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Abstract

Successfully training Variational Autoencoders (VAEs) with a hierarchy of discrete
latent variables remains an area of active research. Vector-Quantised VAEs are
a powerful approach to discrete VAEs, but naive hierarchical extensions can be
unstable when training. Leveraging insights from classical methods of inference we
introduce Relaxed-Responsibility Vector-Quantisation, a novel way to parameterise
discrete latent variables, a refinement of relaxed Vector-Quantisation that gives
better performance and more stable training. This enables a novel approach to hier-
archical discrete variational autoencoders with numerous layers of latent variables
(here up to 32) that we train end-to-end. Within hierarchical probabilistic deep
generative models with discrete latent variables trained end-to-end, we achieve
state-of-the-art bits-per-dim results for various standard datasets.

1 Introduction

Probabilistic deep generative models, such as Variational Autoencoders (VAEs), have had significant
and continuing success in learning continuous representations of data (Kingma & Wellingl [2014;
Rezende et al.| |2014; [Kingma et al., 2016; Vahdat & Kautz, 2020; (Child, 2021)). The learning of
discrete representations has also flourished (Grathwohl et al.||2018}; |Oord et al.,|2017; Razavi et al.,
2019;; [Fortuin et al., [2019; [Pervez et al., [2020) and remains an active area of research. However,
training rich hierarchical models with discrete latent variables for high-dimensional data remains a
problem in the field (Liévin et al.|[2019; |Williams et al.|[2020; |Pervez et al., [2020)).

Here we propose an effective, scalable method for learning hierarchical discrete representations
of image data within a unified probabilistic framework. This work builds on Vector-Quantised
Variational Autoencoders (VQ-VAEs) (Oord et al.;,2017) and their relaxation (Sgnderby et al., 2017).

VQ-VAEs reach surprisingly poor raw bits-per-dim (bpd), a scaled form of the ELBO, on both
the train and test sets. Thus to achieve good performance they require post-hoc training of density
estimators on learnt embeddings. This motivates us to develop a novel variety of hierarchical discrete
VAEs. These models, which we call Relaxed-Responsibility Vector-Quantised VAEs or RRVQ-VAEs,
achieve state of the art bits-per-dim for this class of models.

2 Background: Vector Quantised Variational Autoencoders

The Vector-Quantised Variational Autoencoder (VQ—VAE) (Oord et al.,|2017) is a density estimator
for high dimensional data. Instead of having continuous latent variables, as in the vanilla VAE, the

latents z are a set of M discrete variables z = {21, ..., 2™} each of dimensionality K. The joint
po(x, 2) factorises as for a vanilla VAE, with p(z) = [[X_, Cat (27| 1).

The likelihood pg(x|z) does not depend directly on samples of z. Rather the discrete vector z is used
to index over a dictionary of K embeddings, the codebook vectors E = {Ek }, each E" € R%, d,
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being the dimensionality of the embedding space. For stochastic amortised variational inference
in VQ-VAEs, introduce a recognition network ey (x) € RMxde outputing M vectors in R%, the

embedding space. The posterior g, (z|x) = Hfle g4 (2™ |x) is then defined via a nearest-neighbour
vector-lookup. For each latent 2™ there is a one-hot (i.e. deterministic) posterior

2
: _ in . m _ ]
G (27 = klx) = 1 if k= argmin; e} (x) — E , 0
0 otherwise.

rVQ-VAEs Instead of the deterministic posterior found in a vanilla VQ-VAE, a Gumbel-Softmax
distribution (Maddison et al., 2017; Jang et al.,2017) can be used to specify a posterior distribution
from which we can take differentiable samples (Sgnderby et al.2017). Thus the codebook can be
learnt via gradient descent. One can choose the logits of the posteriors to be proportional to the square
distance between the given embedding vector and each codebook vector (Sgnderby et al.,[2017),

q(z]x) = 11\_/[[ Cat (zm |7} (x)) , where 7R (x) o exp 1 ’em(x) - Ekr (2)
a m ¢ P ¢ 2 ¢ 9 .
These Relaxed—VQ-VAEs (henceforth rVQ-VAEs) have been shown to make better use of their

latent variables than the deterministic base model, obtaining higher values of the evidence lower
bound (ELBO) both at train and test time (Sgnderby et al., [ 2017).

