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Abstract

Deep neural networks have shown great success in prediction quality while reli-
able and robust uncertainty estimation remains a challenge. Predictive uncertainty
supplements model predictions and enables improved functionality of downstream
tasks including embedded and mobile applications, such as virtual reality, aug-
mented reality, sensor fusion, and perception. These applications often require
a compromise in complexity to obtain uncertainty estimates due to very limited
memory and compute resources. We tackle this problem by building upon Monte
Carlo Dropout (MCDO) models using the Axolotl framework; specifically, we
diversify sampled subnetworks, leverage dropout patterns, and use a branching
technique to improve predictive performance while maintaining fast computations.
We conduct experiments on (1) a multi-class classification task using the CIFAR10
dataset, and (2) a more complex human body segmentation task. Our results show
the effectiveness of our approach by reaching close to Deep Ensemble predic-
tion quality and uncertainty estimation, while still achieving faster inference on
resource-limited mobile platforms.

1 Introduction

Uncertainty estimation and out-of-distribution robustness are vital aspects in modern deep learning.
Predictive uncertainty supplements model predictions and enables improved functionality of down-
stream tasks including various resource-constrained embedded and mobile applications. Popular
examples are virtual reality (VR), augmented reality (AR), sensor fusion, perception, and health
applications including fitness indicators, arrhythmia detection, and skin lesion detection. Robust and
reliable predictions with uncertainty estimates are increasingly important when operating on noisy
in-the-wild data from sensory inputs. A large variety of deep learning architectures have been applied
to various tasks with great success in terms of prediction quality, however, producing reliable and
robust uncertainty without additional computational and memory overhead remains a challenge [[L].
This issue is further aggravated due to the limited computational and memory budget available in
typical battery-powered mobile devices.

There exist many approaches towards uncertainty estimation, however, many of them are complex to
train, lack good predictive performance, or are very resource-intensive [2]. One of the best performing
approaches is Deep Ensemble [3]], where multiple models are trained independently and used at
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inference, thus making it not viable on mobile platforms with low-latency requirements. A more
resource-efficient approach is Monte Carlo Dropout (MCDO) [4]], where dropout is used during
training and inference on a single model, yielding an approximate distribution of predictions due
to dropout-based sampling. MCDO has been shown to produce less diverse predictions than Deep
Ensemble [5]] and therefore achieve poor predictive performance in terms of prediction quality as
well as uncertainty estimates. There are multiple other interesting approaches [6} [7] for efficient
uncertainty estimation, however, in this work we focus on improving MCDO due to its simplicity and
low-memory footprint.

We consider Convolutional Neural Network (CNN) based architectures and aim to (a) improve
MCDO performance through diversification of sampled subnetworks, and (b) improve latency by
exploitation of dropout patterns as well as by enabling batched computation on branched multi-head
models. Diversification of MCDO subnetworks essentially means diversifying the considered feature
subsets, which results in more diverse predictions that are, in combination, more robust [5]. Structured
dropout in CNNs enables computational optimization by fusing with convolution layers. Additionally,
batched computation can be applied when using branched partial MCDO, i.e. dropout is applied
only to deeper convolutional layers rather than all layers. In branched partial MCDO, as depicted
in Figure[T} the common backbone is computed once and cached. The subsequent stochastic model
paths are computed individually and in parallel by feeding in the cached output from the backbone.
Note, that all MCDO samples (subnetworks) are based on the same super network and thus share
weights also in their stochastic paths.

Our experiments were conducted using the Axolotl frameworkﬂ This paper’s main contribution is
the introduction of a novel approach that (1) improves predictive performance by diversification of
MCDO subnetworks using spatial dropout and contrastive dropout rates during training and inference,
(2) exploits spatial convolutions and batched computation on branched models achieving low-latency
inference on mobile platforms, and (3) is demonstrated to benefit uncertainty-aware human body
segmentation which is a representative task for VR/AR on mobile platforms.
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Figure 1: A high-level diagram of an Axolotl model with three branches and shared parameters. During
inference, the common and deterministic backbone is computed and cached; its outputs are connected to each
branch, i.e. one replica of the stochastic portion of the network, which are processed in parallel.
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2 Methods

Spatial Monte Carlo Dropout (SMCDO) Structured dropout patterns have been used for regu-
larization of CNNs [8,19, (10, [11]. The removal of entire features [8]] (spatial dropout) or slices of
multiple features [9] for different members (samples/branches) of MCDO during inference results in
a diversification of considered features by definition and also prevents co-adaptation during training.
See Figure [2]for an illustration of spatial dropout in comparison to randomly dropping activations.
Spatial dropout enables optimized computation by fusing dropout and convolution operations: in-
stead of setting feature maps to zero (standard computation), the dropped feature maps are removed
completely together with the corresponding channels in the convolution kernel. The computation is
performed only on the non-dropped features which reduces the number of operations and thus the
latency when used with high dropout rates.
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Figure 2: Spatial dropout (right) removes whole feature maps instead of randomly dropping activations (left).

