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Abstract

Normalizing flows have shown great success as general-purpose density estima-
tors. However, many real world applications require the use of domain-specific
knowledge, which normalizing flows cannot readily incorporate. We propose
embedded-model flows (EMF), which alternate general-purpose transformations
with structured layers that embed domain-specific inductive biases. These layers
are automatically constructed by converting user-specified differentiable proba-
bilistic models into equivalent bijective transformations. We also introduce gated
structured layers, which allow bypassing the parts of the models that fail to cap-
ture the statistics of the data. We demonstrate that EMFs can be used to induce
desirable properties such as multimodality, hierarchical coupling and continuity.
Furthermore, we show that EMFs enable a high performance form of variational
inference where the structure of the prior model is embedded in the variational
architecture. In our experiments, we show that this approach outperforms a large
number of alternative methods in common structured inference problems.

1 Introduction
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Figure 1: Didactic diagram of a hypothetical embedded-model architecture with model-free masked
autoregressive flow (MAF) layers and two gated layers corresponding to two different probabilistic
models.
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Normalizing flows have emerged in recent years as a strong framework for high-dimensional density
estimation, a core task in modern machine learning [Papamakarios et al., 2021, Kobyzev et al.,
2020, Kingma and Dhariwal, 2018]. As with other deep generative architectures such as GANs and
VAEs, normalizing flows are commonly designed with the flexibility to model a very general class
of distributions. This works well for large naturalistic datasets, such as those common in computer
vision. However, general-purpose flows are less appealing when datasets are small or when we
possess strong a priori knowledge regarding the relationships between variables.

On the other hand, differentiable (or ‘deep’) probabilistic programming is a powerful and general
framework for explicit stochastic modeling that can express strong assumptions about the data-
generating process [Tran et al., 2017, 2016, Bingham et al., 2019, Dillon et al., 2017, Piponi et al.,
2020, Kucukelbir et al., 2017, Ambrogioni et al., 2021a]. For example, the user may know that the
data represents a process evolving over time or in space, or is subject to known physical laws, or
that there is an unobserved common cause or other shared factor behind a set of observations. Such
structured prior information can enable the user to form effective inferences using much less data than
would otherwise be required. For example, in the field of astrophysics differentiable probabilistic
programs have been successfully used to study strong gravitational lensing [Chianese et al., 2020] and
dark matter substructures [Coogan et al., 2020, Varma et al., 2020]. All of these applications entail the
translation of sophisticated physical theories into highly parameterized and structured probabilistic
programs. However, it remains the case that “all models are wrong” [Box, 1976], and it is rare that a
modeler can be fully confident in the strong assumptions (e.g., Gaussianity, statistical independence)
expressed by typical parametric probability models.

In this paper we bridge these two worlds, providing an automatic technique to convert differentiable
probabilistic programs into equivalent normalizing flow layers with domain-specific inductive biases.
We call these architectures embedded-model flows (EMF). EMFs can be use to integrate the structure
of “wrong but useful” models within generic deep learning architectures capable of correcting the
deviation of the model from the data. Furthermore, in the context of Bayesian inference, we show that
the EMF architecture can be used to define a powerful class of approximate posterior distributions
that embed the structure of the prior.

2 Preliminaries

Normalizing flows define a random variable as an invertible differentiable transformation x = fφ(ε)
of a base variable ε ∼ p0(ε). In these expressions, φ are parameters that control the form of the
transformation and consequently the distribution of x. The transformed (log-)density can be given
explicitly using the change of variables formula from probability theory,

log p(x) = log p0(f−1
φ (x))− log |det Jφ(x)|, (1)

where Jφ(x) is the Jacobian matrix of fφ. The base distribution p0 is often taken to be standard
normal (ε ∼ N(0, I)). In typical applications, the functional form of fφ is specified by a deep
architecture engineered to guarantee stable and tractable invertibility and tractable (log-)Jacobian
computations [Dinh et al., 2014, Rezende and Mohamed, 2015]. The parameters φ are usually trained
by stochastic gradient descent to maximize the log-likelihood (given observed data) or evidence lower
bound (in the variational inference setting).

2.1 Probabilistic programs and graphical models

Probabilistic programming allows a joint probability distribution over a set of random variables to be
specified intuitively as a program that includes random sampling steps [van de Meent et al., 2018].
Computations on this distribution, including the joint log-density function, structured inference algo-
rithms, and the bijective transformations described in this paper, may then be derived automatically as
program transformations. Recently frameworks have emerged for ‘deep’ probabilistic programming,
which exploit the automatic differentiation and hardware acceleration provided by deep learning
frameworks; examples include Pyro [Bingham et al., 2019], PyMC [Salvatier et al., 2016], Edward
[Tran et al., 2017], and TensorFlow Probability [Dillon et al., 2017, Piponi et al., 2020]. These allow
for straightforward implementation of gradient-based inference and parameter learning, and enabling
methods such as ours that integrate probabilistic programs with standard ‘deep learning’ components
such as flows.
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Probabilistic programs that contain only deterministic control flow may equivalently be viewed as
directed graphical models, in which each random variable xi is a graph node connected by incoming
edges to some subset of the previous variables x<i. This leads to the following general expression
for the joint density of a set of vector-valued variables x1:n = {xj}nj=1:

p(x0:n;φ) = p0(x0;θ0(φ))

n∏
j=1

pj(xj |θj(x<j ;φ)) (2)

Here θj(x<j ;φ) denotes the ‘link function’ associated with each node that takes as input the model
parameters φ and the values of all parent variables (excepting θ0, where there are no parents), and
outputs the parameters of its respective density function.

As a practical matter, flow architectures generally assume layers of fixed size, so the experiments in
this paper focus on programs of fixed structure and we use graphical-model notation for simplicity.
However, the methods we describe do not require access to an explicit graph structure and could be
straightforwardly applied to programs with stochastic control flow.

3 Converting probabilistic programs into normalizing flows

In this section, we will show that a large class of differentiable probabilistic programs can be converted
into equivalent normalizing flow layers. More precisely, we will construct an invertible function Fφ

that maps spherical normal random inputs to the joint distribution of the probabilistic program:

x = Fφ(ε) ∼ p(x;φ). (ε ∼ N (0, I)) (3)

This is a special case of the so called Rosenblatt transform [Rosenblatt, 1952]. We interpret this
transform as a flow layer and we extend it by including trainable gate variables that can be use
to ”disconnect” a set of variables from its parents so to correct model miss-specification. In our
applications, the input to the bijective transformation may be arbitrary real-valued vectors, for
example, the output of a previous flow layer, which likely will not be normally distributed. In such
cases the transformed values will not be samples from the original probabilistic program, but we
expect the transformation to capture some of its properties, such as multimodality and the dependence
structure of its random variables.