3 Relaxed-Responsibility Hierarchical Discrete VAEs

3.1 Hierarchical Discrete VAEs

To make a hierarchical discrete VAE, introduce L layers of latent variables Z = {z1, .., z, }. Note that
z;" is the m™ latent variable in the ¢ layer. We wish to have an autoregressive structure between
layers. Inspired by the ResNet VAEs (Kingma et al., 2016), we choose our generative model’s
factorisation to be
L—1
po (x,7) = po (x|Z) po (2) = po(x|Z)p(z1) [ [ p (zelz>0) 3)
=1

where p(z¢|z>¢) = Cat (z¢|mg¢ = fo,0(2z>¢)) and pg(zy) = Cat (zp|mg,1). Similarly, ¢ factorises
as

L—1
45(Z%) = qp(zL[x) [ ] a0 (2el250,%). )
(=1
The ELBO L(x) for this model is thus
L1
L(x) =Ezqlogps(x|Z) — KL (g4 (22 |%)[[p(21) = > B g KL(q0(2e] 250, X)||po (22|25 0).
=1

®)

This is directly analogous to hierarchical VAEs with continuous latent variables.

3.2 Relaxed-Responsibility Vector-Quantisation

Our first main contribution is a new method of parameterising the generative model and the approx-
imate posterior for models containing vector-quantised discrete latents. This improves the ability
of hierarchical models of this type to learn effectively. We call this method Relaxed-Responsibility
Vector-Quantisation (RRVQ). We found that without these improvements, hierarchical models of this
form had low performance and were often unstable during training, and that the changes we propose
are synergistic — working better together than either alone.



3.2.1 Proposal for ¢

We can interpret the embedding codebook as recording the means of the cluster components, all
having isotropic unit variance, and are a-priori equal in probability (Bishop| [2006] §10.2). Eq (@) is
equivalent to saying that the posterior at each position in z is proportional to the cluster responsibilities
for the embedding vector e, (x) at that position.

We develop this link further, increasing the expressiveness of the parameterisation of the latents z, in
our hierarchical model, by relaxing the restriction that all components have unit isotropic covariance.
We introduce a second codebook Es; ; for each layer, recording the diagonal covariance matrices of
each mixture component. The responsibilities then used for defining 74 ¢(ey () are
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where m indexes over the latent positions, k over the codebook entries, ey ¢, € RMxde E, ¢ is the

codebook of means for the ¢'" layer and e, ¢ is the embedding-space output of a network taking the
appropriate inputs for the current layer, as written in Eq ().

By learning Ey; ¢, codebook embeddings with large diagonal covariance will have their means used
preferentially when the output embeddings e, , are far away from the codebook means, and those
with small diagonal covariance will dominate at short ranges, being highly confident of being the
appropriate ‘expert’ (Jacobs et al.,|1991) when ey, ; is close.

3.2.2 Proposal for p

What about for the generative model? One obvious approach is to parameterise the (log) probabilities
of pg(z¢|z~¢) directly by a deep net. However, we found training to be unstable in hierarchical
VQ-VAEs that directly parameterised these conditional probabilities.

Training instability in VAEs come from large KL values that then lead to numerical overflow and
large gradients.

What is a reasonable, flexible form for the generative model that will provide stable training while
preserving or even improving performance? We find that rVQ parameterisation of discrete variables
leads to less-peaked, higher-entropy distributions, than a naive implementation using a softmax of
raw logits—the method we found to be unstable. See Appendix [Dfor theoretical and experimental
study of this.

Thus we choose to parameterise the conditional distributions in pg(Z) along the same lines as for
q, namely rVQ-parameterisation via an embedding space, rather than directly using raw logits, and
sharing the same codebooks as for g. So, in the generative model each conditional distribution in
po(Z), rather than receiving the parameters needed to define it directly, instead has its probabilities
parameterised via the responsibilities given by embeddings eg , € R >4 output by a deep net:
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3.3 Overall Model

By combining Relaxed-Responsibility VQ with a hierarchical discrete VAE structure, we obtain
our proposed model, a Relaxed-Responsibility Vector Quantised VAE (RRVQ-VAE). There is
a deterministic chain in the inference network, the representations {d,}. Similarly, there is a
deterministic downwards chain of representations {d,} in the generative model. These representations
enable the conditional structure given in Eqs (3}f4): in the generative model we have an autoregressive
structure over layers, and similarly in the posterior each layer of latents is conditioned both on x
and on those above it in the hierarchy. See Fig[A.T]for a graphical representation of this model.
We choose to have a progressively smaller number of latent variables per layer as we ascend the
hierarchy. If we continue decreasing the number until the top-most latent is a single discrete variable,
it is reasonable for us to place a uniform categorical prior over it.



