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Abstract

We evaluate uncertainty quantification (UQ) methods for deep learning applied to
liquid argon time projection chamber (LArTPC) physics analysis tasks. As deep
learning applications enter widespread usage among physics data analysis, neural
networks with reliable estimates of prediction uncertainty and robust performance
against overconfidence and out-of-distribution (OOD) samples are critical for its
full deployment in analyzing experimental data. While numerous UQ methods have
been tested on simple datasets, performance evaluations for more complex tasks
and datasets have been scarce. We assess the application of selected deep learning
UQ methods on the task of particle classification in a simulated 3D LArTPC
point cloud dataset. We observe that uncertainty enabled networks not only allow
for better rejection of prediction mistakes and OOD detection, but also generally
achieve higher overall accuracy across different task settings. We also conclude
that in in most settings, simple ensembling methods are sufficient in obtaining
well calibrated classification probabilities and generally achieve higher overall
accuracy.

1 Introduction & Motivation

When a neutrino enters a liquid argon time projection chamber (LArTPC) [32]], it reacts with the
argon nucleus and produces a unique set of charged particles. Ionization electrons originating from
each charged particle’s interaction with the medium are drifted towards three wire planes that provide
different projections of the full 3D trajectory. The high resolution projection images provided by
the LArTPC allow the full three-dimensional assembly of the neutrino interaction as a 3D point
cloud image. Determining the types of all final state charged particles is critical for inferring physics
behind neutrino events, as the neutrino itself is not directly visible by the LArTPC detector. Hence,
designing automated event selection algorithms for neutrino experiments includes developing tools
for solving common tasks in computer vision, such as image classification and semantic segmentation.
Combined with the large amount of data that accelerator based neutrino experiments such as the
Short Baseline Neutrino (SBN) experiment [26] and the Deep Underground Neutrino Experiment
(DUNE) [2] offer, deep learning applications [3} 9] have been particularly fruitful.

Using deep learning for fundamental research, however, presents complications that are often omitted
in many common industrial use cases, where practitioners generally attend to achieving state-of-
the-art with respect to a family of conventional performance metrics. In particular, one of the most
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pressing issues with using deep neural networks for fundamental research is developing robust and
consistent methods for quantifying uncertainties of its predictions. While deep neural networks are
often treated as high-fidelity models, even predictions from an optimally trained neural network may
contain significant errors and uncertainties. Neural networks are prone to making overconfident yet
erroneous predictions. Our limited understanding of neural network mappings [39], coupled with
the difficulty in verification and validation for complex deep neural network based models [20], can
lead to unforeseen consequences. Overconfidence for out-of-distribution examples also demonstrate
the need for deep learning models to acknowledge whether a given prediction is to be trusted or not.
For deep neural nets to be integrated into the physics measurement process, such characteristics of
deterministic neural networks must be addressed by an effective method for uncertainty quantification.

As demand for UQ gradually escalated in domains such as automated driving and medicine, UQ
methods diversified into a variety of different approaches under the cognomen of Bayesian Deep
Learning (BDL), but with scarce substantial application in the physical sciences. Moreover, most
BDL methods have been benchmarked on oversimplified datasets (MNIST, CIFAR10), which are
not representative of the complexity of physics data analysis process. Modern accelerator neutrino
experiments such as ICARUS and DUNE provide ideal grounds for testing the efficacy of BDL in UQ,
due to its recent adaptation and moderate success of deep learning based analysis techniques. The
benefit derived from a detailed assessment of different UQ algorithms on a complex, multi-objective
task such as LArTPC data analysis is two-fold and symbiotic: allow practitioners in machine learning
to evaluate BDL’s applicability in a real-world setting and enable physicists to design neural network
that produce well justified uncertainty estimates for rejecting erroneous predictions and detecting
out-of-distribution instances.

In this paper, we select different approaches for quantifying uncertainties in deep learning, and
evaluate them with respect to critical intermediate analysis tasks: particle classification and semantic
segmentation. We consider three UQ methods—model ensembling, Monte Carlo Dropout [14]], and
Evidential Deep Learning [34} 6] (EDL)—and evaluate them on single particle classification, semantic
segmentation, and multi-particle classiﬁcationﬂ Using sparse convolutional neural networks provided
by the MinkowskiEngine [8]] library, we build a ResNet [19] type convolutional image classifier
as a backbone network for single particle classification. For semantic segmentation, we employ
the UResNet [31} [9] architecture with minor modifications in line with [22]]. For multi-particle
classification, we model the task by a combination of a graph neural network with node vectors
defined by geometric features extracted from particles. In evaluating uncertainty quantification fidelity,
we focus on two aspects: calibration and sensitivity to classification errors. For calibration, we use
the standard tools of reliability curves and expected calibration error [27} 28] to compare different
models. For mis-classification sensitivity, the different UQ methods are assessed by measuring the
area under the receiver operating characteristic curve (AUROC) and the 1-Wasserstein distance [29]]
between the correctly and incorrectly predicted distributions.

