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The Neural Tangent Kernel (NTK), defined as the outer product of the neural network (NN) Jaco-
bians, Θθ(x1, x2) =

[
∂f(θ, x1)

/
∂θ
] [
∂f(θ, x2)

/
∂θ
]T

, has emerged as a central object of study
in deep learning. However, it is notoriously expensive to compute, severely limiting its practical
utility. We perform the first in-depth analysis of the compute and memory requirements for NTK
computation in finite NNs. Leveraging their structure, we propose two novel algorithms that change
the exponent of the compute and memory requirements of the finite width NTK, dramatically im-
proving efficiency in a wide range of NN architectures on all hardware platforms. We open-source
[github.com/iclr2022anon/fast finite width ntk] our two algorithms as general-purpose JAX func-
tion transformations that apply to any differentiable computation and introduce no hyperparameters.

Notation. Consider a NN f(θ, x) ∈ RO with O outputs (logits) per input x and and a total number
P of trainable parameters θ = vec

[
θ0, . . . , θL], with each θl of size Pl, P =

∑L
l=0 Pl. Also assume

the network has K intermediate pre-activations yk of size Yk each, Y =
∑K
k=1 Yk. The NTK is

Θθ︸︷︷︸
O×O

:=
∂f(θ, x1)

∂θ︸ ︷︷ ︸
O×P

∂f(θ, x2)

∂θ

T

︸ ︷︷ ︸
P×O

=

L∑
l=0

∂f(θ, x1)

∂θl︸ ︷︷ ︸
O×Pl

∂f(θ, x2)

∂θl

T

︸ ︷︷ ︸
Pl×O

(1)

We denote FP to be the (time or memory, depending on the context) cost of a single forward pass
f(θ, x). For memory, we exclude the cost of storing all P weights in memory, but rather define
it to be the cost of evaluating f one JAX [1] primitive yk at a time, amounting to no more than
maxl Pl + maxk Yk, which we denote as simply Pl + Yk for brevity. Finally, we will consider x1
and x2 to be batches of N inputs each, in which case the NTK will be a NO× NO matrix.

Jacobian-vector products (JVP) and vector-Jacobian products (VJP). We define

JVP(f,θ,x) : θt ∈ RP 7→ ∂f (θ, x)

∂θ
θt ∈ RO; VJP(f,θ,x) : fc ∈ RO 7→ ∂f (θ, x)

∂θ

T

fc ∈ RP. (2)

In JAX the time cost of both is comparable to FP. The memory cost of a JVP is FP as well, while the
memory cost of a VJP is generally Y + P, since it requires storing all K intermediate pre-activations
for efficient backprop and all L output cotangents. However, for the purpose of computing the NTK,
we never need to store the whole Jacobian ∂f/∂θ, but only individual cotangents like ∂f/∂θl to
compute the sum in Eq. (1). Hence we consider VJP to cost Y + Pl memory. Finally, for a batch of
N inputs x, JVP and VJP cost N [FP] time; N [FP] + P and N

[
Y + Pl

]
+ P memory respectively.

Jacobian. For NNs, the Jacobian ∂f/∂θ is most often computed via O VJP calls on rows of the
identity matrix IO, i.e. costs O [VJP] time and memory less network weights and pre-activations that

can be reused across VJP calls, resulting in NO [FP] time and NO
[
Yk + Pl

]
+ NY + P memory.

1 Jacobian contraction

This baseline method of evaluating the NTK consists in computing the Jacobians ∂f/∂θ
and contracting them as in Eq. (1). The contraction costs N2O2P time and N2O2 +
NOPl memory. Adding up the cost of computing the Jacobian ∂f/∂θ we arrive at

Jacobian contraction: NO [FP] + N2O2P time; N2O2 + NO
[
Yk + Pl

]
+ NY + P memory.
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2 NTK-vector products – our first contribution

Consider the NTK-vector product function: ΘVP : v ∈ RO 7→ Θθv ∈ RO.Applying it to O columns
of the identity matrix IO allows to compute the NTK, i.e. ΘθIO = Θθ. Expand ΘVP(v) = Θθv as

∂f (θ, x1)

∂θ

∂f (θ, x2)

∂θ

T

v =
∂f (θ, x1)

∂θ
VJP(f,θ,x2) (v) = JVP(f,θ,x1)

[
VJP(f,θ,x2) (v)

]
, (3)

where we have observed that the NTK-vector product can be expressed as a composition of a JVP
and a VJP. The cost of computing Θθ is then equivalent to the cost of Jacobian, since it consists of O
VJPs followed by O (cheaper) JVPs, therefore O [FP] time and O

[
Yk + Pk

]
+ Y + P memory. In

the batched setting Eq. (3) is repeated for each pair of inputs, and therefore time increases by a factor
of N2 to become N2O [FP]. However, the memory cost grows linearly in N (except for the cost of
storing the NTK of size N2O2), since intermediate pre-activations and tangents/cotangents necessary
to compute the JVP and VJP can be computed for each batch x1 and x2 separately, and then reused
for every pairwise combination. Therefore memory cost is equivalent to Jacobian, and we arrive at

NTK-vector products: N2O [FP] time; N2O2 + NO
[
Yk + Pl

]
+ NY + P memory.