4 Experiments

We train our models on CIFAR-10, SVHN and CelebA. We train very deep models with L = 32 layers.
For each of CIFAR-10 and SVHN the models have identical specification, with some small changes
for CelebA due to the different image size. We implement these models using fully convolutional
networks composed of ResNet blocks.

The number of latent variables per layer decreases as we ascend the hierarchy, as represented in Fig
We decrease the number of latents by a factor of 4 every 8 layers, forming 4 blocks each of
decreasing numbers of latents. Each layer of latent variables has its own pair of codebooks for means
and diagonal covariances. For further model description and implementation details, see Appendix

4.1 Numerical Results

Table 1: Bits Per Dim Results: Comparison of our model, RRVQ-VAE, to various baselines in bits-
per-dim (bpd) for train & test sets — lower better. We benchmark against rVQ—-VAEs, VIMCO-trained
discrete VAEs (Oord et al.l[2017) and FouST-trained models with binary latents and L = 1 or L = 4
layers (Pervez et al., 2020). For additional context we also give values for hierarchical Spatial-VAE:s,
the conditionally-Gaussian latent variable version of our models.

MODEL TEST BPD TRAIN BPD
CIFAR-10
VIMCO 5.14 -
RVQ-VAE 4.77 4.87
FouST,L =4 4.16 -
FouST,L =1 4.02 -
RRVQ-VAE, L = 32 3.94 3.81
SPATIAL-VAE, L = 32 3.55 3.49
SVHN
RVQ-VAE 3.73 4.17
RRVQ-VAE, L = 32 2.30 2.52
SPATIAL-VAE, L = 32 1.94 2.07
CELEBA
RVQ-VAE 5.31 5.31
RRVQ-VAE, L = 32 2.97 2.97
SPATIAL-VAE, L = 32 2.54 2.58

We show in Tableﬂ] numerical results from our L = 32 models, benchmarked against rVQ-VAEs and
various baselines. We measure the bits-per-dim (bpd) for the training and test set (using non-relaxed
categorical distributions). These results show clearly the benefit our approach brings to discrete
VAEs, from the improved values reached of test and train bits-per-dim. Our models help close the
gap between discrete latent variable models and those with continuous latent variables.

5 Conclusion

We have presented a novel parameterisation for stochastic Vector Quantisation, Relaxed-
Responsibility Vector Quantisation. RRVQ learns a codebook of variances alongside the codebook of
means, using the responsibilities under the Gaussian mixture model represented by those quantities
to define discrete distributions, both within the approximate posterior using for inference and in the
forward model.

We then use this is as a building block to develop a novel variety of hierarchical discrete VAE,
Relaxed-Responsibility Vector-Quantised VAEs. RRVQ-VAE:s are the highest-performance unified
probabilistic deep generative models with hierarchies of discrete latent variables to be trained end-to-
end on the datasets studied.
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Appendix for Relaxed-Responsibility Hierarchical Discrete VAEs

A Graphical Representation of RRVQ-VAE
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(a) Variational Posterior (b) Gen. Model

Figure A.1: RRVQ-VAE with L = 3, (a) variational posterior and (b) generative model, as defined
in Eq (). Blue arrows indicate shared networks. For simplicity the codebooks are not represented.
(c) is a diagrammatic representation of the model, showing the spatial arrangement of latents. We
decrease the multiplicity by a factor of 4 at each layer.

B Sampling and Reconstructing in VQ-VAEs

Original Samples

(a) 'VQ-VAE

Reconstructed

(b) Spatial-VAE

Figure B.2: Here we demonstrate that the poor quality draws when sampling from a VQ—-VAE’s prior
p(z) is not from having discrete latents, but from the spatial arrangement of latent variables. We
train (a) r'VQ-VAEs and (b) Spatial-VAEs (a VAE with continuous latents, but arranged spatially
like a VQ—VAE) on (top) a toy dataset composed of 9 colour swatches, (middle) SVHN, (bottom)
CIFAR-10. For each dataset, both models give good reconstructions (middle column) but ancestral
samples from the prior p(z) (right column) are very dissimilar to datapoints in the training set, even
for the toy dataset — for which we do not see uniformly-coloured images, instead we see regions of
each the different colours of the dataset. This shows that it is the method used to parameterise the
model’s latent variables that leads to this sampling phenomena, not being discrete vs continuous.