2 Methods of Uncertainty Quantification in Deep Learning

Among numerous models and studies on uncertainty-quantifying neural networks [[1,/36], we focus on
methods designed for multi-class classification tasks that require minimal changes to popular neural
network architectures. In this paper, we consider three class of UQ methods: model ensembling [24],
Monte Carlo Dropout (MCD) [13]], and Evidential Deep Learning (EDL) [33}5]].

For the following discussion, let X = {z(), 2 . 2™} and Y = {yM), y@ .. ¢y} be data
and labels in the training set, and let X = {z() z® . iM}and ¥ = {gM, 5@, .. )}
denote the test set. A neural network fy, parametrized by weights 6, is trained on Dyy.qin =
{(2M,yM), ..., (™) yM))}, with logits given by 2* = fp(z*;X,Y) and labels §* =

argmax,.(fo(z*; X, Y )1, ..., fo(x*; X, Y).), for some 2* € X* C X.

'Single particle classification refers to image classification with samples that contain only one isolated
particle instance. In Multi-particle classification, each image contains one or more particle instances from
(possibly) different classes, and the model is trained to predict class labels for all particles that populate a given
image.



2.1 Ensembing Methods

Model ensembling [[11] in the context of deep learning models refers to the method of training
multiple instances of the same architecture with different random initialization seeds. In Naive
Ensembling (NE), one trains each member of the ensemble on the same training dataset, resulting
in N networks with identical architecture but different parameter values. Often, to achieve better
generalization and stability, Bootstrapped Ensembling (BE) (or bagging) is preferred over naive
ensembling. This is done by training each ensemble member on a dataset reorganized by sampling N
examples from the full training set with replacement. If the size of the resampled dataset is equal
to that of the original training set, each ensemble member is expected to see approximately 63% of
the original training set. For classification, it is standard to use the most common label among the
ensemble members as the final prediction, while for regression one usually computes the empirical
mean. When an ensemble consists of a collection of neural networks trained with respect to a proper
scoring rule [15] and often coupled with an optional adversarial training routine, the ensemble is
termed deep ensembles [24]].

Ensemble methods are the one of the simplest UQ methods that require no additional changes to the
underlying model architecture, although the high computational cost in training N architecturally
identical models and performing /N forward passes for one prediction often renders them inapplicable
for some memory or time consuming tasks.

2.2 Monte Carlo Dropout

Monte-Carlo Dropout is a bayesian technique introduced in [13]], where one approximates the
network’s posterior distribution of class predictions by collecting samples obtained from multiple
forward passes of dropout regularized networks. Dropout regularization [35] involves random
omissions of feature vector dimension during train time, which is equivalent to masking rows of
weight matrices. Inclusion of dropout layers mitigates model overfitting and is empirically known
to improve model accuracy [35]. A key observation of [13] is that under suitable assumptions on
the bayesian neural network prior and training procedure, sampling NV predictions from the BNN’s
posterior is equivalent to performing IV stochastic forward passes with dropout layers fully activated.
This way, the full posterior distribution may be approximated by monte-carlo integration of the
posterior softmax probability vector p(5* | *; X,Y):

T
~ sk * 1 *
P |25 X Y) = & ) Softmax(fy, (z7: X, Y)), (1)

t=1

where 7" denotes the number of stochastic forward passes. As with ensembling methods, the final
prediction of MCDropout for classification is given by the majority vote among all stochastic forward
passes. As evident from the apparent similarities, MCDropout networks may also be interpreted
as a form of ensemble learning [35]], where each stochastic forward pass corresponds to a different
realization of a trained neural network.

Implementing MCDropout requires one to modify the underlying neural network architecture to
include dropout layers and configuring them to behave stochastically during test time. Often the
location of dropout layers can critically affect prediction performance, and for convolutional neural
networks the decision is made via trial-and-error [21]. Also, for memory intensive tasks such as
semantic segmentation, sample collection by multiple forward passes can accumulate rapidly towards
high compuational cost, similar to ensembling methods.