3.1 Individual random variables as bijective transformations

We first consider the case of a univariate random variable x ∼ pφ(x), which we can express as
a continuous bijective transformation fφ of a standard normal variable ε via a slight extension of
inverse transform sampling. The probability integral transform theorem states that the cumulative
distribution function (CDF) of pφ, Cφ(x) =

∫ x
a
pφ(y)dy, with pφ defined over a generic interval

(a, b) and a < x < b, is uniformly distributed, u = Cφ(x) ∼ U(0, 1) [Angus, 1994]. If the CDF is
invertible, i.e., strictly increasing within its domain, it follows that we can sample x = C−1

φ (u) ∼ pφ
given only a uniform random variable u ∼ U(0, 1). We obtain u through a second application of the
probability integral transform theorem to the standard normal CDF Φ0,1. Our univariate ‘flow’ is
therefore given by

x = fφ(ε) = C−1
φ (Φ0,1(ε)) (ε ∼ N (0, 1)) (4)

Closed-form expressions for fφ may be available in some cases (see below). In the general univariate
setting where the inverse distribution function C−1

φ (u) is not available in closed form, it may
be evaluated efficiently using numerical root-finding methods such as the method of bisection
(see Appendix A.6), with derivatives obtained via the inverse function theorem and the implicit
reparameterization trick [Figurnov et al., 2018]. However, this is not needed for maximum likelihood
training of the parameters φ, since eq. (1) only involves f−1

φ and its derivatives.

Example: Gaussian variables. The inverse CDF of a Gaussian variable x ∼ N
(
µ, σ2

)
can

be expressed as a scale-shift transformation of the inverse CDF of a standard normal variable:
Φ−1
µ,σ(u) = µ+σΦ−1

0,1(u). We can obtain the forward flow transformation by composing this function
with the CDF of a standard Gaussian: fµ,σ(ε) = Φ−1

µ,σ(Φ0,1(ε)) = µ + σε. This is the famous
reparameterization formula used to train VAEs and other variational methods [Kingma and Welling,
2013]. The inverse function is f−1

µ,σ(x) = (x− µ)/σ while the log-Jacobian is equal to log σ.
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It is not generally straightforward to evaluate or invert the CDF of a multivariate distribution. However,
the most popular multivariate distributions, such as the multivariate Gaussian, can be expressed as
transformations of univariate standard normal variables, and so may be treated using the methods
of this section. More generally, the next section presents a simple approach to construct structured
bijections (i.e., flows) from multivariate distributions expressed as probabilistic programs.

3.2 From differentiable probabilistic programs to structured layers

A probabilistic program samples a sequence of variables in turn, where (as in eq. (2)) the distribution
of each variable is conditioned on the previously-sampled variables. At the sampling site of the
j-th random variable xj , we therefore have all the information necessary to represent its conditional
distribution as an invertible transformation fj,φ(εj ;x<j) of a standard normal input εj . Feeding the
result back into the model defines a sequence of local transformations, which together form a joint
flow layer Fφ(ε1:n) (algorithm 1). This layer transforms a spherical Gaussian variable ε1:n into a
variable that follows the same distribution of the input program.

As with autoregressive flows, the forward transformation of the j-th input requires us to have
computed the preceding outputs x<j = F jφ(ε<j). This may be expressed recursively as follows:

[Fφ(ε1:n)]j = fj,φ(εj ;F
j
φ(ε<j)), (5)

This recursive expression terminates since the parents have an acyclic-directed-graph structure. For
variables without parents, F jφ reduces to a trivial map between empty sets. In the reverse direction,
the variables x1:n are given, so all dimensions may be evaluated in parallel:[

F−1
φ (x1:n)

]
j

= f−1
j,φ(xj ;x<j) (6)

This is a generalization of the inversion formula used in autoregressive flows [Kingma et al., 2016,
Papamakarios et al., 2017]. The Jacobian of the transformation is block triangular (up to a permutation
of the variables) and, consequently, the log determinant is just the sum of the log determinants of the
block diagonal entries:

log
∣∣∣det J−1

φ (x1:n)
∣∣∣ =

∑
j

log
∣∣∣det J−1

φ,j (xj ;x<j)
∣∣∣ (7)

where J−1
φ,j (xj ;x<j) is the Jacobian of the local inverse transformation f−1

φ (xj ;x<j). When used
in a normalizing flow, we denote the transformation Fφ(ε1:n) as a structured layer.

Algorithm 1 Gated forward transformation: φ: Model parameters; {εk}nk=1: Input variables sorted
respecting parenting structure; {λk}nk=1: Gate parameters; n Number of variables.

procedure GATEDFORWARDSAMPLER({εk}nk=1) State log |det J | ← 0
for j in Range(n) do
{pi}

mj

i=1 ← εj .parents idx . {pi}
mj

i=1: indices of parents of j-th variable.
. mj : number of parents of j-th variable.

if {pi}
mj

i=1 is not empty then
x̃j ← fj,φ(εj ; {xpi}

mj

i=1)
xj ← λjx̃j + (1− λj)εj
log |det J | ← log |det J |+ log (det |Jφ,j({xk}nk=1) + (1− λj)I|)

else
x̃j ← fj,φ(εj ;φ

0
j ) . φ0j : parameters of the j-th root distribution.

xj ← λjx̃j + (1− λj)εj
log |det J | ← log |det J |+ log

(
det |Jφj

0,j
(xj) + (1− λj)I|

)
return {xk}nk=1, log |det J |

Gated structured layers Most user-specified models offer a simplified and imperfect description
of the data. In order to allow the flow to skip the problematic parts of the model, we consider gated
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layers. In a gated layer, we take each local bijective transformation gj,φ to be a convex combination
of the original transformation fj,φ and the identity mapping:

gj,φ(εj ;x<j , λj) = λjfj,φ(εj ;x<j) + (1− λj)εj (8)

This gating technique is conceptually similar to the method used in highway networks [Srivastava
et al., 2015], recurrent highway networks [Zilly et al., 2017] and, more recently, highway flows
[Ambrogioni et al., 2021b]. Here the gates λj ∈ (0, 1) are capable of decoupling each node from
its parents, bypassing part of the original structure of the program. As before, the local inverses
g−1
φ (xj ;x<j , λj) can in general be computed by numeric root search, but the Gaussian case admits a

closed form in both directions:

gµ,σ(ε, λ) = (1 + λ(σ − 1))ε+ λµ; g−1
µ,σ(x, λ) =

x− λµ
1 + λ(σ − 1)

(9)

Analogues of eq. (5), eq. (6), and eq. (7) then define the gated joint transformation Gλ,φ, its inverse
and log Jacobian determinant, respectively. Note that the gating affects only the diagonal of the
Jacobian, so the overall block-triangular structure is unchanged.

3.3 Automation

All the techniques described in this section can be fully automated in modern deep probabilistic
programming frameworks such as TensorFlow Probability. A user-specified probabilistic program
in the form given by Eq. 2 is recursively converted into a bijective transformation as shown in the
code in Fig. 1. In TensorFlow Probability, the bijector abstraction uses pre-implemented analytic
inverse and Jacobian formulas and can be adapted to revert to root finding methods otherwise. We
will release the full TensorFlow Probability code for automatic structured layer construction prior to
publication.

3.4 Embedded-model flows

A EMF is a normalizing flow architecture that contains one or more (gated) structured layers. EMFs
can be used to combine the inductive biases of explicit models with those of regular normalizing
flow architectures. Several probabilistic programs can be embedded in a EMF both in parallel or
sequentially. In the parallel case, a single flow layer is comprised by two or more (gated) structured
layers acting on non-overlapping subsets of variables. The use of several programs embedded in
a single architecture allows the model to select the most appropriate structure during training by
changing the gating parameters and the downstream/upstream transformations. This allows the
user to start with a ”wrong but useful model” and then learn the deviation from the distribution
of the collected data using flexible generic normalizing flow transformations. A visualization of a
hypothetical EMF architecture is given in Fig. 1.