Here we focus on modelling square images, though the arguments we make apply to images generally,
as well as to audio or video data. In VQ—VAE:s, one uses convolutional neural networks to represent

p and ¢, laying out z as a square of side v/ M, mirroring the spatial structure of pixels in the image

(Oord et al, 2017). For audio one might choose a 1D structure, and 3D for video.



Interestingly, ancestral sampling from py(z) in (relaxed or not) VQ-VAE models gives draws that do
not resemble the training data. This indicates severe aggregate posterior—prior mismatch. Samples
from this prior fail to capture the structure needed, i.e. the dependencies between the M latents that
are necessary to produce realistic data when decoded.

Meanwhile, even from early stages of training in VQ—VAEs the reconstructions of training data are
of high fidelity. This is why in VQ—VAEs it is necessary to subsequently train a second density
estimator, commonly a large, powerful autoregressive model such as a Pixel CNN (van den Oord et al.}
2016;[Salimans et al.,[2017) over the latent representations to then sample from. This is followed in
the two- and three-layer extension of VQ—VAEs as well (Razavi et al., 2019).

Conversely, in VAEs with continuous latent variables the reconstructions are generally found to
be somewhat blurry, while samples tend to have more coherent structure. In a standard VAE with
p(z) = Hﬁl N (2|0, 1) the prior factorises over dimensions similar to how it does in a VQ-VAE,
yet samples appear reasonable, which suggests that the reason is not only that.

We give an explanation for this phenomenon. It is not related with discrete vs continuous latents at
all, but rather with their neural parameterisation: In VQ—-VAEs, convolutional neural networks are
used to represent p and ¢. With convolutionally-parameterised latents, each is tied spatially to be
mostly concerned with a particular region of pixels in the input. This is unlike most implementations
of vanilla VAEs, where the posterior’s parameters, commonly the mean and diagonal covariance
of a Gaussian, and the decoder mean are output by MLPs. Those learnt representations are thus
intrinsically non-local, which in turn gives them the ability to learn easily the arrangement of parts
and wholes in an image.

To demonstrate this, we train a simple Spatial-VAE where continuous-valued latent vari-
ables are arranged spatially, as in VQ-VAEs: py(z) = Hf\le N (z™|0,1) and gy(z|x) =
I, N (2™ ugH(x), 05 (x)), 2™ € R'®, with p and ¢ convolutional networks each composed
of 2 ResNet block with 32 channels, and the number of latents M is the 1/4 the number of pixels in
the input. We also train an equivalent r'VQ-VAE, with embedding space dimensionality d. = K = 16.
We use SVHN, CIFAR-10, and (to make the effect most striking) a toy dataset containing images that
are each uniform blocks of colours. See Fig for the resulting reconstructions and samples for
the three datasets for both models. We also provide examples of toy MLP-parameterised VQ-VAEs
providing coherent samples in Appendix

Embedding an image into the latent space for reconstruction is relatively easy. For the discrete
model, with high probability the encoder outputs embeddings e (x) that are close to the appropriate
codebook embedding, and this is the case for each of the M spatially-arranged latents. Similarly, at
each latent position, the Spatial-VAE encoder learns to place posterior probability over the appropriate
latent space region. However, when sampling from each model’s prior, we end up with very mixed
up generated images. Even for the toy dataset, the draws for both models are rainbow images where
each patch of the image is separately given a random colour from the training set.

The poor quality of naive VQ—VAE draws is not intrinsically from having discrete latent variables,
but from having discrete latent variables that are arranged spatially and are parameterised in both
the posterior and generative models using convolutional neural networks. However, it is the choice
to have spatial latent variables that provides high quality reconstructions.

To get around this, one can train a powerful autoregressive model over samples from the aggregate
posterior in z. In Vanilla—VQ-VAEs the aggregate posterior is a sum of ¢ functions, so it resembles
an empirical data distribution. Thus training a high-performance density estimator is reasonable
and provides realistic draws (Oord et al., 2017} [Razavi et al.| [2019). In this manner of operation,
the encoder-decoder networks are tools for non-linear dimensionality-reduction, so that the density
estimator can be trained in a lower-dimensional space, the learnt latent space, rather than directly on
the raw data. While that is a proven and performative approach, our goal is to combine the benefits of
VQ-VAEs (high quality reconstructions, the desirable property of learning discrete representations,
ease of training) with having a unified modelling approach, with models trained end-to-end.