2.3 Evidential Deep Learning

Evidential Deep Learning (EDL) [33} S]], refers to a class of deep neural networks that exploit conju-
gate prior relationships to model the posterior distribution analytically. For multi-class classification,
the distribution over the space of all probability vectors p = (py, ..., p.) is modeled by a Dirichlet
distribution with ¢ concentration parameters o = aq, ..., a:
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where «; > 1 for all i, B(-) denotes the c-dimensional multinomial Beta function, and p is in the
c-unit simplex S.:

SC:{VE]RC:Zvizl}. (3)
=1

In constrast to deterministic classification neural networks that minimize the cross-entropy loss by
predicting the class logits, evidential classification networks predict the concentration parameters
a = (ai, ..., a.). The expected value of the k-th class probability under the distribution D(p | «) is
then given analytically as

o .
Pr= o, S ;:1 o' 4

To estimate the concentration parameters, several distinct loss functions are available as training
criteria. The marginal likelihood loss (MLL) is given by:

Layrr(f) = —log (/HP?D(I) | @) dp)~ 4)
i=1

The Bayes risk (posterior expectation of the risk) of the log-likelihood (BR-L) formulation yields:
Lpr(0) = / [Z —ylog (m)} D(p | ) dp. (6)
i=1

The Bayes risk of the Brier score (BR-B) may also be used as an alternative optimization objective:
2
Los(t) = [ lly - pll; Do | ) dp, ™

From Sensoy et. al. [33]], analytic integration of the aforementioned loss functions give closed form
expressions that are suited for gradient based optimization of the parameters 6.

EDL methods have the immediate advantage of requiring only one single pass to access the full
posterior distribution, at a price of restricting the space of posterior functions onto the appropriate
conjugate prior forms. Also, EDL methods only require one to modify the loss function and the
final layer of its deterministic baseline (if necessary), which allows flexible integration with complex,
hierarchical deep neural architectures similar to the full LATPC reconstruction chain. However,
due to the strong assumptions made on the posterior analytical form, EDL methods are limited to
classification and regression tasks as of now. As we later observe, EDL methods generally fall short
on various UQ evaluation metrics compared to ensembling and MCDropout, depending on task
specifics.

3 Evaluating Uncertainty Quantification Methods

3.1 Evaluation Metrics

As stated in [24], the goal of uncertainty quantifying models is two-fold: to achieve better alignment
of predicted confidence probability with their long-run empirical accuracy and to serve as mis-
classification or out-of-distribution alarms that could be used for rejecting unconfident predictions.
The first condition, which we term calibration fidelity, may be evaluated by plotting the reliability
diagrams [177]] constructed by binning the predicted probabilities (often termed confidence) into equal
sized bins and plotting the bin centers in the x-axis and the empirical accuracy of the bin members in
the y-axis. The closer the reliability diagram is to the diagonal, the more desirable a given classifer
is, in the sense of calibration fidelity. The deviation of a given classifier from the diagonal could be
summarized by computing the adaptive calibration error (ACE) [28]:

11 KR
ACE = %R Z Z lacc(r, k) — conf(r,k)|. ®)
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Here, K denotes the number of unique classes and R denotes the number of equal-sample bins
used to plot the reliability diagram for class k, given by confidence con f(r, k) and corresponding
empirical accuracy acc(r, k). Although the expected calibration error (ECE) [27] is more widely
known, we observed in practice that static binning schemes such as ECE is suboptimal for highly
skewed predictive probability distributions common to accurate models.

As calibration fidelity measurements using reliability diagrams are originally designed for binary
classifiers, there has been numerous proposals for their extensions to multi-class classifiers [16}137,138]].
We consider two relatively simple methods; the first is a standard used in Guo et. al. [16], where
only the predicted probability for the most confident prediction of each sample is used to plot the
reliability diagram. We refer to this mode of assessment as max-confidence calibration fidelity. An
alternative method is to evaluate calibration for each of the K classes separately, as in B. Zadrozny
and C. Elkan [38]]. We refer to this mode as marginal calbiration fidelity.

Another metric of uncertainty quantification measures the model’s discriminative capacity to mis-
classified or out-of-distribution samples. In practice, uncertainty quantification models have the
capacity to reject predictions based on a numerical estimate of the trustworthiness of the prediction in
question. For example, in a classification setting the entropy of the predicted softmax probability
distribution (predictive entropy) could be used as a measure of confusion, as entropy is maximized if
the predictive distribution reduces to a uniform distribution over K classes. In this construction, it is
desirable to have the predicted entropy distributions of correctly and incorrectly classified samples to
be as separated as possible. To compute the extent of distributional separation, we may use the first
Wasserstein distance [30] between the predictive entropy distributions:

Wi(u,v) = inf / |z — y| dr(z,y). 9)
m€l(u,v) JRxR

where v and v are two probability distributions, I'(u,v) is the set of all joint probability mea-

sures in R2. We use the Wasserstein distance with the L1 metric due to its simple computational

implementation [30].

