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1 Introduction

As models become more powerful, they can acquire the ability to fit the data well in multiple
qualitatively different ways. At the same time, we might have requirements other than high predictive
performance that we would like the model to satisfy. For example, in causality, which variables are
used and how they are combined to make predictions is paramount, and in generative modelling, we
might want to specify which aspects of the data should be modelled by which model component. One
way to express such preferences is by controlling the information flow in the model with carefully
placed information bottleneck layers, which limit the amount of information that passes through
them by applying noise to their inputs. The most notable example of such a layer is the stochastic
representation layer of the Deep Variational Information Bottleneck [Alemi et al.| 2016, DVIB] which
requires including a variational upper bound on the mutual information [Poole et al., | 2019] between
its inputs and outputs as a penalty in the loss function. We show that using Gaussian dropout [Wang
and Manning|, [2013| [Kingma et al., [2015]], which involves multiplicative Gaussian noise, achieves
the same goal in a simpler way, as it induces an upper bound on the mutual information between its
inputs and outputs without requiring any additional terms in the objective.

We evaluate the two approaches in the generative modelling setting, by applying them to the long-
standing problem of increasing the use of latent variables in a VAE with an autoregressive decoder
for modelling images. By placing an information bottleneck layer in the decoder we encourage the
latent variables to encode the more global and high-level properties of the image while letting the
autoregressive component capture the fine detail. We observe that the Gaussian dropout layer yields
a better trade-off between the use of latent variables and the fit to the data than the widely used
variational information bottleneck layer.

2 Two types of information bottlenecks layers

Perhaps the most common strategy for limiting the information passing through a particular pathway
is inserting a Gaussian layer (with a diagonal covariance) with its mean and variance being functions
of the preceding layer. Such a layer destroys some of the information contained in the means by
adding zero-mean Gaussian noise to them. To prevent learning from counteracting this effect by
driving the variance of the noise to zero and thus making information capacity infinite, a variational
upper bound on the mutual information between the inputs and outputs is added to the overall loss,
after being scaled by a strength hyperparameter. The encoder in the DVIB is the most prominent
application of this approach, as is described in Appendix [A] Despite the success of DVIB, altering
the loss in this way potentially makes the optimization problem harder and requires estimating the
mutual information, even when we are not interested in measuring it, in order to penalize it.

We will show that Gaussian dropout, which has been introduced as an alternative to the original
(binary) dropout [Srivastava et al.,|2014] [Wang and Manning} 2013]], provides a simple and highly
competitive alternative information bottleneck layer. Unlike DVIB, which is based on additive
Gaussian noise, Gaussian dropout uses multiplicative noise: given an input X, it outputs ¥ = Xe
using ¢ ~ N(1,02). Here o is a hyperparameter that controls the strength of the bottleneck, so unlike
for the variational bottleneck layer, this noise distribution has no learnable parameters and does not
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require estimating mutual information or including any additional terms in the loss. While Gaussian
dropout is typically used for regularizing models, we provide a new perspective on it by showing that
it induces a bound on the mutual information between its input and output. To do this, we analyze
Gaussian dropout in information-theoretic terms in the following theorem, following the strategy
used for the additive white Gaussian noise channel [Ch. 10 of|Cover and Thomas), [2006].

Theorem 1. The mutual information between the input and output of a Gaussian dropout layer has
an upper bound which is invariant to input rescaling.

Proof. Let X be the input and Y output of a Gaussian dropout layer with noise variance o2. Then
Y|X ~ N (X, X%0?), with the conditional (differential) entropy h(Y'|X) = Ex [ log(2meX?5?)].
We can compute the marginal variance of Y using the law of total variance: V;, = Ex[Var(Y|X)] +
Var(E[Y|X]) = (Vx + X?) 02 4+ Vx, where X and Vx are the expectation and variance of X,
respectively. Then

I(X,Y) = h(Y) — h(Y|X) M
< Llog (27eV;) ~ Ex [} log (2reX?0?) @
v 2 2
TN {log W] @)
— 1By [mg Vx+XX7+Vx/o} , 5

where (2)) holds since the Gaussian distribution is the maximum entropy distribution with the given
variance. Since for a € R, Var(aX) = a?Vx and Ex[aX] = aX, the bound in () is invariant to
rescaling of the input X. O

This invariance of the bound under input rescaling is interesting because it does not hold for the
Gaussian channel with additive noise, since its capacity can be made arbitrarily high by increasing
the magnitude its inputs.

3 Application: Hybrid VAE-Pixel CNN model

We apply our approach of controlling informa-
tion flows to the problem of effectively combin-
ing two generative models with complementary
strengths for modelling images: a VAE and a —@-» @
PixelCNN. Latent variable models such as VAEs

tend to capture the global structure and depen-
dencies between different parts of an image well
but have difficulty modelling details such as
edges. Autoregressive models such as Pixel- —e—» @ —@-»
CNN can model complex local structures and PhelONN o Mixing Net
produce rich, detailed images, but have more
trouble with longer-range dependencies. The
existing approaches for combining VAEs with
autoregressive decoders [|Gulrajani et al., [2017|
Chen et al., 2017] work by restricting the expressive power of the autoregressive decoders in various
ways in order to ensure that the latent variables are used. |Gulrajani et al.[[2017]], for example, use a
reduced number of PixelCNN layers. Instead of imposing architectural constraints, we propose to
limit the decoder by inserting an information bottleneck layer.

