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Abstract

Accurately estimating spacecraft location is of crucial importance for a variety of
safety-critical tasks in low-Earth orbit (LEO), including satellite collision avoidance
and re-entry. The solar activity largely impacts the physical characteristics of the
thermosphere, consequently affecting the trajectories of spacecraft in LEO. State-
of-the-art models for estimating thermospheric density are either computationally
expensive or under-perform during extreme solar activity. Moreover, these models
provide single-point solutions, neglecting critical information on the associated
uncertainty. In this work we use and compare two methods, Monte Carlo dropout
and deep ensembles, to estimate thermospheric total mass density and associated
uncertainty. The networks are trained using ground-truth density data from five well-
calibrated satellites, using orbital data information, solar and geomagnetic indices
as input. The trained models improve for a subset of satellites upon operational
solutions, also providing a measure of uncertainty in the density estimation.

1 Introduction

Precise estimation of thermospheric total mass density is essential for accurate prediction of satellite
trajectories in low-Earth orbit (LEO) [2]. Accurate knowledge of satellite location with associated
uncertainties is crucial for safety and accessibility to space, representing a key aspect for a variety
of space-related problems, comprising collision avoidance, re-entry, and lifetime analysis [16, 24].
State-of-the-art methods for density estimation are usually separated into empirical and physics-based
models [13, 29]. Empirical models are constructed via parameter fitting utilizing satellite observations,
and they represent rapid solutions for density estimation for LEO satellites. However, these models
present biases, often underperform for periods of very high or low solar activity, and lack any direct
estimate of the uncertainty in the estimation. Conversely, physics-based models are constructed to
solve fluid equations over discretized volumes to obtain global trends of atmospheric characteristics,
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offering greater forecasting ability than empirical models, although necessitating relatively higher
computational resources [19].

The physical characteristics of the thermosphere are heavily impacted by solar activity [15]. To
express the influence of the Sun on the thermospheric density, empirical and physics-based models
often leverage approximated space weather indices as input. These indices are usually measured
with on-ground instrumentation and are representative of the solar activity. Examples of space
weather indices comprise F10.7, F30 proxies and the ap and Kp geomagnetic indices [32]. Solar
information approximated by space weather indices can be used in data-driven approaches to training
models for thermospheric density estimation. Once trained, these models can be employed to predict
the thermospheric density encountered by a LEO satellite. A variety of studies have focused on
training models for point-wise estimation and forecasting of thermospheric density. In particular,
Pérez et al. [26] train feed-forward neural networks to forecast thermospheric density estimates for
a well-calibrated LEO satellite, the Challenging Minisatellite Payload (CHAMP), using measured
density and solar proxies as input. In a follow-up study, Pérez and Bevilacqua [25] employ as input
the density estimates of three different empirically-based models to obtain an improved forecast
prediction of thermospheric density for CHAMP. In a more recent study, George [11] uses long short-
term memory networks to forecast thermospheric density prediction for CHAMP and the Gravity
Recovery and Climate Experiment (GRACE) missions, using thermospheric density measurements
and solar proxies.

In this work, we introduce dropout and ensemble neural networks (NNs) for the estimation of
thermospheric density for LEO satellites. The networks are trained using real orbital data, as well as
historical solar proxies and geomagnetic indices, and allow to quantify the uncertainty associated
with the prediction. We demonstrate the approach in the framework of a variety of LEO satellites and
well-calibrated missions, including CHAMP (GFZ), GRACE (NASA), the Global Ocean Circulation
Explorer (GOCE), and the Swarm constellation (ESA) [27, 31, 30, 6]. Our work demonstrates the
feasibility of incorporating data from multiple space missions to estimate thermospheric density
and the associated uncertainty, towards the final effort of an accurate, reliable, and computationally
lightweight global thermospheric model that can be deployed in a variety of scenarios.

2 Model uncertainty via dropout and ensemble networks

Prediction of thermospheric density with NNs is usually performed by single-point or time-series
predictions [26, 25, 11]. However, it is crucial to obtain a measure of the uncertainty of the output,
allowing the spacecraft operator to trust the network by knowing the associated confidence, essential
for a variety of safety-critical tasks such as collision avoidance, re-entry, and lifetime analysis [4, 2].

Bayesian probability theory provides a mathematical framework that can be used to generate and
train NNs with predicted uncertainty. Indeed, Bayesian deep learning methods output distributions
over predictions, instead of single-point data. In Bayesian NNs, the distribution over the predictions
is obtained by placing a prior on the parameters of the network p(ω), and finding the posterior
that is most likely to have produced the training dataset, p(ω|X,Y ), where X,Y are the training
input and output data. Given a new input x∗, the predictive distribution is p(y∗|x∗, X, Y ) =∫
p(y∗|x∗, ω)p(ω|X,Y )dω. When the distribution p(ω|X,Y ) cannot be analytically evaluated,

variational inference can be used by introducing an approximate distribution q(ω). Therefore,
the problem becomes minimizing the Kullback–Leibler (KL) divergence KL(q(ω)||p(ω|X,Y ))
to retrieve the approximate distribution, resulting in q(y∗|x∗) =

∫
p(y∗|x∗, ω)q(ω)dω. Given

the complexity of training Bayesian NNs, a variety of approaches have been developed to obtain
approximate measures of model uncertainty leveraging non-Bayesian approaches.