We develop ways to make discrete VAEs more expressive and flexible by adding hierarchical structure.
This removes the need of a two-stage training process, and gives us the benefits of hierarchical
representations such as having different layers learning different aspects of the data. Further, if
autoregressive models are used to produce samples, we are required to perform as many forward



passes through the model as there are latent variables. In the hierarchical case, as in|Razavi et al.
(2019), this remains the case.

In this paper we are training very deep hierarchies of latent variables, up to 32 layers. Therefore, if
we had autoregressive models for sampling in a hierarchical model of this form, the additional calls
that would be needed to produce a single sample would be very demanding. For our deepest models
trained on 32 x 32 images it would be ~ 2000 internal, sequential forward passes. For 64 x 64
images it would be ~ 10, 000. Instead, with our approach, we are able to generate samples using a
single forward pass.

C Details of Model Architecture

(a) Variational Posterior (b) Gen. Model

Figure C.3: RRVQ-VAE with L = 3 as an example. (a) The variational posterior and (b) generative
model, as defined in Eq (3)). Blue arrows indicate shared networks. For simplicity the codebooks are
not represented. Each labelled arrow corresponds to a network, described below.

Our network implementation has the basic structure of a ResNet VAE (Kingma et al.,|2016), including
in neural network hyperparameters (other than our choice to narrow the number of latents as we
ascent the hierarchy, the necessary changes for RRVQ as opposed to Gaussian latents, and that we
train with a slightly slower initial learning rate). Now we describe the structure of each variety of
network inside our model. encl/dec] are convolutions/transposed convolutions that down/upscale
their inputs using a stride of 2. All the other subnetworks of the enc/dec deterministic backbones
are each implemented as a single resnet block — each dec_ using a transposed convolution internally.
When the mappings between two layers of latent variables requires a resizing, the identity path of the
network performs a differentiable rescaling operation.

The networks gladder_ map from the backbone of encoders to the embedding space, and pladder_
map from the embedding space to the backbone of decoders. Each of these are implemented as a
single convolutional layer. The networks gstrap_ and pstrap_ too are each implemented as a single
convolutional layer, and carry out upscaling using a stride of 2. They output in the embedding space.
The embeddings used to define each layer’s posterior distribution are the sum of the outputs of that
layer’s gstrap_ and gladder_ networks. The embeddings used for the generative model’s internal
conditional probabilities are simply the outputs of each pstrap_.

For the L = 32 model runs, the backbones have 256 channels, and the e representations are 32
dimensional. The layer’s codebooks hold 256 embeddings each. The likelihood function is the same
discretised logistic likelihood as in |Kingma et al.|(2016)). As in|Kingma et al.|(2016), we use weight
normalisation, ELU activations and free-bits regularisation.

The top-most latent variable in the generative model can be set to be uniform over embeddings, or
can be parameterised by a similar procedure as for the rest via a d, that is a learnable parameter



(rather than itself the output of a network). See Fig|C.3|for a representation of this — here for L = 3
we have d4 in the generative model parameterising py(z3).

When training with just L = 5 layers, as opposed to 32, it is as if we remove the corresponding
intermediate latent variables along with their ladder_, strap_ networks, so now the enc_ and dec_
networks are composed of 4 resnet blocks between latents. We also promote the remaining ladder_,
strap_ networks to themselves be composed of 4 resnet blocks.

We train using AdaMax with batch size 64 and an initial learning rate that we decay on plateau,
multiplying by 0.8 when there has been no decrease in the test set ELBO for 20 (SVHN + CIFAR-
10)/5 (CelebA) epochs, down to a minimum of 5 x 10~°. The initial learning rate is 8 x 10~4. We
train with for up to 500 (SVHN + CIFAR-10)/160 (CelebA) epochs or until convergence. We used
Azure VMs with NVIDIA M60 GPUs to train our models — using a single M60 to train a model takes
~ 10 days for SVHN and CIFAR10. For the CelebA multi-GPU training is necessary.

D Worst-Case Entropy of rVQ and Softmax-parameterised Discrete
Distributions

In Theorems[T]and [2] we consider the worst-case arrangement of codebook means/logits for rVQ and
Softmax respectively, such that a single large-magnitude value of the underlying network outputs has
maximum impact driving the resulting discrete distribution to be close to one-hot.