Discriminative capacity may also be measured by computing the area under the receiver operating
characteristic curve (AUROC), also known as the concordance statistic (c-statistic) [[18]]. Using
predictive entropy as the thresholding value, the ROC curve is constructed by plotting the false
positive rate (incorrect predictions) in the x-axis and the true positive rate (correct predictions) in
the y-axis at different threshold levels. In this setting, the AUROC is the probability that a randomly
chosen correct prediction will have a lower predictive entropy than that of a randomly chosen incorrect
prediction [12].

4 Datasets and Network Architectures

Single Particle Classification: We first implement and assess the different UQ models on the simpler
task of single particle classification. The single particle dataset consists of 1024 x 1024 x 1024
3D images each containing only one particle, where all voxels in the given image belong to the
same particle ID. The 3D images have one feature dimension corresponding to the amount of energy
deposited in a one-voxel equivalent region of the detector. We use a ResNet [19] type encoder with
dropout [35]] regularization, where convolution operations are substituted by sparse convolutions
implemented in the MinkowskiEngine library [7]]. For standard deterministic models, ensembles, and
MCDropout, the final prediction probabilities are given by softmax activations, whereas for evidential
models the concentration parameters o are computed from Softplus [40] activations. The single
particle dataset contains five particle classes: photon showers (), electron showers (e), muons (1),
pions (1), and protons (p).

Semantic Segmentation As segmentation is a classification task on individual pixels, the details
of the implementation are mostly identical to those of single particle classification. We employ
Sparse-UResNet [[10] with dropout layers in the deeper half of the network as the base architecture for
semantic segmentation networks and use the 768px resolution PILArNet [4] MultiPartRain (MPR)
and MultiPartVertex (MPV) datasets for multiple particle datasets. The five semantic labels provided
by PiLArNet consists of the following:

» Shower Fragments: connected components of electromagnetic showers that are above a set
voxel count and energy deposition threshold.
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Figure 1: Sparse-CNN architecture for single particle and segmentation neural networks.

c. Multi Particle Classification & Momentum Estimation
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Figure 2: Architecture outline of multi-particle classification network. The geometric node encoder
extracts hand-engineered features relevant to particle classification, such as orientation matrix and
major PCA axes.

* Tracks: particle trajectories that resemble stright lines, mostly originating from muon, pion,
and protons.

Michel Electrons: an electron produced by muon decay at rest.
* Delta Rays: electrons produced from muon tracks via hard scattering

* Low Energy Depositions: cloud of low energy depositions of electromagnetic showers
which are not labeled as shower fragments.

Multi Particle Reconstruction The MPV/MPR dataset also contains particle type labels for each
particle instance in a given image. For multi particle classification, we take each cluster of voxels that
belong to the same particle and reduce the resulting groups of point cloud into 1-dimensional feature
vectors. The node embeddings of each particle consists of geometric features such as its principal
component vectors. These feature vectors are then given as input node features to a graph neural
network, which performs three message passing operations to incorporate inter-particle relational
information.



5 Results

5.1 Training Details

The training set consists of 80k images, and the test set were separated to a 2k validation set used for
model selection and a 18k test set used for selected model evaluation with high statistics. All models
were trained until the validation accuracy plateaued, and the network weights that achieved the
highest validation accuracy were selected for further evaluation on a separate test set. To fully account
for possible variations in model accuracy and uncertainty quantification quality due to randomized
factors such as parameter initialization, the model selection procedure were repeated for five different
random seeds for each model. This results in five independently trained models that share the same
architecture but differing in parameter values. We used the Adam optimizer [23]] with decoupled
weight decay [23].

5.2 Single Particle Classification

Figure 3| shows the predictive entropy distribution, accuracy, and the W distance for single particle
classification models. We observe that the distributional separation as measured in W7 is largest
for the ensemble methods, while evidential model trained on the Brier score is also competitive. In
general, ensemble methods achieve highest accuracy with better distributional separation compared
to monte-carlo dropout and evidential models. The AUROC values in figure[9]also reflect the superior
discriminative capacity of ensembling.