4 Related work

Embedded-model flows may be seen as a generalization of autoregressive flows [Kingma et al.,
2016, Papamakarios et al., 2017] in the special case where the probabilistic program consists of
a Gaussian autoregression parameterized by deep link networks, although generic autoregressive
architectures often permute the variable order after each layer so that the overall architecture does not
reflect any specific graphical structure. Graphical normalizing flows [Wehenkel and Louppe, 2021]
generalize autoregressive structure to arbitrary DAG structures; however, this approach only constrains
the conditional independence structure and does not embed the forward pass of a user-designed
probabilistic program.

In the last few years, the use of tailored model-based normalizing flow architectures has gained
substantial popularity. Perhaps the most successful example comes from physics, where gauge-
equivariant normalizing flows are used to sample from lattice field theories in a way that guarantees
preservation of the intricate symmetries of fundamental fields [Albergo et al., 2019, Kanwar et al.,
2020, Albergo et al., 2021, Nicoli et al., 2021]. Similarly, structured flows have been used to model
complex molecules [Satorras et al., 2021], turbulence in fluids [Bezgin and Adams, 2021], classical
dynamical systems [Rezende et al., 2019, Li et al., 2020] and multivariate timeseries [Rasul et al.,
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2020]. These approaches are tailored to specific applications and their design requires substantial
machine learning and domain expertise.

Normalizing flows have been applied to variational inference since their introduction by Rezende and
Mohamed [2015]. Recognizing that structured posteriors can be challenging for generic architectures,
a number of recent approaches attempt to exploit the model structure. Structured conditional
continuous normalizing flows [Weilbach et al., 2020] use minimally faithful inversion to constrain
the posterior conditional independence structure, rather than embedding the forward pass of the prior
model. Our architecture can be seen as a flexible extension of previous variational models that also
embed the prior structure, such as stochastic structured variational inference [Hoffman and Blei,
2015], automatic structured variational inference [Ambrogioni et al., 2021a] and cascading flows
[Ambrogioni et al., 2021b]. It is also closely related to the non-centering transformations applied by
Gorinova et al. [2020] to automatically reparameterize a probabilistic program, although that work
focused on improving inference geometry and did not directly exploit the bijective aspect of these
reparameterizations.

5 Applications

Model-embedding allows users of all levels of expertise to insert domain knowledge into normalizing
flow architectures. We will illustrate this with some examples, starting from simple uncoupled multi-
modal models and moving on to more sophisticated structured models for time series and hierarchical
models. Finally, we will discuss the application of EMF to automatic structured variational inference,
where we use EMF architectures that embed the prior distribution. Details about the datasets used,
the models’ hyperparameters and the training procedures can be found in Appendix A.1, A.3 and A.4
respectively. Number of parameters and sampling time for all the models are reported in appendix A.5.
All the code use in the experiments is available at https://anonymous.4open.science/
r/EmbeddedModelFlows-9172/README.md.

5.1 Multimodality

Multimodal target densities are notoriously hard to learn for traditional normalizing flow architectures
[Cornish et al., 2020]. In contrast, it is straightforward to model multimodal distributions using
explicit mixture models; the simplest example is perhaps a model where each variable follows an
independent mixture of Gaussian distributions:

pρ,µ,σ(x) =
∏
j

∑
k

ρj,kN(xj ;µjk, σ
2
jk) . (10)

The CDF of a mixture of distributions is given by the mixture of the individual CDFs. Therefore, the
inverse transformation associated with a mixture of Gaussians model is

f−1
ρ,µ,σ(x) = Φ−1

0,1

 n∑
j=1

ρjΦµ,σ(x)

 (11)

In itself, the probabilistic program in Eq. 11 can only model a very specific family of multivariate
mixture distributions with Gaussian components organized in an axis-aligned grid. However, the
model becomes much more flexible when used as a structured layer in an EMF architecture since
the generic upstream layers can induce statistical coupling between the input variables, thereby
loosening the independence structure of the original model. The resulting approach is conceptually
similar to architectures based on monotonic transformations such as neural spline flows [Durkan et al.,
2019a,b], which are arguably more efficient as they have an analytic inversion formula. However, this
application shows that a specific inductive bias such as multimodality can be effectively incorporated
into a flow architecture by users with only a basic understanding of probabilistic modeling.

We apply an EMF with an independent mixture of Gaussians to two 2D toy problems common in the
flow literature, namely the “eight Gaussians” and the “checkerboard”, and to the MNIST dataset. As
baselines, we use a Masked Autoregressive Flow (MAF) model with two autoregressive layers and a
standard Gaussian as a base density, a “large” version of MAF (MAF-L) with three autoregressive
layers, which has much more flexibility compared to the other models in terms of trainable parameters,
and a six steps Neural Splines Flows (NFS, with Rational Quadratic splines) with coupling layers as
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proposed in [Durkan et al., 2019b]. We then combine the EMF with the MAF baseline by adding an
EMF on top of the two autoregressive layers (EMF-T, for top) and in between the two layers, after
the latent variables permutation (EMF-M, for middle). We also combine NSF with the structured
layer, both with the EMF-T and EMF-M settings. Each mixture has 100 components, with trainable
weights, means and standard deviations. The results are reported in table 1, while densities are shown
in appendix A.7.1. The use of the multimodal structured layer with MAF always outperforms the
autoregressive models. The improvement is not solely due to the increased parameterization as both
methods outperform the more complex baseline MAF-L. NSF achieves superior results, as it is an
architecture designed to model multimodality. The combination of the structured layer with NSF
achieves the overall best performances. However, this comes at the cost of additional sampling time,
caused by the numeric inversion of the mixture of Gaussians transformation.

Table 1: Results in negative log probability on one million test samples for the 2d toy problems. We
report mean and standard error of the mean over five different runs. 8G stands for eight gaussians
while CKB for checkerboard. The resulting negative log probability for MNIST is computed on the
test set.

EMF-T EMF-M NSF-EMF-T NSF-EMF-M MAF MAF-L NSF

8G 2.881± 0.001 2.897± 0.002 2.837± 0.003 2.829± 0.006 3.341± 0.009 3.032± 0.018 2.832± 0.0042

CKB 3.579± 0.000 3.503± 0.000 3.480± 0.0012 3.494± 0.0085 3.795± 0.000 3.614± 0.006 3.481± 0.0015

MNIST 635.917± 0.629 – 591.227± 2.1324 604.998± 1.2314 1202.205± 2.325 1185.003± 17.3011 610.632± 3.886

5.2 Hierarchical models

Hierarchical models are central to both Bayesian and frequentist statistics and can be used to model
data with nested sub-populations. For example, a Gaussian hierarchical model with m populations
each with n datapoints can be expressed as

p(m,x) =

m∏
k=1

N (mk; 0, σ2
) n−1∏
j=1

N
(
xjk;mk, ν

2
) (12)

where mk denotes the empirical population mean. For the leaf variables, this results in the following
structured layer: fjk,σ(εjk, ηj) = σηk + νεjk , where εjk is the latent variable of the leaf node xjk
while ηk is the latent of its root node. This extremely simple layer can be used to couple variables that
are known to be hierarchically related and can be straightforwardly generalized to deeper and more
complex hierarchical couplings. Again, the downstream and upstream layers in the EMF architecture
can model additional couplings and non-Gaussianity while keeping the hierarchical structure. To test
the effectiveness of EMF with Gaussian hierarchical structure, we train the flows on a hierarchical
generative modeling problem where each network outputs a whole dataset subdivided into several
classes. Specifically, we use two classification datasets, the IRIS dataset, in which three flower
classes are described by four numerical features, and the Digits dataset, composed of 8× 8 images of
handwritten digits from 0 to 9. We modify the datasets by using vectors x̄ = [µ̄, d̄1, . . . , d̄n], where
the d̄i, i ∈ [1, . . . , n] are datapoints randomly sampled from the same class, and µ̄ is the feature-wise
mean of such datapoints. We then train the flows with vectors x̄

