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Abstract

Until now, neural networks have been predominantly relying on backpropagation
and gradient descent as the inference engine in order to learn a neural network’s
parameters. This is primarily because closed-form Bayesian inference for neu-
ral networks has been considered to be intractable. This short paper outlines a
new analytical method for performing tractable approximate Gaussian inference
(TAGI) in Bayesian neural networks. The method enables the analytical inference
of the posterior mean vector and diagonal covariance matrix for weights and bi-
ases. One key aspect is that the method matches or exceeds the state-of-the-art
performance while having the same computational complexity as current methods
relying on the gradient backpropagation, i.e., linear complexity with respect to
the number of parameters in the network. In addition to reducing in the number
of hyperparameters due to the absence of gradient-based optimization, it enables
unprecedented features such as the propagation of uncertainty from the input of a
network up to its output, and it allows inferring the value of hidden states, inputs,
as well as latent variables. In this paper, we present benchmark results demon-
strating the performance of TAGI on deep architectures and showcases some of
the new avenues it enables

1 Introduction

Until now, neural networks have been predominantly relying on backpropagation [22] and gradient
descent as the inference engine in order to learn a neural network’s parameters. This is primarily be-
cause closed-form Bayesian inference for neural networks has been considered to be intractable [7].
Several approximate inference methods for Bayesian Neural Networks (BNN) have been proposed,
e.g., Laplace approximation [15], Hamiltonian Monte Carlo sampling [17], variational inference
[11, 1], and Monte Carlo dropout [6]. All the recent methods [12, 10, 2, 14, 20, 25, 5] that are
either based on moment matching, variational approaches, or dropout, share a common aspect; the
inference of parameters is still treated as an optimization problem relying on the gradient backprop-
agation.

This short paper outlines a new analytical method for performing tractable approximate Gaussian
inference (TAGI) [8] in BNNs. The method enables the analytical inference of the posterior mean
vector and diagonal covariance matrix for weights and biases. One key aspect is that the method
matches or exceeds the state-of-the-art performance while having the same computational complex-
ity as current methods relying on the gradient backpropagation, i.e., linear complexity with respect
to the number of parameters in the network. Performing Bayesian inference in neural networks en-
ables several key features, such as the quantification of epistemic uncertainty associated with model
parameters, the online estimation of parameters, and a reduction in the number of hyperparameters
due to the absence of gradient-based optimization. Moreover, the analytical framework proposed
also enables unprecedented features such as the propagation of uncertainty from the input of a net-
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work up to its output, and it allows inferring the value of hidden states, inputs, as well as latent
variables.

The first part covers the theoretical foundation and working principles of the analytically tractable
uncertainty propagation in neural networks, as well as the parameter and hidden state inference.
Then, the second part will go through benchmarks demonstrating the superiority of the approach
on supervised, unsupervised, and reinforcement learning tasks. In addition, we will showcase how
TAGTI can be applied to reinforcement learning problems such as the Atari game environment. Fi-
nally, the last part will present how we can leverage the analytic inference capabilities of our ap-
proach to enable novel applications of neural networks such as closed-form direct adversarial at-
tacks, and the usage of a neural network as a generic black-box optimization method.

2 Tractable Approximate Gaussian Inference (TAGI)

TAGTI [8] assumes that the joint distribution between the observations and a neural network’s param-
eters is approximated by a multivariate Gaussian distribution,

—1
o 0 e bIP T :|> He|ly = Ho + z]{/GXJY (y - NY)
=N ; ) Yo, f(0ly) =N(6; )
<y> <{y} [NY} [EYO Yy 1(6ly) (0 kory: Zoy) oy = Zo — X127 Sve

so that the parameter inference can build upon the Gaussian conditional equations describing the
probability density function (PDF) of 8 conditional on observations y.

The approach is inherently divided in two steps; first propagate uncertainties through the network
in order to obtain the joint PDFs between the quantities to be updated (i.e., neural network’s
parameters and hidden state units) and the observations, and then update these quantities. The
first key operation to be considered is the propagation of uncertainty from the activation units

AW ~ N(ug), Eg)) of a hidden layer j to a hidden unit Zi(jﬂ) on the subsequent layer j + 1,
ZOtD = Wi(,'L)Ag ) + BY), where Wz(jk) are weights and BY) bias parameters that are

modelled by Gaussian random variables. In order to maintain the analytical tractability of uncer-
tainty propagation through hidden layers, TAGI approximates the product of any pair of weight
and activation unit by a Gaussian random variable WA =~ N (uwa, 03, ), for which the exact mo-
ments can be computed analytically using the Gaussian multiplicative approximation (GMA) [8].
The second key operation is the propagation of uncertainty through non-linear activation functions
AEJ AR o(Z G +1)), where, in order to maintain the analytical tractability, TAGI locally linearize

¢(+) at the expected value of the hidden units ,u(Zj,H). Maintaining the computational tractability of

uncertainty propagation through hidden layers reﬁuires assuming diagonal covariance structures for

)

hidden units among a same layer =Y , and for the parameters 3g.