Theorem 1. (Minimum entropy from rVQ) Consider the worst-case arrangement of rVQ codebooks
vectors, i.e. resulting in the minimum entropy categorical distribution: all but one of the codebook
embeddings are an equal and greater distance away from the input embedding. For large-magnitude
input embeddings of distance d from the solitary, closest codebook embedding along the line of
separation and the remaining K — 1 codebook embeddings at a distance d + 6 along the same line
of separation, the entropy of the resulting categorical distribution, Eq (2)) is, to first order

Hivq = (K —1)(1+g)exp(—g) + O (exp (—9)2) (D.1)

where g = (% + 5d). Proof: See Appendix

Theorem 2. (Minimum entropy from Softmax) Consider the worst-case arrangement of logits, i.e.
resulting in the minimum entropy categorical distribution: all but one of the logits take the same
value c, with one logit taking the larger value c + ¢, £ > Q. For large-magnitude difference in logits ¢,
the entropy of the resulting categorical distribution is, to first order,

Heotemax = (K — 1) (1+ ) exp (—0) + O (exp (4)2) (D.2)
Proof: See Appendix|D.2]

We computationally verify the tightness of these first order approximations in Appendix [D.3]and find
them to be very accurate, quickly become correct to one part in 106.

Corollary 2.1. Viewing { + ¢ = d as the large-magnitude output of a neural network, for large d
rVQ-parameterised categorical distributions have higher entropy than softmax-parameterised ones if
o< 1L

This tells us that for large neural network outputs rVQ-parameterised distributions have higher entropy
than those parameterised via logits, even for the most unlucky arrangement of codebook embeddings,
as long as the largest distance between codebooks is < 1.

D.1 Proof of Theorem 1

Proof. Our distribution of interest is a rVQ distribution, ie Eq @I), where we have the worst possible
arrangement of our K -member codebooks — the arrangement that leads to the minimum possible
entropy, and we also assume the worst possible positions of the embedding vector e. The arrangement
that leads to this is having all but one of the codebook vectors at one point and a single codebook
separated a distance J from them, with the embedding vector e lying along the line defined by those
two positions a distance d from the outlier codebook vector and d + ¢ from the remaining K — 1



codebook vectors. We note that this arrangement is closely related to that considered in Beyer et al.
(1999), § 3.5.2.

This gives us a distribution p(z|7), where

1
Xp <2d2) ifi=1

—e
= f ) (D.3)
J— —_— 2 1
— eXD ( ) (d+9) ) otherwise.
and . )
Z = exp (—2d2) + (K —1)exp <—2(d + (5)2). (D.4)
The entropy of this discrete distribution is thus:
K
Hevq=— Y = logn’ (D.5)
i=1
_ e (—%d2) log exp (—%dz) (K- 1)6Xp (—%(d + 5)2) log exp (—%(d + 6)2)
Z Z Z Z
(D.6)
—3d? 1 1 1
G DN R (K —1)exp (—=0%—6d) (= (d+08)° —logZ) ).
Z 2 2 2
(D.7)

xp (—1d?
Now let us consider the value of this in the limit of large d, d > 4. First, let us expand M
using the first order expansion (1 + )~ ~ 1 — z for |z| < 1.

exp (—3d?) _ exp (—3d?) D.8)
Z exp (—3d?) + (K — 1) exp (—1(d + 0)?) '
= ! (D.9)

1+ (K —1)exp (—3(62 + 26d))

=1— (K —1)exp (—;(52 + 26d)) +0 <exp (—;(52 + 26d))2> . (D.10)

Second, let us expand log Z using the first order expansion log(1 + x) ~ z for |z| < 1.

log Z = log (exp (;dz) + (K — 1) exp (;(d + 5)2)) (D.11)
= log (eXp (—;d2) (1 + (K — 1) exp (—;(52 + 26d)>>> (D.12)
= —%dQ + log (1 + (K —1)exp (-é(az + 26d))> (D.13)

2
= —%dz + (K —1)exp <—;(52 + 25d)> +0 (exp (—;(52 + 25d)) > . (D.14)

Taking Eqgs (D.10D.T4) and subbing back into Eq (D.7)), we get
1 1 1 1
Hivg = {1 — (K —1)exp <—2((52 + 25d)>} {(K —1)exp (—2(52 + 25d)) (1 + 5((5 +d)? - 2d2>

+0 <exp (—;(62 + 25d))2> } (D.15)

= (K — 1) exp (—;(52 + 25d)> (1 + %(52 + 254)) +0 <exp (—;(52 + 26d))2 .