′
= [µ̄, d̄1, . . . , d̄n−1], as the last

datapoint d̄n can be inferred from the mean and the other n− 1 datapoints. We use the same MAF
and MAF-L baselines as for the 2d toy problems, and the gated version of EMF-T and EMF-M
(GEMF-T, GEMF-M). The results are reported in table 2. The EMF architectures perform better than
their MAF equivalents but worse than the much more highly parameterized MAF-L architectures.
This is not surprising given the extreme simplicity of the hierarchical layer.

Table 2: Results in negative log probability on one hundred thousand test samples for the IRIS dataset
and over ten thousand test samples for the Digits dataset. We report mean and standard error of the
mean over five different runs.

GEMF-T GEMF-M MAF MAF-L

IRIS −9.165± 0.046 −8.095± 0.054 −7.213± 0.066 −11.446± 0.3883

DIGITS 1260.849± 1.0764 1310.619± 0.7419 1307.927± 0.5284 1181.283± 0.8151
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5.3 Timeseries modeling

Timeseries data is usually characterized by strong local correlations that can often be described with
terms such as continuity and smoothness. In the discrete models considered here, these properties can
be obtained by discretizing stochastic differential equations. One of the simplest timeseries model
with continuous path is the Wiener process ẋ(t) = w(t), with w(t) being a white noise input with
variance σ2. By Euler–Maruyama discretization with ∆t = 1, we obtain the following autoregressive
model

xt+1 ∼ N
(
xt+1;xt, σ

2
)
, (13)

which gives us the bijective function ft+1,σ(xt+1;xt) = xt + σxt+1. We use four stochastic
differential equation models as time series datasets, discretized with the Euler-Maruyama method:
the models are Brownian motion (BR), Ornstein-Uhlenbeck (OU) process, Lorenz system (LZ), and
Van der Pol oscillator (VDP). We use an EMF with continuity structure. The baselines are MAF,
MAF-L and NSF models like in the previous sections, and an MAF in which the base distribution
follows the continuity structure (B-MAF), as a discrete-time version of the model proposed in [Deng
et al., 2020]. Note that no variables permutation is used for B-MAF. We then use GEMF-T and a
combination of NSF with the structured layer (NSF-GEMF-T), with continuity structure. For the
models using NSF we scale the time series to have standard deviation 1, which we found empirically
to improve stability. We do so using a scaling bijective transformation and computing its Jacobian,
making the losses with and without scaling comparable. The results are reported in Table 3. GEMF
with continuity structure greatly outperforms the other models (even the more complex MAF-L) for
all of the datasets. Results obtained with the smoothness structure are reported in appendix A.7.3.

Table 3: Results in negative log probability on one million test samples for the time-series toy
problems, and on a test set of 10000 datapoints. We report mean and standard error of the mean over
five different runs.

GEMF-T(c) NSF-GEMF-T(c) MAF MAF-L NSF B-MAF

BR −26.414± 0.0115 – −26.061± 0.0103 −26.121± 0.0099 – −25.905± 0.0100

OU 24.086± 0.0015 – 24.197± 0.0028 24.162± 0.0029 – 24.169± 0.0034

LZ −192.420± 0.4389 −176.710± 0.1445 −136.626± 1.0225 −128.837± 2.7377 −115.267± 7.8488 −160.440± 3.4641

VDP −551.202± 0.3661 – −484.416± 0.9283 −512.586± 0.5547 – −534.165± 0.3736

5.4 Variational inference

IAF

Variational MEF architecture

Prior model

Figure 2: Diagram of a gated prior-embedding architecture with a sample of transformed variables
for a Lorentz dynamics smoothing problem.

Normalizing flows are often used as surrogate posterior distributions for variational inference in
Bayesian models, where the target posterior may contain dependencies arising both from the prior
structure and from conditioning on observed data via collider (or “explaining away”) phenomena.
Generic flow architectures must learn the prior structure from scratch, which wastes parameters and
computation and may lead the optimization into suboptimal local minima. Embedding the prior model
into the flow itself as a gated structured layer avoids this difficulty and should allow the remaining
layers to focus their capacity on modeling the posterior.
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We deploy a gated EMF architecture with a two-layers of inverse autoregressive flow (IAF) and a
final structured layer embedding the prior model. This is visualized in 2 for inference in a Lorentz
dynamical system. In addition, we train plain IAF, automatic differentiation Mean Field (MF) and
Multivariate Normal (MVN) surrogate posteriors from Kucukelbir et al. [2017] and ASVI from
Ambrogioni et al. [2021a]. We experiment on both time series and hierarchical models. The time
series models are Brownian motion (BR), Lorenz system (LZ) and Van der Pol oscillator (VDP), with
Bernoulli (classification) emissions. Furthermore, we either observe all the emissions (smoothing
setting) or we omit a central time window (bridge setting). As hierarchical models we use the Eight
Schools (ES) dataset and a Gaussian binary tree model with different depths and link functions, in
which only the last node is observed [Ambrogioni et al., 2021b]. The results are shown in Table
4. Results on additional experiments can be found in Appendix A.7.4. GEMF-T outperforms the
baselines on all the problems, showing the benefits of embedding the prior program for highly
structured problems, and the capability of such architecture to model collider dependencies.

Table 4: Results in negative ELBO. We report mean and standard error of the mean over ten different
runs. S and B correspond respectively to smoothing and bridge, while c stands classification. As
an example, BRB-c is the Brownian motion with the bridge-classification settings. For the binary
tree experiments, Lin and Tanh correspond to the link function (Lin is linear link), and the following
number is the depth of the tree.