The update step, i.e., Gaussian conditional inference, is performed using a recursive layer-wise pro-
cedure; Using the short-hand notation {6*, Z+} = {9U+V) ZU+1Y and {0, Z} = {8V), Z0)},
the posteriors for the parameters and hidden states are computed following
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Pziy = bz+Iz (Bzy — pzr) Moy = Mo+ Jo (pkzy — pzr) 0
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Note that the layer-wise recursive procedure defined in equations 1 only requires the storage of the
joint prior PDFs for pairs of subsequent hidden layers and pairs of hidden layers and the parameters
directly connecting into them. This allows maintaining the computational tractability of the uncer-
tainty propagation and inference steps, which scale linearly with respect to the number of weight
parameters. As we will see in the next section, the applicability of TAGI extends beyond feedfor-
ward neural network (FNN) to convolutional (CNN) and generative architectures (GAN), as well as
discrete- and continuous-action reinforcement learning problems.

3 Benchmarks & New Avenues

This section presents benchmark results demonstrating the performance of TAGI on deep archi-
tectures and showcases some of the new avenues it enables. In addition to the early experiments



conducted on FNN for regression and classification problems [8], we have recently showed that
TAGTI outperforms deterministic and Bayesian CNN networks trained using backpropagation [19].
For the classification task on the CIFAR-10 images, using a Resnet18 [9], TAGI leads to an error
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(a) Backprop. (100 epochs) (b) TAGI (50 epochs)
Figure 1: Latent space for hair color from (a) a 4.1M parameters backprop-trained network [4] with
(b) a 0.7M parameters TAGI-trained network.
rate of 13.8%, while analogous networks trained with deterministic backpropagation leads to 14.0%,
MC-dropout 17.2%, and VOGN 15.7%[21]. Moreover, TAGI only used one-third as many epochs
as the other approaches.

While experimenting with infoGANs [4], we showed [19] that TAGI was able to generate com-
parable images while using half as many epochs and a network that is six times smaller than the
analogous architecture relying on backpropagation. Figure 1 presents a comparison of such images.

Figure 2: > 99% effective adversarial attacks for different target labels ¢ in each columns.

In addition to enabling the inference and propagation of uncertainty in FNNs, CNNs and GANs
architecture, TAGI introduces novel possibilities due to its capacity to infer not only a network’s
parameters, but also any of its hidden states and input variables. With TAGI, the generation of
adversarial-attack images can be done analytically, without relying on an optimization process; The
prior knowledge {px,X x} for the target image is propagated forward through the network by
following the procedure presented in §2. Then, the correct label is replaced by the target label g
that is chosen for the attack. After performing the inference step, the image defined by its updated
mean vector px |5 and covariance X x5 is now modified in order to trigger the class y. In order to
improve the quality of the attack, the process is repeated recursively over multiple iterations, where

the inferred values { HS?W E()?Iﬂ} at iteration ¢ are used as the prior’s hyperparameters at the next

iteration ¢ + 1. Figure 2 present examples of > 99% effective TAGI-generated (i.e., optimization-
free) adversarial attacks for CIFAR-10 images [19].

For reinforcement learning, TAGI natively enables dealing with the exploration/exploitation tradeoff
using Thompson sampling [23]. Figure 3a compares the average reward over 100 episodes for
three runs obtained for a TAGI deep Q-network [18], with the results from Mnih et al. [16] for
the Breakout Atari game. Figure 3b displays a similar comparison for the Half Cheetah MuJoCo
environment [24, 3], where TAGI employs simultaneously a policy and a value network in order to
handle continuous actions [13], without relying on gradient backpropagation.

4 Conclusion

TAGI’s performance on various experiments challenges the common belief that large-scale neural
networks can only be trained by relying on gradient backpropagation. We have shown through
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Figure 3: Comparison of the reward from three runs for (a) the Breakout Atari game and (b) the Half
Cheetah V2 MuJoCo environment for TAGI-based and Backprop-based RL frameworks.

[18, 13, 19, 8] that this current paradigm is no longer the only alternative as TAGI can be used
to learn the parameters of complex networks in an analytically tractable manner, without relying
on gradient-based optimization. In addition, TAGI requires fewer hyperparameters across different
tasks. The applications presented are only a subset from the variety of problems that can take
advantage of analytical inference, either through the adaptation of existing architectures or through
the development of new ones.
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