The calibration curves for single particle classification is shown in the top row of figure [I2] and
figure ] illustrates the adaptive calibration error (ACE) values across different subsets of the test set
partitioned by true particle id labels. While all UQ models with the possible exception of EDL-BR-B
achieve better calibration compared to standard deterministic neural networks, ensembling methods
have the least max-confidence and marginal ACE values.
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Figure 3: Uncertainty quantification for single particle classification.

5.3 Semantic Segmentation

For segmentation, the best distributional separation is achieved by evidential models, which are
evident in Figured] The ensemble methods have the highest accuracy and AUROC scores (Figures
[TT). It is interesting to note that while distributional separation measured in W is greatest for
evidential models, the calibration fidelity falls short even with respect to standard deterministic
models. As with single particle classification, the best calibration fidelity is realized by ensemble
methods. The reliability plots for semantic segmentation is shown in Figure[T3]

5.4 Multi Particle Reconstruction

Since contextual information which are useful in determining a given particle’s ID can only be used in
a multi-particle setting, we expect a gain in accuracy from the single particle datasets. This approach
leads to an overall approximate 5% increase in classification accuracy in all models. Again, ensemble
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Figure 4: Uncertainty quantification for Semantic Segmentation.

methods provide the highest 1¥; distance, overall accuracy, and AUROC values (figures 8] [T0) and

the best calibration fidelity (figure [6).
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Figure 8: Uncertainty quantification for Multi Particle Classification with GNNss.

o754

09504

09254

09004

Accuracy

0.842

08754

True Positive Rate

—}— Deterministic
—}— Naive Ensembles

—3— Bootstrapped Ensembles
—4— MCDropout

—3— EDLMLL

—}— EDL Bayes Risk g
—}— EDL Brier

0850
0.827
o

08254

08004

o8 10 o7 o075 0B 085

DVZ DVA Dva OVE 0‘1 0'6
Percentage of Data Rejected by Uncertainty False Positive Rate AUROC

Figure 9: Single particle ROC and percentage rejection curves.

098

Accuracy

True Positive Rate

Deterministic

Naive Ensembles
Bootstrapped Ensembles
EDL MLL

EDL Bayes Risk

EDL Brier

g

) 10 050

) 04 06 08 04 00
Percentage of Data Rejected by Uncertainty False Positive Rate

Figure 10: Multi particle ROC and percentage rejection curves.



10000 10
09975
08
09950
° -.u.
09925 S
3 o
g £
5 090 =
3
g 4
o
—4— Deterministic
09850
0 —4— Naive Ensembles
—4— Bootstrapped Ensembles
09625 —§— MCDropout
—4— EDLMLL
—§— EDL Bayes Risk [}
09800 00 4~ EDL Brier
) ) i) ) s o o oz 0 ) ) B o%0 0% 0%
Percentage of Data Rejected by Uncertainty False Positive Rate
Figure 11: Semantic segmentation ROC and percentage rejection curves.
D i —— Naive — —— MCDropout —— EDLMLL ~—— EDL Bayes Risk EDL Brier
Max Confidence Reliability Photon Marginal Reliability (y) Electron Marginal Reliability (e) Muon Marginal Reliability (1) Pion Marginal Reliabity () Proton Marginal Reliability (p)
1o
2.,
Q
% 06-
>
Fos
H
Bz
<
00,
1o
E
Q
Los
H
Goz
<
00,

%0 o0z as 05 o8 G 02 os a5 o8 o0 oz o4 05 o8 G0 0z as 08 o8 00 0z os 05 o8 %0 o0z as 05 o8
Predicted Probability Predicted Probability Predicted Probability Predicted Probability Predicted Probability Predicted Probability
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6 Discussion

We evaluated three different uncertainty quantification methods for deep neural networks on the task
of single particle classification, multi-particle classification, and semantic segmentation using high
resolution 3D LArTPC energy deposition images. The various metrics evaluating calibration fidelity
and discriminative capacity leads to a notable conclusion: simple ensembling of few independently
trained neural networks generally achieve highest accuracy and best calibration of output probability
values. Also, we observe that the quality of uncertainty quantification depends greatly on the
type of the classifier’s task, and often it is possible for bayesian models to perform worse than
deterministic networks in calibration. While out-of-distribution and mis-classification resilience
of uncertainty quantifying neural nets may be used for rejecting unreliable predictions, obtaining
calibrated probability estimates would provide further credibility in using deep learning techniques
for physical sciences. Future work will focus on model-independent, post-hoc calibration methods
such as temperature scaling [16].
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