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Abstract

Bayesian Optimization (BO) is one of the most effective black-box optimization
methods, yet the need to ensure analytical tractability in the posterior predictive
makes it challenging to apply BO to large-scale problems with high-dimensional
observations. For these problems, likelihood-free methods present a promising
avenue since they can work with more expressive models and are often more
efficient. Previous papers (Bergstra et al., 2011; Tiao et al., 2021) have claimed
that density ratios acquired from the likelihood-free inference are equivalent to the
widely popular expected improvement acquisition function, allowing us to perform
BO without expensive exact posterior inference. Unfortunately, we show in this
paper that the claim is false; we identify errors in their reasoning and illustrate a
counter-example where density ratios are inversely correlated to expected improve-
ments. Our results suggest that additional care is needed when interpreting and
applying density ratio acquisition functions from likelihood-free inference.

1 Introduction

Bayesian Optimization (BO) is a popular class of global optimization methods over a design space
aimed to use as few queries as possible (Mockus et al., 1978). Crucial to BO is the acquisition
function, i.e., a function that selects where to query next given current observations. Various
acquisition functions have been proposed, but they are often difficult to compute, let alone optimize
in high-dimension inputs (Wilson et al., 2018). Even ones that are relatively easy to compute, such as
expected improvement (EI, (Mockus et al., 1978)), may require expensive posterior inference via
Gaussian processes (Rasmussen, 2003). In contrast, approximate inference methods can work with
more expressive models and are often more efficient (Rezende et al., 2014); integrating effective
acquisition functions with approximate inference could scale to problems with large amounts of
high-dimensional observations, at the cost of analytical tractability (Cranmer et al., 2020).

For example, one can use density ratios acquired from likelihood-free inference (Mohamed &
Lakshminarayanan, 2016; Gutmann et al., 2016) as acquisition functions (Bergstra et al., 2011; Tiao
et al., 2021). Intuitively, if we learn a probabilistic classifier to separate samples with high fitness
inputs apart from the others, then this classifier should tell us if a new input has high fitness or not. If
the classifier is Bayes-optimal, then it can recover density ratios (Sugiyama et al., 2012). In one of
the first papers that performs Bayesian optimization for neural network hyperparameter optimization,
Bergstra et al. (2011) claimed that these density ratios are proportional to expected improvement, so
one can bypass expensive Gaussian process entirely and use density ratios as acquisition functions.

Unfortunately, we show in this paper that the above claim is false. First, we identify an error in their
reasoning. Next, we illustrate a counter-example supporting our claims; not only are density ratios
not proportional to expected improvements, but they can be inversely correlated to them. Finally, we
discuss the ramifications of the result.
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2 Findings

Background Given a black-box function f : X — R, Bayesian Optimization (BO) aims to find
an input x where f(x) is maximized, given n observations D = {(x;, y;)}"_;. Denote p(y|x, D)
as the posterior predictive distribution (usually a Gaussian process), and the expected improvement
function for a point x is as follows:

EI(X7 T) = IEyf\fp(y\x,'D”) [max(y -7, 0)} (1)

where 7 is a threshold (often set as the currently observed maximum value). Following notations
in Tiao et al. (2021), let 7 be the ~y-th percentile of observed y values (i.e., v = p(y < 7)), and let two
densities £(x) := p(x|y < 7;D,,) and g(x) := p(x|y > 7;D,,) be the densities for x conditioned on
y being less or greater than the threshold, respectively. The following claim restates the results in
Bergstra et al. (2011); Tiao et al. (2021), which shows an equivalence between density (or likelihood)
ratio acquisition functions and expected improvements':

Claim 1 ((Bergstra et al., 2011; Tiao et al., 2021)). Define 7, 7, £(x), g(x) as above. Then:
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in other words, EI is proportional to the ratio between g(x) and v4(x) + (1 — v)g(x).

The ratio can then be estimated with a Bayes optimal classifier that learns from binary class labels
that assigns label 1 to points with ¥ > 7 and 0 to points with y < 7 (Grover et al., 2019).

