zcu)W((cl()l),;,;) ® xiltK))H

cMer

M K) €60,
=E [exp { i Z ZC(I)W((cl()l)’:):) & (t(l) & a:&l‘K)) H
cMer

. 1 1:K
= H E [exp { 1Zc(l)W((C()1>,C(o)7g(1))t(l) ® (:ES( ))(C(O),g(l))) }}
(cM,e(0) ,gM)eLx[CO xGD)]
B

= H exp{ — (Jzem]ow)”

(e ,e(0) g(M)eLx[CO xGD)]

K
= eXp{ —o2|z||* Z ’t(l) 2 (x(*l ))(cm),gu))
(c(0),g()e[CO) xGD)]

t(l) X (QCS(LK))(C(O),Q(U)

)

(1:K)
1:K (Ts )C<0>, my |«
— exp{ — o8 lz° > @) 0 g 1260 © — g e[
(c©),gW)e[CO x GV ([e2 )(c(0>,g<1))||

_ _ 1) & s AW (g D)
exp{ /S\P(l)xk\71 ‘t ©s |AC (ds )}

where Ag ) coincides with T'() justreplacing o, <— 0 and o, < 0,|2||. Thus since the characteristic
function does not depend on C we get (as C' — 00)

TOL, 2, 205 0Oy & 56,0, (o, AD)
where

A — A((i) = ||lz]|® Z IIUw(xS,LK))(am,g(l))||Q‘I’(1)((xiLK))(cw),g(n))
(c(0) g e[CO) xGMD)]
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Forl=2,...,L,

(P (1)7;() .
e —1)(1:
T(l)(ﬁ z, 2K ,C) Z Cll (im ® o i((l D K))
chel
and, following the same steps as in Theorem for any tl) .= [t;l(zgk)]{(pu),k)e[P(z) xK]} € RP" <K
called ||z[|* = > o) [2:00 %, we get
l
(p(T(l)([: 2,1 C)lf” 1)(1 K)) (t( ))
=F [exp { it @O (L, 2,215, C’)|f((fcl,2)(1:K)H
. Zeh) (P, K) 1-1)(1:K
=E[ew{itVe (X ZEWh., © o)
cheL
c<z> ®0.K) ) (C6D) (I-1)(1:K)
=B[ew{i 3 G, € (079 o )}
cheL
0] ) I-1)[1:K
= II E {eXp{ Ci/a Wieto co-n gyt @ S0 ) W”)H
(e ,ct=1) gW)eLx[C*xGW)]
Ze () « — : «
_ I exp { = Ll it g ({000 oy |
(c®,c=1) gM)eLx[CxGD)]
0'3 a - : “
—en{-Zllt Y e ) g0
(c=D,gM)e[CxGW]
oS e (1:K) a
=ew{ - El- S IS i g X
(c=1,gM)e[CxGWD)
(I-1)(1:K)
(s ) (=1 g

X ‘t(l)

- K }
(£ o

= exp{ - / 1tV @ sV |O‘Ag)(d s(l))}
slP) x K|-1

where AY) coincides with F(C) just replacing o < 0 and o, < o, ||z||. Now, proceeding as in

Theoremﬁl we get the weak limit as C' — 400, i.e.

TOL, 2,55, C) % Stpay e (0, AD)

where
AD = [ 37 lowblhye) 8O (6(6,0))a" VA Frgn o)
gWe[GW)
This completes the proof. O
SM C

Focus the attention on the last layer L.. We found that f (L)(1:K) i> féoL )(M{), i.e. a convergence of a
sequence of R*P"’ %K _yalued random variables. To gather information on the positions P we
consider a linear combination with respect to PE) je. we project the co x PY) x K dimensional
vector f(F)1K) — £(L)(4(1:K) ") into a oo x K dimensional vectors, and we take the limit as

C — oo. More precisely, for | € [L], fixu € RP" such that u ® ]l(pm) = 1 and define the
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transformation Tu(l) CROOXPUXK R>*K (a,b,c) — (a,u® b, c) (in other words Tlfl) =u®).
P

We want to establish the convergence of e (fOEE)) a5 C — oo.

Forl =1 we get

(1) ¢ p(1)(1:K) (1) (1)(P(1)’K) (1:K) (1)
To () =Ty (W R ) A]l(meK))

(K)

=W E @ a0+ VAT
P
and forl > 1,
0 0) POE) -1k
70 (50080) = 0 (i w® 8 () 4 HOA T o)
1y &) (1—-1)(1:K) a
=g O (u & o ) + b0 AT

Following the same steps of Theorem 2] we get that

T(l) f(l lK ® StK a Fl) ))
c=1

where

O ) = lop L) [“TO (1) ) / > o @ 6(,0)]"x

PO
) (1-1)
x D (u P@(il)) ¢(fg(1))>q (d frgmeeon)

where DO . RE 5 R
1 z 1 z K
p(“(z)::{?‘;(zl)ﬂfs(—ﬂ) 0#zeR
0

0=zeRK

fyo € RP K and ) = Sty g (0, TY) for I € [L], being T defined in theorem
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