Contrastive dropout rates during training and inference Dropout during training is typically
used for regularization purposes [12]]. With large dropout rates during training, there is a large
regularization effect. Thus, the model focuses on the most important rather than the less informative
features, and therefore may potentially replicate important features while actually preventing feature
diversity. SMCDO, howeyver, requires models that are robust towards random feature removal which
can be achieved when using large dropout rates during training. Therefore, there is a trade-off between
feature diversity and robustness towards random feature removal for SMCDO that directly relates to
the dropout rate during training.

Furthermore, higher dropout rates during inference than during training are beneficial for SM-
CDO predictive uncertainty, since this increases the diversity between SMCDO samples (mem-
bers/subnetworks).

Therefore, we propose to use contrastive dropout rates where the dropout is slightly higher during
inference than it is during training. In combination with a good trade-off solution for the train-time
dropout rate, contrastive dropout is beneficial for SMCDO member diversity and yields improved
uncertainty estimation capabilities.

The trade-off relation between train-time and inference-time dropout rates including their effects on
the sample capacity, sample diversity, robustness against feature removal, and feature diversity are
illustrated in Figure
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Figure 3: Illustration of the configuration space for train-time and inference-time dropout including the effects

on four aspects that influence the quality of uncertainty estimates, namely sample capacity, sample diversity,
robustness against feature removal, and feature diversity.



Speedup through Branched MCDO To further improve latency we propose Branched MCDO,
depicted in Figure[T]as a high-level diagram, where a specified number of dropout layers is added to
the Vanilla model starting from the last layer (output). After training, the network is reshaped such that
the deterministic backbone is shared and the subsequent stochastic portion of the network is replicated
once per MCDO sample (branches). This way, the deterministic computation is performed only
once and intermediate activations are cached. The branches are computed using batched inference
meaning that there is only one forward pass required which improves latency considerably. Note,
that Branched MCDO computation per definition does not affect predictive performance but instead
reduces computational effort and thus latency.

3 Experiments

3.1 Robust uncertainty estimation on CIFAR-10

Appendix [A] details the experimental setup and Appendix [C] contains additional experiments showing
that higher dropout rates for SMCDO require an increased model capacity to retain high predictive
performance. Based on that, we chose Wide-ResNet20 [[13] with a widening factor & = 3 for
experiments on CIFAR-10.

3.1.1 Improved predictive performance using contrastive dropout rates

Figure[]shows the accuracy and expected calibration error (ECE) for different train-time dropout rates
DO¢rain € {10%, 30%, 50%, 70%} and inference-time dropout rates DO;,¢ € {0%, 10%, ..., 90%}.
Metrics are computed as the mean over all corruption types for corruption level 5 (strong corruptions).

With larger dropout rates during training DOy,.iy,, the accuracy decreases slightly. With increasing
dropout rates during inference, the accuracy decreases fast with a small DOy,,iy, Or it decreases
slowly or stays the same with a larger DOy,.in. Also, the ECE worsens (increases) slowly with
larger DOyyain. However, the ECE improves (decreases) rapidly with increasing dropout rates during
inference. In particular, the ECE improves considerably, when DOj,¢ exceeds DOy,qin by 10% to
50%. Therefore we conclude, that a delta in train-time and inference-time dropout rates improves the
predictive uncertainty considerably while retaining the accuracy at a high level.

Generally, high dropout rates during inference improve uncertainty estimation capabilities given that
the model is robust towards random feature removal. High dropout rates during training provide
such a robustness towards random feature removals, however, too large dropout rates during training
over-regularize model parameters and may hurt performance and feature diversity.
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Figure 4: Accuracy and ECE for different dropout rates during training and inference. Results are computed as
the mean over all corruption types for corruption level 5 (strong corruptions).

3.1.2 Deep Ensemble performance

Figure[5]shows accuracy and ECE for two selected configurations of SMCDO. The best performance
is achieved by SMCDO with DOy;in = 10% and DOy, = 30%, which has similar or better
predictive performance than Deep Ensemble in terms of both accuracy and ECE. Particularly for
inputs with strong corruption SMCDO yields even better results. SMCDO with DOyain = 50%
and DO, ; = 75% yields slightly worse results in terms of accuracy and ECE. Note, however, that
high dropout rates enable an optimized computation of fused dropout and convolution operations.
For a dropout rate of 75% our preliminary results indicate a speedup of up to 3.8 x in comparison to
standard computation! This configuration is therefore promising in terms of predictive performance
to latency trade-off.
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Figure 5: Accuracy and ECE comparison of Vanilla, Deep Ensemble, SMCDO with DO¢yain = 10% and
DOinference = 30%, and SMCDO with DO¢rain = 50% and DOjnference = 75%. X-axis shows different
corruption levels and boxplot results contain metrics over all corruption types.