15T Encoder

Decoder

Figure 1: Hybrid VAE-Pixel CNN++ model

Letz = (x1,...,x,) denote the input image and z the VAE latents. We use a hybrid decoder that
combines the outputs of a convolutional net decoding the VAE latents with those of a Pixel CNN++
on the per-pixel basis using a simple MLP mixing network. More precisely, the VAE decoder outputs
atensor u = (ug, ..., u,) with the same spatial dimensions as the input image; then the Pixel CNN++
predicts a low-dimensional output vector v; for each pixel j using the preceding pixels in the input
image x; and the decoded VAE latents u. Finally, a one-hidden-layer MLLP combines v; and u;
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Figure 2: Test set ELBO vs. VAE KL for models trained on CIFAR10 using either a Gaussian dropout
layer (GD) or a variational bottleneck layer (VB). Models with GD and VB are trained for a number
of dropout rates and values of 3 respectively. For reference, we also include results for a model with
no bottleneck layer, trained with and without an auxiliary decoder.

to obtain the output distribution at each pixel location. This clean separation of the two modelling
contributions allows us to limit the information flow through the PixelCNN++ component by passing
the low-dimensional output vector v; it produces for each pixel j, through an information bottleneck
layer before feeding the result into the mixing network.

We train models that do not use the variational information bottleneck by maximizing the ELBO:
L(z) = Eq,(z]a) log po(2]2)] — KL(gg(z]2) || p(2)). (6)

When using the the variational information bottleneck layer, which induces a distribution p(v;|z <, 2)
over the noisy PixelCNN++ output for each pixel 7, we add the DVIB-like penalty term to the ELBO
resulting in the following objective:

Lypr(r) = Eq,(2(2) logpo(2|2)] — KL(gs(2|2) || p(2)) = 5 Z KL(p(vjlz<;,2) [| N(0,1)).

No matter which of the bottleneck layers we use, the information passed through autoregressive
pathways will be bottlenecked, whereas the global information captured by the VAE latents will be
available without any restrictions for predicting each pixel.

4 Experimental results

We trained two versions of the model on CIFAR10: one using the Gaussian dropout layer and one
using the variational bottleneck layer. In each case, we performed a sweep over the hyperparameter
controlling the strength of the bottleneck, which for the Gaussian dropout layer is the dropout rate p

which maps to the noise standard deviation o as o(p) = ﬁ. We evaluate the resulting models

on the set test in terms of their ELBO, which quantifies the fit to the data, and the VAE KL, which
measured the use of the latent variables. From Figure[2] we can see that there is a negative dependence
between these two quantities for the models, which means that we have to trade one off against the
other. However, we can see that the models trained using the Gaussian dropout layer tend to achieve
a better trade-off compared to the models trained using the variational bottleneck layer. For reference,
the figure also includes results for a model trained without the information bottleneck layer, as well
as a model trained jointly with an auxiliary non-autoregressive decoder to encourage the use of latent
variables [Lucas and Verbeek| [2018]. See Appendix B|for the details of our experimental setup.
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Figure 3: Samples from models trained with different Gaussian dropout rates (0.015 first panel and
0.15 second panel) compared to samples obtained using different KL penalty weights (0.02 third and
0.08 last panel)
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A Deep Variational Information Bottleneck

The information bottleneck framework (IB) [Tishby et al., [1999] provides a way of learning a
representation Z of an input X, so that it contains little information from X other than that useful for
predicting the target Y. Representations are learned by maximizing the objective I(Z,Y)—35I(X, Z),
where the 3 hyperparameter specifies the desired trade-off between informativeness and compression.
The resulting optimization problem is intractable in general, and Deep Variational Information
Bottleneck provides a practical alternative based on variational bounds on mutual information. DVIB
models Z as a Gaussian vector with the mean and variance parameterized as functions of the the
input X (typically neural networks): p(z|z) = N (u(z), diag(co(z)?)). To deal with the difficulty of
estimating mutual information, DBIV replaces each of the two MI terms with a variational bound
[Alemi et al.,[2018]] on it. Here we will consider only the bound for (X, Z), which implements the
kind of bottleneck layer we are interested in in this paper. The bound has the form

I(X, 2) < Ex[KL(p(z|z) || 4(2))], ©)

and is obtained by replacing the intractable marginal p(z) in I(X, Z) = Ex[KL(p(z|z) || p(z))]
with any distribution ¢(z), which in practice is usually (0, I).

In computational terms we can interpret DVIB as limiting the information content of a represen-
tation Z by adding zero-mean Gaussian noise N'(0, diag(co(x)?)) to a deterministic representation
w(x). The inclusion of the SKL(p(z|z) || p(z)) in the DVIB objective ensures that the amount
of information passing through Z does not become too large, by adjusting the noise variances
accordingly.

B Experimental setup

All models use the same architecture, with the VAE encoder and decoder being ResNets with 7 blocks,
each with 512 channels, 128 bottleneck channels, and ELU activations; the decoder has 256 output
channels. The VAE latents are arranged spatially as 4 x 4 with 16 latents at each location; we use the
standard normal prior. The Pixel CNN++ network is implemented following [Salimans et al.| [2017]],
including the use of binary dropout with the rate of 0.5. The pixel output distribution is a discretized
mixture of logistics with 10 mixture components and conditional color channels. The Pixel CNN++
output for each pixel v; is a 10-dimensional vector, which we feed to the information bottleneck layer
when we use one. The mixing network is a one-hidden-layer MLP with 266 ELU units. Training
is done with the Adam optimizer (5; =0.9, 82 =0.999, ¢ = 10*8) for 350 epochs, annealing the
learning rate from 10~ to 4 x 1075, The numbers in Figure [2] were computed on the CIFARI1O0 test
set, with the ELBO and VAE KL reported in bits per dimension. At test time, we do not inject noise
for either type of the information bottleneck layer, using their unchanged input as the output instead.
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