To cope with the computationally expensive framework of Bayesian NNs, Gal and Ghahramani
[8, 9, 10] develop a theoretical framework, demonstrating that dropout training in non-Bayesian
NNs can be interpreted as an approximation of Bayesian inference in deep Gaussian processes.
Using dropout to approximate model uncertainty requires lower computational effort than training
Bayesian NNs, with minor modifications to an NN architecture. To obtain a measure of uncertainty
on a new data point at test time, the dropout NN is run multiple times stochastically with the same
input [8, 9, 10]. An alternative non-Bayesian paradigm for measuring uncertainty in the model
is deep ensembles [18]. Instead of training a single model, ensembles use the output of a set of
different models to generate a more accurate final model with quantification on the uncertainty [18, 5].
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Lakshminarayanan et al. [18] demonstrate that an ensemble of five different models sufficiently
improves uncertainty estimation on a variety of datasets. Moreover, ensembles are generally more
robust towards extreme events, as well as with out-of-distribution data, coping with the overfitting of
the single models [28]. For space weather forecasting, ensemble techniques have become increasingly
popular in recent years [21, 12, 20, 7, 28].

In this work, Monte Carlo dropout and deep ensemble are used to provide a measure of uncertainty in
the thermospheric density estimation. We train a single model generating a point-wise thermospheric
density estimation with Monte Carlo dropout, and an ensemble of models, each generating a mean
and a standard deviation. The mean and standard deviations of the models used for the deep
ensemble are then combined in a Gaussian mixture to construct a probability density function for the
thermospheric density prediction, providing the density estimation and the associated uncertainty.
Other methodologies for estimating model uncertainty for thermospheric density, for example using
iterates of stochastic gradient descent, are the scope of future research [34, 14]

3 Thermospheric density data

In the realm of LEO satellites, just a few have onboard accelerometers for accurate measurement of
the exerting forces. These spacecraft allow to accurately estimate the thermospheric mass density
as a byproduct of the precise orbit determination (POD) process [6]. In particular, in this work we
use POD products of five satellites: CHAMP, GRACE, GOCE, Swarm A, and B [6, 30, 27]. These
POD products provide accurate estimates of thermospheric density over a combined time span of
approximately 21 years, almost encompassing 2 full long solar cycles and different thermospheric
altitudes, as reported in Fig. 1. Ground-truth estimates of thermospheric density are obtained from
these datasets, together with orbital data. Flags are included in the dataset to exclude incorrect data.
Orbital and thermospheric data is on average available with a time resolution of 10 seconds for GOCE,
and 30 seconds for the other three missions. To avoid cross-correlation, the datasets are divided to
have validation subsets for December of each year and three hold-out test sets, corresponding to
the months of Jan 2006, Jun 2010, and Aug 2017, as depicted by the red vertical bands in Fig. 1.
Moreover, each hold-out test set is selected to contain data from at least two different satellites and to
be associated with different solar phases, therefore providing a large variety of input.

Figure 1: Trend of altitudes over mission time span. Red lines indicate time span of the test set.

To describe the total mass density of the thermospheric layer, density models are used in operational
frameworks. These models are generally divided into empirical and physics-based ones. Thanks to
their rapid accessibility, the NRLMSISE-00 and the Jacchia–Bowman 2008 (JB08) empirical models
are leveraged in this paper as a prediction baseline representing the state of the art [23, 3]. These
models require as input satellite orbital information, as well as indices for solar and geomagnetic
activity. For example, NRLMSISE-00 requires as input: day of the year doy, year, seconds of the
day, altitude h, latitude lat, longitude lon, local solar time lst, 81-day average of observed F10.7,
the daily observed averaged F10.7 at the previous day, the daily Ap and the seven 3-hour ap indices
centered at the closest date [23, 32, 33]. Comparison of the trained models with other empirical and
state-of-the-art physics-based models is an avenue for future studies.
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4 Experiments

The orbital information of five well-calibrated satellites and space weather indices information are
leveraged as input to generate models for thermospheric density estimation with uncertainty. In
particular, a Monte Carlo dropout NN with 0.2 dropout probability and an ensemble of five models are
trained to predict thermospheric density and associated uncertainties. The dropout NN is constructed
to output a point-wise solution, drawing 100 samples per prediction at test time. Each network in
the ensemble outputs both mean and standard deviation and it is initialized with a different random
number seed for 5 different instances. Each trained model contains three hidden layers with 256, 256,
and 128 units, respectively. A batch size of 64, 30 epochs, a learning rate of 0.0002 and ReLu [1]
activation layers are used for training each model. Adam optimizer, as implemented in PyTorch, is
used to optimize the network weights [17, 22]. The experiments are run in Google Cloud, using 60
C2 vCPUs.