GEMF-T MF MVN ASVI IAF

BRS-c 15.882± 1.405 23.764± 1.262 16.148± 1.394 15.894± 1.403 15.950± 1.393

BRB-c 11.880± 0.990 20.174± 0.883 12.098± 0.985 11.884± 0.987 11.947± 0.985

LZS-c 8.317± 1.033 60.458± 0.511 43.024± 0.621 26.296± 2.008 27.604± 0.717

LZB-c 5.819± 0.492 53.418± 0.394 36.063± 0.449 19.318± 1.722 20.778± 0.542

VDPS-c 68.385± 2.599 162.336± 1.425 183.020± 1.676 72.700± 3.768 88.284± 1.437

VDPB-c 43.314± 2.039 138.103± 1.766 157.736± 2.146 51.327± 2.408 63.914± 1.502

ES 36.140± 0.004 36.793± 0.039 36.494± 0.014 36.793± 0.039 36.169± 0.007

Lin-8 2.596± 0.213 108.869± 0.467 13.834± 0.271 26.232± 0.340 3.440± 0.246

Tanh-8 1.626± 0.159 144.668± 0.349 44.230± 0.258 14.241± 0.650 4.127± 0.220

6 Discussion

We introduced EMF, a technique to combine domain-specific inductive biases with normalizing flow
architectures. Our method automatically converts differentiable probabilistic programs into bijective
transformations, allowing users to easily embed their knowledge into their models. We showed how,
by choosing appropriate inductive biases, EMF can improve over generic normalizing flows on a
range of different domains, with only a negligible increase in complexity, and we achieved high
performance on a series of structured variational inference problems. EMF is a powerful generic
tool which can find several applications both in probabilistic inference and more applied domains.
Limitations: I) While we can map a very large family of probabilistic models to normalizing flow
architectures, the approach is still limited by the topological constraints of bijective differentiable
transformations [Cornish et al., 2020]. This forces the support of the program to be homeomorphic
to the range, making impossible to map models with non-connected support sets into normalizing
flows. II) While the root finding methods used for inverting univariate densities are reliable and
relatively fast, they do have higher computational demands than closed form inversion formulas.
III) While it is possible to model discrete variables using Eq. 5, this does not result in an invertible
and differentiable transformation that can be trained using the standard normalizing flow approach.
IV) The probabilistic program must be executed during sampling. This can result in significant
sampling slow-downs when using complex autoregressive programs. Note that, expect in the case of
variational inference, this not lead to training slow-downs as the inverse transform is always trivially
parallelizeble. Future work: Embedded-model flows are a generic tool that can find application in
several domains in which there is structure in the data. In theory, any number of structured layers
can be added to EMF architectures, and combining different structures in the same model may help
model complex dependencies in the data. Further empirical work is needed to asses the capacity of
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trained EMFs to select the correct (or the least wrong) model. While we only considered the use
of structured layers in normalizing flows, they may also be used in any kind of deep net in order to
embed domain knowledge in tasks such as classification, regression and reinforcement learning.
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A Appendix

A.1 Datasets

Here we provide a detailed description of the datasets used in the experiments.

A.1.1 2d toy problems

The implementation of the 2D toy datasets is taken from the publicly available implementation of
FFJORD [Grathwohl et al., 2019].

A.1.2 MNIST

We use as training set 50000 data points, while the remaining 10000 are used as validation set. The
images are dequantized following the same procedure as in [Papamakarios et al., 2017].

A.1.3 Stochastic differential equations

For the generative time series experiments we generate data using four stochastic differential equations
(SDEs) models, discretized with the Euler-Maruyama method. The SDEs are: Geometric Brownian
motion, Ornstein-Uhlenbeck process, Lorenz system and Van der Pol oscillator. In the following, Wt

corresponds to a Wiener process, and the series length T = 30 with time step s = 1 unless specified.

Geometric Brownian motion: the dynamics evolve as:

ẋt = µxtdt+ σxtdWt

where µ and σ are constants. In practice, we generate sequences as a simple Brownian motion, and
then take the exponential of the whole sequence. The Brownian motion sequence is generated as:

x0 ∼ N (µ, σ)

xt ∼ N (xt−1, σ),∀t ∈ [1, . . . , T − 1]
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where the mean µ = 0 and the standard deviation σ = 0.1.

Ornstein-Uhlenbeck process: This process has the following dynamics:

ẋt = −θxtdt+ σdWt

with θ > 0 and σ > 0. The sequences are generated as:

x0 ∼ N (µ, σ0)

xt ∼ N (θxt−1, σ),∀t ∈ [1, . . . , T − 1]

with µ0 = 0, σ0 = 5, σ = 0.5 and θ = 0.8.

Lorenz system: the Lorenz dynamics evolve as follows:

ẋt = φ(yt − xt)
ẏt = xt(ρ− zt)− yt
żt = xtyt − βzt

where φ = 10, ρ = 28 and β = 8
3 . In the discrete case we have:

x0, y0, z0 ∼ N (0, 1)

∀t ∈ [1, . . . , T − 1]

xt ∼ N (xt−1 + s(φ(yt−1 − xt−1)),
√
s ∗ σ)

yt ∼ N (yt−1 + s(xt−1(ρ− zt−1)− yt−1),
√
s ∗ σ)

zt ∼ N (zt−1 + s(xt−1yt−1 − βzt−1),
√
s ∗ σ)

with standard deviation σ = 0.1 and step size s = 0.02.

Van der Pol oscillator: The system evolves as:

ẋ = y +Wt

ẏ = µ(1− x2)y − x+Wt

In the discrete case, with T = 120 and s = 0.05, we have:

x0, y0 ∼ N (0, 1)

∀t ∈ [1, . . . , T − 1]

xt ∼ N (xt−1 + yt−1 ∗ s,
√
s ∗ σ)

yt ∼ N (yt−1 + sµ(1− x2t−1)yt−1,
√
s ∗ σ)

Here we use µ = 1 and σ = 0.1

A.1.4 Smoothing and Bridge data

The data for the variational inference experiments is generated with either a Brownian motion, a
Lorenz system or the Van der Pol oscillator. The first follows the same dynamics of the geometric
Brownia motion described above, but without taking the exponential, while the others are the same
as the Lorenz system and Van der Pol oscillator described above. The true time series remains
unobserved, and we only have access to noisy emissions. In the regression case, the emissions follow
a Gaussian distribution:

et ∼ N (xt, σe)

where σe is the emission noise, and is σe = 0.15 for the Brownian motion, σe = 1 for the Lorenz
system, and σe = 0.5 for the Van der Pol oscillator. In the classification case, the emissions follow a
Bernoulli distribution:

et ∼ Bernoulli(kxt)
with k a gain parameter, k = 5 in the Brownian Motion, k = 2 in the Lorenz system and k = 1 for
the Van der Pol oscillator. In the smoothing problem, we observe emission for all the time steps, while
in the bridge problem we observe emissions only in the first and last 10 time points (first and last 40
for the Van der Pol oscillator). For the Lorenz system amd Van der Pol oscillator, the emissions are
observed only for the x variables in both smoothing and bridge.
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A.1.5 Hierarchical Models

IRIS dataset: We use the IRIS dataset from the UCI Machine learning Repository. The dataset is
composed by three classes of iris plant, each described by four attributes: sepal length, sepal width,
petal length and petal width. There are 50 datapoints for each class. In the experiments, we use
samples of n = 10 datapoints.

Digits dataset: We use the Digits dataset from the UCI Machine learning Repository. The dataset
is composed by 10 classes 8× 8 images of handwritten digits, from 0 to 9. In the experiments, we
use samples of n = 20 datapoints. The images are dequantized following the same procedure as in
[Papamakarios et al., 2017].