3.2 Uncertainty estimation in human body segmentation on mobile platforms

In this experiment, we use our approach, namely Branched SMCDO with contrastive dropout rates
during training and inference, and demonstrate its usefulness for human body segmentation. This
task (a) benefits from accurate uncertainty estimates, (b) is relevant for mobile platforms and (c)
requires resource-intensive models such that efficient methods for uncertainty estimation are required
and Deep Ensemble is not a viable alternative due to limited power and low-latency constraints. See
Appendix [B]for details about the experimental setup.

Predictive performance Figure[6]shows the dice score versus pixel-wise ECE for different config-
urations of Branched SMCDQO. Vanilla (Square) and Deep Ensemble (Star) are included as reference.
Circular markers represent our approach, where color encodes train-time dropout and size corresponds
to inference-time dropout. Good configurations include train-time dropout of 10% and 30%, and
inference-time dropout between 10% and 50%. The red border marks the configuration with 10%
train-time and 30% inference-time dropout, which achieves a good trade-off between dice score and
ECE. It is considerably better than Vanilla and close to Deep Ensemble predictive performance while
requiring less memory and latency than the latter. Figure[7]shows exemplary predictions and their
per-pixel uncertainty comparing Vanilla, Deep Ensemble and our approach.
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Figure 6: Dice score versus pixel-wise ECE for
human body segmentation. Circular markers rep-
resent SMCDO configurations; color and size cor-
respond to train-time and inference-time dropout
rates, respectively.

Speedup using Branched SMCDO  Table[T]lists the latency of standard SMCDO in comparison
with Branched SMCDO, where the shared backbone of SMCDO samples is computed only once
and used as input for all branches (deterministic portion of network). Vanilla and Deep Ensemble
latency is included for reference. Branched SMCDO requires only halve the latency in comparison to
standard SMCDO computation or Deep Ensemble! Note, that additional speedup can be achieved by
exploiting sparsity due to spatial dropout with high dropout rates as mentioned in Section 2}
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Figure 7: Exemplary segmentation predictions and uncertainties using Vanilla, Deep Ensemble and Branched
SMCDO.

4 Conclusion

We propose an extension of MCDO, namely (a) the use of spatial dropout, (b) contrastive dropout, and
(c) branching. We show, that this combination yields improved predictive performance and enables
speedup due to optimization. We obtain close to Deep Ensemble performance in terms of accuracy
and ECE, but with lower latency. Experiments on the uncertainty-aware human body segmentation
task show the applicability to a wider range of applications and low-latency capabilities on mobile
platforms.
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A Experimental setup for CIFAR-10

We use the CIFAR-10 data set for training, and additionally the corrupted CIFAR-10 test set for
evaluation, including 19 corruption types and 5 corruption levels. We use SGD for 200 epochs of
training and standard data augmentation. We use a standard step-wise learning rate scheduler, i.e.
at epochs 1, 80, 120, 160, 180 with learning rates 0.1, 0.01, 0.001, 0.0001, 0.0005. For SMCDO
we use Wide-ResNet-20-k with a widening factor k = 3 and M = 3 samples. Dropout is added
to approximately the second halve of the model (Convolution layer 13 and deeper), since previous
experiments have shown that this configuration yields a good performance to latency trade-off [14].
Dropout layer are always positioned before a convolution layer. As baselines we use Vanilla ResNet-
20 and Deep Ensemble with ResNet-20 and M = 3 members. We used the Axolotl frameworkﬂand
Keras for implementation.

B Experimental setup for human body segmentation

We use a human body segmentation data setﬂand ENet [15] model architecture. For training we use
the Adam optimizer for 300 epochs and resize inputs to 640 x 640 pixels. Dropout is added to the
layers from Bottleneck40 and above, where dropout is always added before a convolution layer. We
use M = 3 members for SMCDO. As baselines we use Vanilla ENet and Deep Ensemble with ENet
and M = 3 members. Models were evaluated on NVIDIA Jetson Nano executing on a quad-core
Arm Cortex-A57 CPU for latency benchmarks. We used the Axolotl framework and Keras.

C Increasing model capacity for higher dropout rates

We analyze the relation between model capacity, hence the widening factor k, the SMCDO dropout
rate and the predictive performance. Figure ] shows the accuracy and ECE for different widening
factors k = {1, 2, 3} and dropout rates DO = {5%, 10%, 30%, 50%}. Metrics are computed as the
mean over all corruption types for corruption level 5 (strong corruptions). The results show that
higher dropout rates require larger model capacity to retain accuracy, while slightly higher dropout
rates have positive effects on the ECE (e.g. DO = 10%). Therefore, we chose a widening factor
k = 3 for all SMCDO experiments using ResNet20 and CIFAR-10. Note that a widening factor
k = 3 increases the number of channels and thus requires more memory; the latency may or may not
be affected, depending on the target device.

Accuracy [%]
- 53 53 51 48 - 0.22

DO

Figure 8: Accuracy and ECE for different widening factors k and dropout rates DO. Results are computed as
the mean over all corruption types for corruption level 5 (strong corruptions).
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