In the experiments, the orbital information from each satellite in Fig. 1 is used to train the models.
The problem is formulated as a regression task, where the same inputs required by NRLMSISE-00
are used as input for training the networks, while the output is the thermospheric density. However,
the spherical coordinates [lat, lon, h] are converted into the Cartesian frame to avoid discontinuities,
corresponding to a cyclic feature encoding in three dimensions [33]. After training, the networks
are evaluated on the hold-out test sets. An example of the performances is shown in Fig. 2 for the
CHAMP mission, for a subset of the testing set on Jan 15, 2006 spanning from 5:00:00 until 13:00:00
UTC. Figure 2a) visualizes the thermospheric density estimation of the dropout model, in black, and
the ensemble model, in red, with the ground truth, in blue. In the same figure, the 1σ uncertainties
associated with the dropout and the ensemble are reported in semi-transparent gray and red regions,
respectively, while the output of the NRLMISE-00 and JB08 baselines are depicted in orange and
magenta, respectively. Both dropout and ensemble models outperform the two empirical models
for the investigated time span. The dropout model provides larger uncertainties compared to the
ensemble, although it bounds on average the ground truth within 1σ. Figure 2b) reports, for the same
time span, the root mean square errors (RMSEs) for the two trained models and the two empirical
models. The same coloring scheme is applied to distinguish among the models. The RMSEs reported
in Fig. 2b) further confirm the improved result of the two trained models compared to operational
ones on the analyzed time span and for the investigated satellite. Eventually, the average RMSEs of
each satellite are reported in Table 1, for both the validation and test sets. The trained dropout and
ensemble models are compared with the output of NRLMSISE-00 and JB08. Overall, the trained
models outperform the two empirical ones for the thermospheric density associated with the CHAMP
and GOCE missions, and partly for Swarm A, leaving room for future model improvement.

Table 1: Average RMSE for the different models over the test and validation set.

CHAMP GRACE GOCE Swarm A Swarm B

Test

Ensemble 5.25×10−13 5.54×10−13 1.15×10−12 4.31×10−14 1.04×10−13

Dropout 6.55×10−13 8.60×10−14 1.29×10−12 1.15×10−13 7.44×10−14

NRLMSISE 1.82×10−12 3.60×10−14 3.17×10−12 1.22×10−13 4.08×10−14

JB08 1.69×10−12 3.92×10−14 2.69×10−12 5.49×10−14 2.39×10−14

Vali

Ensemble 3.74×10−13 6.17×10−13 1.73×10−12 1.11×10−13 1.03×10−13

Dropout 4.10×10−13 1.20×10−13 1.83×10−12 1.35×10−13 1.08×10−13

NRLMSISE 1.02×10−12 5.52×10−14 5.65×10−12 1.33×10−13 5.95×10−14

JB08 5.80×10−12 4.04×10−14 5.43×10−12 8.38×10−14 4.67×10−14

5 Conclusions

This paper presents a comparison of two data-driven models for estimating thermospheric density
and associated uncertainties: dropout and deep ensemble models. Post-processed orbital data from
five well-calibrated satellites and space weather indices are leveraged as input for the models. The
trained models are visually tested on a 7-hour time span for a single satellite, highlighting improved
performances with respect to the two operational baselines. The dropout network is observed to
produce larger uncertainties for the investigated time span with respect to the deep ensemble, although
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Figure 2: Trend of a) estimated thermospheric density and b) RMSEs over the time span Jan 15, 2006
from 5:00:00 until 13:00:00 UTC for CHAMP satellite. Ground truth in blue, output of empirical
models NRLMSISE-00 and JB08 in orange and magenta, respectively. Dropout and ensemble models
in black and red, respectively, with associated uncertainties as semi-transparent regions.

often bounding the ground truth. Average RMSE of the trained and operational models are then
computed for each satellite on the test and validation sets, highlighting superior performances of the
trained models for a subset of the included satellites. The presented approach provides the space
operator with two methods for estimating thermospheric density and interpreting the confidence in the
prediction. Future studies are expected to target improved performances of the generated models by
including orbital data from other space missions. This work will ultimately lead towards a faster and
more accurate global model for thermospheric density estimation, improving spacecraft operational
routines, and giving the operators confidence in leveraging black-box-like models for estimating
thermospheric density.
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