Eight Schools: The Eight Schools (ES) model considers the effectiveness of coaching programs on a
standardized test score conducted in parallel at eight schools. It is specified as follows:

µ ∼ N (0, 100)

log τ ∼ logN (5, 1)

θi ∼ N (µ, τ2)

yi ∼ N (θi, σ
2
i )

where µ represents the prior average treatment effect, τ controls how much variance there is between
schools, i = 1, . . . , 8 is the school index, and yi and σi are observed.

Gaussian Binary tree: The Gaussian Binary tree is a reverse tree of D layers, in which the variables
at a given layer d, xdj , are sampled from a Gaussian distribution where the mean is function of two
parent variables πd−1

j,1 , πd−1
j,2 at the previous layer:

xdj ∼ N (link(πd−1
j,1 , πd−1

j,2 ), σ2)

All the variables at the 0-th layers are sampled from a Gaussian with mean 0, and variance σ2 = 1.
The last node of the tree is observed, and the inference problem consists in computing the posterior
of the nodes at the previous layers. We use a linear coupling function link(x, y) = x − y and a
nonlinear one link(x, y) = tanh(x)− tanh(y), with trees of depth D = 4 and D = 8.

A.2 Structures induced with EMF

In this section we describe in detail the structures embedded with EMF and the bijective transforma-
tions they correspond to. In the following, we denote as x̄ the output vector from the normalizing
flow, and x̄

′
the vector after the transformation induced by EMF. When the probabilistic program

embedded by EMF has only Gaussian distributions N (µ, σ2), the bijective transformation is in the
form:

f(x) = µ+ σx

f−1(x) =
(x− µ)

σ

while in the gated case, with λ ∈ (0, 1) the transformation becomes:

g(x, λ) = λµ+ x(λ(σ − 1) + 1)

g−1(x, λ) =
x− λµ

1 + λ(σ − 1))

In both time series and Gaussian hierarchical generative models, the embedded structures have only
Gaussian distributions, so all the gated and non-gated bijective transformation will have the form
described above. What changes in the structure is the way we define the means and variances of such
structures.

Continuity: for the first variable of the sequence, we have µ = 0, σ = σs, while for the remaining
T − 1 variables xt∀t ∈ [1, . . . , T − 1], we have µ = x

′

t−1 and σ = σs. σs is a trainable variable
transformed with the softplus function, shared among all the latent variables.
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Smoothness: the first two variables of the sequence have µ = 0 and σ = 1. The remaining variables
have µ = 2x

′

t − x
′

t−1 and σ = σs, with σs a trainable variable like the case above.

Gaussian hierarchical model: for the first variable of the sequence, corresponding to the mean of
the remaining variables, we have µ = 0 and σ = 1, while for the remaining variables, we set µ = x

′

0
and σ = 1.

A.3 Flow Models

In all the experiments, we use MAF for generative models and IAF for variational inference, both
with two autoregressive layers (three for MAF-L) and a standard Gaussian as a base density. Each
autoregressive layer has two hidden layers with 512 units each. We use ReLU nonlinearity for all the
models but for IAF, MAF and MAF-L without EMF or GEMF, for which we empirically found Tanh
activation to be more stable. The features permutation always happen between the two autoregressive
layers. In the case of EMF-M and GEMF-M, the permutation happens before the structured layer. We
found empirically that training the gates for GEMF is slow as the variables lie on an unbounded space
before the Sigmoid activation. A possible solution is scaling the variables (by 100 in our experiments)
before applying Sigmoid, which speeds-up the training for the gates, leading to better results.

A.4 Training details

In this section we describe the training procedure for the experiments. We train all the models with
Adam optimizer [Kingma and Ba, 2014].

2D toy experiments: the models are trained for 500 thousand iterations, with learning rate 1e-4 and
cosine annealing. The mixtures of Gaussians are initialized with means evenly spaced between -4
and 4 for EMF-T and between -10 and 10 for EMF-M, while the standard deviations are initialized to
1 For EMF-T and 3 for EMF-M.

MNIST: the models are trained with early stopping until there is no improvement in the validation
loss for 100 epochs, with learning rate 1e-4. The mixtures of Gaussians are initialized with means
evenly spaced between -15 and 0 for EMF-T and between -20 and 20 for EMF-M, while the standard
deviations are initialized to 3 For EMF-T and 1 for EMF-M.

Generative Hierarchical: we fit the models for 100 thousand iterations for the IRIS dataset and
for 400 thousand iterations for the Digits dataset, with learning rate 1e-4 and cosine annealing. The
annealing schedule is over 500 thousands iterations.

Generative SDEs: the models are trained for 50 thousand iterations with learning rate 1e-4 and
cosine annealing. The annealing schedule is over 500 thousand iterations.

Variational inference: we fit all the surrogate posteriors for 100000 iterations with full-batch gradient
descent, using a 50-samples Monte Carlo estimate of the ELBO, and learning rate 1e-3 for all the
methods but IAF, EMF-T and GEMF-T, for which we use 5e-5. For GMEF, the gates are initialized
to be close to the prior, whit a value of 0.999 after Sigmoid activation.

A.5 Number of Parameters and sample time

We report the number of trainable parameters and sample time in seconds for each model used in
the generative experiments (tables 5, 6, 7, 8, 9, 10). Note that the samples were performed on a
GPU Nvidia Quadro RTX 6000 . We do not report parameters and inference time for the Variational
Inference experiments, as the number of parameter changes only with gates, in which there is one
additional parameter per latent variable, and the inference time difference between models with and
without EMF layer is similar to the sampling time in the generative case.
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Table 5: Number of trainable parameters per model for the generative time series experiments.

GEMF-T(c) GEMF-T(s) NSF-GEMF-T(c) MAF MAF-L B-MAF NSF

BR/OU 618647 618647 – 618616 927924 618617 –

LZ 803209 803209 861651 803176 1204764 803179 861618

VDP 1264698 1264698 – 1264576 1896864 1264578 –

Table 6: Number of trainable parameters per model for the generative hierarchical experiments.

GEMF-T GEMF-M MAF MAF-L

IRIS 649386 649386 649376 974064

DIGITS 4463636 4463636 4463616 6695424

Table 7: Number of trainable parameters per model for the 2D toy and MNIST experiments.

EMF-T EMF-M NSF-EMF-T NSF-EMF-M MAF MAF-L NSF

8 Gaussians/Checkerboard 533088 533088 26130 26130 532488 798732 25530

MNIST 3173120 3173120 7690512 7690512 2937920 4406880 7455312

Table 8: Sample time in seconds for the generative time series experiments. We report mean and
standard deviation over ten samples with batch 100.

GEMF-T(c) GEMF-T(s) NSF-GEMF-T(c) MAF MAF-L B-MAF NSF

BR 0.658± 0.048 0.757± 0.012 0.310± 0.007 0.473± 0.013 0.704± 0.053 0.987± 0.049 0.154± 0.010

OU 0.655± 0.038 0.807± 0.072 0.338± 0.040 0.481± 0.034 0.664± 0.041 0.977± 0.033 0.184± 0.006

LZ 1.511± 0.097 1.636± 0.077 0.536± 0.008 1.283± 0.039 1.912± 0.083 1.834± 0.067 0.348± 0.014

VDP 4.419± 0.170 4.749± 0.147 1.063± 0.071 3.560± 0.118 5.337± 0.234 5.635± 0.186 0.378± 0.011

Table 9: Sample time in seconds for the generative hierarchical experiments. We report mean and
standard deviation over ten samples with batch 100.