Counter claim We will now go through the “proof” of the claim and identify where the argument
does not hold. First we have that:

BI(x,7) = Bpgin,p, max(y = 7.0)) = [ max(y — 7.0)p(ylx, D)y ®
[ max(y — 7,0)p(y| Dy)p(x|y, Dy )dy
= NG
p(x|Dn)
where we applied Bayes’ rule in Eq (4). Then, the denominator evaluates as:
p(x|Dn) = p(xly < 7, Dn)p(y < 7|Dn) + p(x|y > 7, Dn)p(y > 7| D) (5)
= {(x)p(y < 7|Dn) + g(x)p(y > 7|Dn) = 7(x) + (1 = 7)g(x). (6)

where we use the definition that v := p(y < 7|D,,). Finally, Bergstra et al. (2011); Tiao et al. (2021)
claims that the numerator evaluates to:

/oo max(y — 7)p(y|Dn)p(x|y, Dp)dy = g(x) /OO max(y — 7)p(y|Dn)dy @)

which is g(x) times a value independent of x. Dividing Eq. (7) with Eq. (6) and using Eq. (4) should
recover the result. However, in Eq. (7), g(x) := p(x|y > 7) is directly taken out of the integral,
as Bergstra et al. (2011) assumed it is independent of y as long as y > 7. From the definition of
conditional probability:

_ [T p(xy|Dn)dy
[ p(y|Dn)dy

so Eq. (7) does not hold immediately. Thus, we have illustrated that the above density ratio may not
be proportional to expected improvement.

9(x) = p(x|ly > 7, Dy) # p(x|y, Dn), 8)

3 Empirical Evaluations

In this section, we raise a counter-example where density ratio is mostly inversely proportional to
expected improvement. Consider the following joint distribution as our posterior:

p(z) = Uniform[—1,1], p(y|lz) = N (=22, (0.01 4 102%)?). 9)

"We note that Bergstra et al. (2011); Tiao et al. (2021) minimizes the BO objective in their formulation,
whereas we paraphrase the claim to adapt to maximization.
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Figure 1: Top left: the conditional distribution p(y|z), while the the posterior mean is maximized at
x = 0, it has large variance when z is large absolute values. Top right: the un-normalized density
ratio (DR) versus expected improvement (EI), computed analytically. Botfom: exact values of EI
(left) and DR (right) as a function of z.

The intuition behind such a design is to make predictive with sub-optimal mean exhibit large variance;
for a certain threshold, a lower sub-optimal mean indicates lower probability of improvement but
does not indicate lower expected improvement due to the large variances. Let us take 7 = —0.52,
which is the median of the the posterior mean (any threshold between the extreme values should
work in principle). In the density ratio, the denominator is simply p(z), and the numerator is
p(zly > 7) x p(y > 7|x)p(z), and we can compute it analytically; so is the EI function.

Figure 1 shows p(y|z), the corresponding expected improvement, un-normalized density ratios, and
a comparison of the two. Here, the points with high EI is at x = £4, whereas the points with
high density ratios are at x ~ 0. Clearly, a higher density ratio does not indicate a higher expected
improvement. In this example, they are mostly inversely correlated.

Admittedly, the example is an extreme case that is unlikely to happen in realistic scenarios (e.g., noise
level depends on input); but since the equivalence claim should be agnostic to the posterior predictive
and the selected threshold, our example suffices as a counter-example to the claim.

4 Discussions

In this paper, we revisit the claim about the equivalence between density ratio (DR) acquisition
functions and expected improvements (EI). We identify a potential error in the proof of the claim and
illustrate an example where DR and EI are mostly inversely correlated.

Meanwhile, the fact that these two are not equivalent does not imply density ratio acquisition functions
cannot be useful in practice. Actually, Tiao et al. (2021) show that they can be quite successful
empirically. In our example, density ratio acquisition functions selects around x = 0, the point with
maximum posterior mean, showing some promise as an acquisition function as well. Our results
merely suggest that extra care is needed when interpreting and applying acquisition functions with
likelihood-free inference. It would be interesting to investigate when density ratio acquisition function
positively correlate with expected improvement and how we can apply likelihood-free inference to
general Bayesian optimal experimental design problems.
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