(D.16)
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Giving us, to first order in exp (—% (62 + 26d)),

1 1
Hevg ~ (K — 1) exp (—2(52 + 25d)> (1 +5 (6% + 25d)> (D.17)
as required. O

D.2 Proof of Theorem 2

Proof. Our distribution of interest is a discrete distribution defined as a softmax of K raw logits,
where we have the worst possible arrangement of the logit outputs — the arrangement that leads to the
minimum possible entropy. The arrangement that leads to this is having all but one of the logits take
one value c and a single logit taking the value ¢ + ¢, £ > 0.

This gives us a distribution p(z|7), where

1
Eexp(c—&—ﬁ) ifi=1

m=1:1 (D.18)
- (c) otherwise
7 exp
and
Z =exp(c+¥)+ (K —1)exp(c). (D.19)

The entropy of this discrete distribution is thus:

K
7'lsoftmax = — Z 7ri 10g 7Ti (DZO)
=1

_exp(l+c) exp (c)
I — l+c—logZ)— (K -1) Z

Now let us consider the value of this in the limit of large ¢, £ > c. First, let us expand % using the
first order expansion (1 + 2)~! ~ 1 — x for |z| < 1.

1 1

(c—log2Z). (D.21)

7 exp (c+0)+ (K —1)exp(c) (D.22)
1 1
T exp (+c)1+ (K —1)exp(—F) (D.23)
=exp (—¢ —¢) (1 — (K —1)exp (—¢) + O(exp (—6)2)> . (D.24)
Second, let us expand log Z using the first order expansion log(1 + z) ~ z for |z| < 1.
log Z = log (exp (¢ + ) + (K — 1) exp (¢)) (D.25)
=log (exp (c+ £)(1 + (K — 1) exp (—¥)) (D.26)
=c+l+log(l+ (K —1)exp(—¥)) (D.27)
— et 0+ (K —1exp(—f) +0 (exp (76)2) . (D.28)

Taking Eqs (D.24]D.28)) and subbing back into Eq (D.21), keeping terms to first order in exp (—¥)
we get

Hsoftmax ~ (K - 1) exp (—g) (1 + E) (D.29)
as required.
O
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D.3 Experimental Evaluation

In order to empirically verify the bounds above, we compare the exact entropy to these first-order
approximations for both methods’ worst-case scenarios. We find the approximation to be highly
accurate for inputs > 10, with proportional error ~ 10~ for each.

—— Exact Huo
Approx. Hiwg

10-124

10-154

1071 T T T T
0 10 20 30 40 50

Figure D.4: rVQ worst-case entropy as a function of d, calculated exactly and using Eq (D-17), for
0 = 1. Note this is a logarithmic plot.

—— Exact Hsoftmax
Approx. Hsoftmax

1012

10-154

10718 T T T T
0 10 20 30 40 50

Figure D.5: Softmax worst-case entropy as a function of d, calculated exactly and using Eq (D:29),
for ¢ = 0. Note this is a logarithmic plot.

As an additional check on the rVQ results, we create random codebooks of embeddings uniformly
distributed over the hypersphere with radius 0.5 and calculate H as a function of d. We do this
for 20,000 sampled codebooks per value of d, each of 256 entries, in an embedding space with
d. = 32. The entropy we get from simulation shows an entirely different trend from the ‘worst-case’
calculations. This is reasonable as the worst-possible arrangement is very unlikely to occur.

10% 4

10724
1074

10-12

10-17 4
10-22

107274 —— Exact worst-case Hywgq
10-32] Approx. worst-case Hrvg
—— Average simulated Hywq

57
10 —— Worst recorded Huwo

T T T T
0 20 40 60 80 100

Figure D.6: rVQ entropy as a function of d, calculated for the worst case both exactly and using
Eq (DI7), for § = 1, along with the average entropy from simulated codebooks with codebook
embeddings uniform over the radius 0.5 hypersphere and the worst recorded entropy from that
simulation procedure at each distance. Note this is a logarithmic plot.