GEMF-T GEMF-M MAF MAF-L

IRIS 0.667± 0.046 0.741± 0.037 0.595± 0.024 0.794± 0.016

DIGITS 18.040± 0.335 17.921± 0.266 17.395± 0.232 26.211± 0.314

Table 10: Sample time in seconds for the 2D toy and MNIST experiments. We report mean and
standard deviation over ten samples with batch 100. We use batch 10 for MNIST as the numeric
inversion needs a bigger amount of GPU memory.

EMF-T EMF-M NSF-EMF-T NSF-EMF-M MAF MAF-L NSF

8 Gaussians 1.437± 0.216 1.409± 0.236 1.584± 0.648 1.526± 0.241 0.036± 0.004 0.050± 0.005 0.078± 0.006

Checkerboard 1.406± 0.179 1.379± 0.135 1.516± 0.152 1.546± 0.178 0.036± 0.004 0.049± 0.004 0.075± 0.006

MNIST 13.809± 1.009 13.991± 0.844 2.745± 0.857 3.791± 0.518 10.679± 0.258 16.272± 0.495 0.094± 0.009
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A.6 Numerical root finding methods

There are cases in which a closed form inversion for the transformation induced by EMF is not
available, such as for the Mixture of Gaussian case. In those cases, we can still compute the inverse
function and log-Jacobian determinants by using numerical root finding methods. In this work, we
use either the secant method or the Chandrupatla’s method [Chandrupatla, 1997, Scherer, 2010], as
the implementation is available in the probabilistic programming framework Tensorflow Probability.

A.6.1 Secant method

The secant method is a root-finding algorithm that uses a succession of roots of secant lines to
better approximate a root of a function. The secant method can be thought of as a finite-difference
approximation of Newton’s method. The secant method starts with two initial values x0 and x1 which
should be chosen to lie close to the root, and then uses the following recurrent relation:

xn = xn−1 − f(xn−1)
xn−1 − xn−2

f(xn−1)− f(xn−2)

=
xn−2f(xn−1)− xn−1f(xn−2)

f(xn−1)− f(xn−2)

A.6.2 Chandrupatla’s method

This root-finding algorithm is guaranteed to converge if a root lies within the given bounds. At each
step, it performs either bisection or inverse quadratic interpolation. The specific procedure can be
found in [Chandrupatla, 1997, Scherer, 2010].
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Ground Truth EMF-T EMF-M MAF

NSF NSF-EMF-T NSF-EMF-M MAF-L

Figure 3: Comparison of densities learned by different models on the 8 Gaussians dataset.

Ground Truth EMF-T EMF-M MAF

NSF NSF-EMF-T NSF-EMF-M MAF-L

Figure 4: Comparison of densities learned by different models on the Checkerboard dataset.

A.7 Additional results

A.7.1 Density plots for 2D toy experiments

We include density plots for the 2D toy experiments in figures 3 and 4.
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Figure 5: Sampled MNIST digits for different models.

A.7.2 MNIST samples

We include density plots for the 2D toy experiments in figure 5.
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A.7.3 Smoothing structure for time series

We can induce smoothness using a layer obtained by discretizing the second-order equation ẍ(t) =
−aẋ(t) +w(t), which models a physical Brownian motion. We show the results obtained in table 11.

Table 11: Results in negative log probability on one million test samples for the time-series toy
problems, and on a test set of n datapoints. We report mean and standard error of the mean over five
different runs.

GEMF-T(s)

BR −26.125± 0.0015

OU 24.131± 0.0030

LZ −189.647± 0.3899

VDP −518.464± 2.5147

A.7.4 VI experiments

As additional variational inference experiments, we show the results on the time series with Gaussian
(regression) emissions and a shallow version of the Gaussian binary tree model with depth 4. The
results are shown in tables 12. We also compute the forward KL divergence for each model. Such
results are reported in table 13.

The EMF bijective transformation can be also used in combination with models which do not use
normalizing flows. We combine EMF with the mean field and multivariate normal approximations
from [Kucukelbir et al., 2017], with results in table 14. We also report results of the non gated version
of EMF.

Table 12: Results in negative ELBO. We report mean and standard error of the mean over ten different
runs

GEMF-T MF MVN ASVI IAF

BRS-r −3.341± 0.977 0.147± 1.002 −3.126± 0.977 −3.354± 0.974 −3.304± 0.974

BRB-r −3.122± 0.967 1.932± 0.951 −2.866± 0.967 −3.142± 0.966 −3.086± 0.961

LZS-r 46.981± 0.476 1492.572± 255.358 1485.622± 251.296 1257.942± 330.467 1337.364± 301.002

LZB-r 110.500± 40.958 756.338± 146.012 748.298± 146.063 490.696± 166.080 598.402± 153.412

VDPS-r 93.520± 2.729 174.445± 2.846 194.592± 2.181 98.117± 4.493 117.028± 2.666

VDPB-r 68.030± 1.315 150.184± 1.445 171.263± 1.359 75.481± 4.567 92.739± 1.249

Lin-4 1.513± 0.576 6.136± 0.573 1.542± 0.571 3.268± 0.561 1.526± 0.581

Tanh-4 −0.035± 0.119 6.640± 0.157 0.075± 0.124 2.866± 0.113 −0.026± 0.118
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Table 13: Results in forward KL divergence. We report mean and standard error of the mean over ten
different runs.

GEMF-T MF MVN ASVI IAF

BRS-r 37.362± 1.049 32.332± 2.051 37.608± 1.122 37.346± 1.091 37.319± 1.101

BRS-c 28.539± 0.920 −32.940± 9.829 28.174± 0.958 28.571± 0.913 28.458± 0.896

BRB-r 32.403± 0.762 11.608± 6.311 31.800± 0.921 32.449± 0.748 32.267± 0.769

BRB-c 26.928± 1.940 −76.227± 48.668 26.582± 2.004 26.825± 1.946 26.816± 1.906

LZS-r 245.458± 2.404 −1.4e+08 ± 2.3e+07 −7.6e+06 ± 1.8e+06 −3.6e+04 ± 1.3e+04 −1.0e+08 ± 6.4e+07

LZS-c 245.337± 1.577 −1.7e+08 ± 1.9e+07 −1.1e+07 ± 1.4e+06 −3.e+04 ± 7.9e+03 −1.2e+06 ± 7.1e+05

LZB-r 148.488± 51.783 −1.2e+08 ± 2.9e+07 −6.9e+06 ± 1.9e+06 −4.2e+04 ± 2.e+04 −2.1e+06 ± 1.1e+06

LZB-c 249.709± 1.348 −1.8e+08 ± 2.1e+07 −1.1e+07 ±1.5e+06 −3.5e+04 ±6.9e+03 −7.7e+06 ±3.3e+06

VDPS-r 577.904± 4.153 −4697.812± 424.368 390.420± 28.331 565.069± 5.047 −42.726± 104.995

VDPS-c 569.202± 1.954 −2.83e+ 05± 3.99e+ 04 −959.169± 342.340 560.772± 14.355 −2.06e+ 04± 6.17e+ 03

VDPB-r 564.488± 3.558 −2.66e+ 04± 2.04e+ 04 236.299± 138.579 536.487± 11.421 −3285.368± 2764.594

VDPB-c 574.775± 4.241 −5.02e+ 05± 6.57e+ 04 −1749.567± 575.022 563.985± 7.577 −4.08e+ 04± 9.41e+ 03

ES −13.032± 0.910 −13.541± 1.204 −13.687± 1.294 −13.533± 1.201 −12.876± 0.937

Lin-4 5.780± 0.495 −26.195± 8.401 5.739± 0.518 −0.020± 2.165 5.763± 0.553

Lin-8 89.049± 2.772 −1387.313± 201.479 77.042± 3.843 −0.475± 25.415 88.506± 2.930

Tanh-4 17.386± 1.111 −24.730± 13.715 17.404± 1.081 12.408± 3.369 17.316± 1.150

Tanh-8 311.528± 3.827 −2941.246± 364.753 255.127± 9.701 239.432± 17.222 304.161± 5.220

Table 14: Results in variational inference for additional models: a non gated EMF-T, and the
combination of Mean Field and Multivariate Normal with EMF-T and GEMF-T.