D.4 Proof of Corollary 2.1

Proof. In big-O notation, viewing each as functions of their underlying neural parameterisation,

Hyvg = O (dexp (—dd))) (D.30)

and
Hsoftmax = O (Lexp (—1 x £)) (D.31)
Soif § < 1, the for large network outputs Hrvq > Hsoftmax- O
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E Samples and Reconstructions

(c) CelebA (b) SVHN (a) C-10

Figure E.7: Reconstructions: we demonstrate the high quality reconstructions of our approach for
CIFAR-10, SVHN and CelebA. In each pair, left is the reconstruction, right the original.

ARRBEP,
f.tv::"w‘i" :. s

(b) SVHN

(c) CelebA

Figure E.8: Sampling: we perform ancestral sampling for single-layer rVQ-VAE baselines (top row)
and our L = 32 models (middle and bottom), for CIFAR-10, SVHN and CelebA.
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F Compression using RRVQ models

For our L = 5 models, our latents Z are in 5 layers of size M = {16 x 16,8 x 8,4 x 4,2 X
2,1 x 1}. {E, ., Ex }. For CIFAR-10 and SVHN these each containing K = 256 codebook
values € R%, d. = 128, per layer. For CelebA, we taper the number of embeddings per layer
so K = {128,64, 32,16, 8}, d. = 32, and have networks layer-to-layer with fewer channels, for
reasons of compute capacity.

In Fig[F.9)we compress (top) CelebA images using (middle) our L = 5 model and (bottom) using
JPEG to the same compression ratio (CR) [same experimental protocol as|Gregor et al.[(2016). We
are compressing 64 x 64 images into 2275 bits, a CR of 928237054 = 43. Our approach outperforms

JPEG, maintaining more visual information. Unlike JPEG, ours does not introduce blocky artefacts.

Figure F.9: Top: Original image, Middle: RRVQ L = 5 compression, Bottom: JPEG at same
compression ratio. Best viewed zoomed in.

G Ablation Study

Table G.1: Ablation study for L = 5 models on CIFAR-10 and SVHN: We show the train and
test bits-per-dim we can get from the generative model log probabilities directly output by a net (p:
Direct-Cat) or parameterised using responsibilities in the embedding space (p: Embed-Cat), and
where we can learn a codebook of diagonal covariances for the responsibilities (o learnt) or have
them all fixed to one (¢ = 1). RRVQ is when we have Embed-Cat in p and o learnt. Note that
Direct-Cat with o learnt is unstable during training for SVHN.

p: DIRECT-CAT EMBEDDING-CAT
CIFAR-10
o=1 TRAIN: 5.00 TRAIN: 5.06

TEST: 5.05 TEST: 5.11

TRAIN: 5.08 TRAIN: 4.40 (RRVQ)
TEST: 5.10 TEST: 4.65 (RRVQ)

SVHN
TRAIN: 3.44 TRrRAIN: 3.51

o0 LEARNT

o=1" "Tgst: 332 TEsT: 3.41
TRAIN: - TRAIN:  3.02 (RRVQ)
O LEARNT rper. — TEST: 2.96 (RRVQ)

How does our approach compare to other possible hierarchical extensions of rVQ-VAEs? For models
with L = 5 we trained various ablations of our proposal: with or without a learnt codebook of
covariances; and with the generative model represented either via a Relaxed-VQ lookup or directly
outputting a (log) probability over embeddings. All of these have an ELBO as in Eq (3)), but we are
varying how we parameterise p and ¢. In Table[G.T] we show the test and train bpd obtained for these
hierarchical discrete VAEs.

We can see that o = 1 with direct probabilities in p (the top-left corner results for each dataset),
arguably being the most naive approach, is outperformed by ~ half of a bpd by full RRVQ (bottom-
right). Interestingly, if any of the two changes (p via embedding & o learnt) are made in isolation,
the result is either no substantial change in performance (if anything, slight degradation) or rendered
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training so unstable that it was impossible to obtain a result. Clearly a synergistic property takes
place here; these two changes made together lead to improved performance of the models.

H MLPrVQ-VAEs

For completeness, in Fig@ we train an MLP rVQ-VAE on our colour swatch data, to demonstrate
that samples from such a model show consistent colour cast (further, samples show new colours
beyond the training set). That is, ancestral samples look like the training data (ie with consistent
colour) unlike single-latent-layer convolutional models.

Figure H.10: MLP-rVQ-VAE samples, trained on toy colour-swatch dateset.
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