EMF-T MF-EMF-T MVN-EMF-T MF-GEMF-T MVN-GEMF-T

BRS-r -ELBO −3.293± 0.974 13.905± 1.224 −3.123± 0.968 −3.087± 0.967 −3.077± 0.966
FKL 37.483± 1.067 −6.429± 5.058 32.458± 0.775 32.261± 0.779 32.351± 0.822

BRS-c -ELBO 15.894± 1.406 18.602± 1.723 15.917± 1.397 15.960± 1.399 15.921± 1.403
FKL 28.554± 0.907 27.117± 1.373 28.562± 0.906 28.500± 0.907 28.386± 0.938

BRB-r -ELBO −3.096± 0.971 13.905± 1.224 −3.123± 0.968 −3.150± 0.967 −3.077± 0.966
FKL 32.291± 0.856 −6.429± 5.058 32.458± 0.775 32.426± 0.764 32.351± 0.822

BRB-c -ELBO 11.878± 0.990 13.838± 1.251 11.912± 0.985 11.940± 0.988 11.930± 0.988
FKL 27.002± 1.885 25.407± 2.120 26.880± 1.914 26.674± 2.041 26.845± 1.924

LZS-r -ELBO 46.995± 0.450 527.145± 319.063 1255.087± 330.588 52.865± 0.694 1254.725± 330.517
FKL 245.505± 2.401 −8660.092± 5474.940 −4.8e+ 04± 1.9e+ 04 −1976.326± 2022.022 −4.6e+ 04± 1.8e+ 04

LZS-c -ELBO 8.290± 1.031 56.846± 45.443 23.895± 1.942 10.844± 1.104 23.540± 1.881
FKL 245.214± 1.583 176.425± 18.073 −3.4e+ 04± 9.4e+ 03 192.223± 16.425 −3.7e+ 04± 1.0e+ 04

LZB-r -ELBO 85.425± 36.684 187.988± 87.731 487.722± 166.150 148.388± 57.199 487.486± 166.134
FKL 192.466± 41.929 −1.8e+ 04± 1.1e+ 04 −5.8e+ 04± 2.8e+ 04 −1.5e+ 04± 1.4e+ 04 −5.8e+ 04± 2.8e+ 04

LZB-c -ELBO 5.800± 0.479 39.506± 15.506 17.014± 1.592 51.010± 18.540 16.732± 1.557
FKL 249.858± 1.379 −2045.551± 2165.953 −4.4e+ 04± 9.2e+ 03 114.907± 46.043 −4.4e+ 04± 9.2e+ 03

VDPS-r -ELBO 93.523± 2.734 – 94.538± 2.741 – 94.623± 2.725
FKL 577.918± 4.143 – 576.639± 4.191 – 578.076± 4.129

VDPS-c -ELBO 68.385± 2.599 – 69.594± 2.640 – 69.600± 2.592
FKL 569.190± 1.954 – 567.766± 2.192 – 568.492± 2.398

VDPB-r -ELBO 68.036± 1.312 – 67.914± 1.387 – 69.144± 1.289
FKL 564.516± 3.620 – 562.322± 3.857 – 563.441± 3.847

VDPB-c -ELBO 43.314± 2.043 – 44.487± 2.083 – 44.443± 2.065
FKL 574.780± 4.207 – 574.061± 4.254 – 573.262± 4.676

ES -ELBO 36.139± 0.004 36.794± 0.040 36.532± 0.016 36.798± 0.041 36.512± 0.019
FKL −13.043± 0.906 −13.525± 1.203 −13.666± 1.295 −13.582± 1.219 −13.732± 1.311

Lin-4 -ELBO 1.512± 0.573 5.981± 0.520 1.513± 0.574 3.371± 0.650 1.533± 0.572
FKL 5.806± 0.518 1.085± 1.070 5.842± 0.499 0.002± 2.137 5.821± 0.528

Lin-8 -ELBO 2.609± 0.208 109.551± 3.608 5.600± 0.260 26.396± 0.329 4.173± 0.195
FKL 89.005± 2.776 22.826± 7.270 87.689± 3.056 −2.279± 26.566 88.143± 2.818

Tanh-4 -ELBO −0.037± 0.119 6.221± 0.161 −0.025± 0.125 2.876± 0.110 −0.002± 0.120
FKL 17.436± 1.097 6.913± 4.124 17.472± 1.069 12.561± 3.256 17.244± 1.084

Tanh-8 -ELBO 1.866± 0.119 19.266± 1.790 5.338± 0.124 14.134± 0.784 4.237± 0.194
FKL 311.594± 3.618 295.872± 4.505 285.647± 7.425 280.296± 9.743 303.473± 5.529
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Figure 6: Surrogate posterior for Lorenz Smoothing.

Figure 7: Surrogate posterior for Lorenz Bridge.

A.7.5 Surrogate posteriors

We show and compare the obtained surrogate posteriors using IAF, EMF-T and GMEF-T, together
with the ground truth and the observations (figures 6, 7, 8, 9).
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Figure 8: Surrogate posterior for Van der Pol Smoothing.
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Figure 9: Surrogate posterior for Van der Pol Bridge.

24



Figure 10: Training losses on 2D toy data. Each plotted value is the average loss of 100 iterations.

Figure 11: Training losses on MNIST. Some losses trained for a shorter amount of epochs as they
would overfit quicklier on the validation set.

A.7.6 Training losses

We show a comparison of the training losses for the different models, for the 2D data (figure 10,
MMIST (figure 11, the IRIS and digits datsests (figure 13) and for the time series data (figure 12).

25



Figure 12: Training losses on time series toy data. Each plotted value is the average loss of 100
iterations.

Figure 13: Training losses on Iris (left) and Digits (right) datasets. Each plotted value is the average
loss of 100 iterations.
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Figure 14: Samples for Brownian motion.

Figure 15: Samples for Ornstein-Uhlenbeck process.

A.7.7 Samples

We provide a comparison between the training data and the samples from the trained models. Figures
14 15 and 16 show samples for the Brownian motion, Ornstein-Uhlenbeck process and Lorenz system
respectively.
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Figure 16: Samples for Lorenz system.

Figure 17: Samples for Van der Pol oscillator.
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