3 Structured derivatives – our second contribution

Rewrite Θθ from Eq. (1) using the chain rule and pre-activation y notation:

Θθ =
∑
l,k1,k2

(
∂f1

∂yk11

∂yk11
∂θl

)(
∂f2

∂yk22

∂yk22
∂θl

)T
=
∑
l,k1,k2

∂f1

∂yk11

∂yk11
∂θl

∂yk22
∂θl

T
∂f2

∂yk22

T

, (4)

where fi = f(θ, xi), and we only consider ∂ykii /∂θ
l to be non-zero if θl is a direct input to ykii .

Both Jacobian contraction and NTK-vector products perform this sum of contractions, albeit implic-
itly via VJPs and JVPs, without explicit instantiation of primitive Jacobians ∂y/∂θ. However, while
VJPs and JVPs themselves are guaranteed to be computationally optimal, higher order computations
like their composition (NTK-vector products) or contraction (Jacobian contraction) are not. The idea
of Structured derivatives is to design rules for efficient computation of such contractions, similarly
to how JAX and other AD packages have rules for JVPs and VJPs.

Specifically, our rules identify a few simple types of structure (e.g. block diagonal, constant-block
diagonal, tiling) in ∂yki

/
∂θl, that allow us to simplify the contraction in Eq. (4). In practice this

amounts to replacing the inner terms ∂yk11
/
∂θl and ∂yk22

/
∂θl with (much) smaller subarrays and

modifying the contraction. In §E we provide specific descriptions of our rules and their impact on
the computational complexity of Eq. (4). Notably, the contraction is never slower than Jacobian
contraction, and is at most N2O2 min [Y,P] . For a simple concrete example, see §I.4.

The remaining cost to compute the factors ∂fi/∂y
ki
i , and ∂ykii /∂θ

l depends on the specific
pair of primitives yk11 and yk22 , but is generally similar to the cost of Jacobian except for (1)
we don’t need to compute and store NO final weight space cotangents ∂fi/∂θl, but (2) we
do have to instead process N small subarrays of primitive Jacobians ∂ykii /∂θ

l, which we con-
sider to cost Jkil . We summarize generic cost estimates below and in Table 1, and show
next that they end up beneficial (asymptotically and practically) in most common settings.
NO [FP] + N2O2 min [Y,P] + N [J−OP] time; N2O2 + NOYk + NJkl + NY + P memory.

Application to FCNs and CNNs. We consider K = L-layer CNNs with channel count W, pixel
count D, filter size F, and global average pooling before the top FC layer. Plugging Pl = FW2

(OW for k = K), Yk = DW (O for k = K), FP = LDFW2 + OW, Jkl = DFW (W for k = K;
convolutions amd matrix multiplications have the Constant block-diagonal structure – see §E.3) we
arrive at Table 2. For FCNs we simply put D = F = 1, and obtain Table 3 (and Fig. 1, Fig. 3).
Notably, in both cases Structured derivatives are asymptotically better than Jacobian contraction in
time and memory, under a mild condition of D ≤ OW. Finally, we also confirm that our methods
are practically beneficial in a much wider set of operations used by contemporary ImageNet models
in Fig. 2 and Fig. 4.
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Method Time Memory Use when
Jacobian contraction N O [FP] + N2O2P N2O2 + NO

[
Yk + Pl

]
+ NY + P P < Y, small O

NTK-vector products N2O [FP] N2O2 + NO
[
Yk + Pl

]
+ NY + P FP < OP, large O, small N

Structured derivatives N O [FP] + N2O2 min [Y,P] + N [J−OP] N2O2 + NOYk + NJkl + NY + P FP > OP, large O, large N

Table 1: Generic NTK computation cost..NTK-vector products trade-off contractions for more
FP. Structured derivatives make the contraction cheaper, and usually also reduce memory.

Method Time Memory Use when
Jacobian contraction N O

[
LDFW2 + OW

]
+ N2O2

[
LFW2 + OW

]
N2O2 + NO

[
DW + FW2 + OW

]
+ N [LDW] +

[
LFW2 + OW2

]
D > OW

NTK-vector products N2O
[
LDFW2 + OW

]
N2O2 + NO

[
DW + FW2 + OW

]
+ N [LDW] +

[
LFW2 + OW2

]
N = 1

Structured derivatives N O
[
LDFW2 + OW

]
+ N2O2

[
L min(FW2,DW) + O

]
N2O2 + NO [DW] + NDFW + N [LDW] +

[
LFW2 + OW2

]
D < OW

Table 2: CNN NTK computation cost. Structured derivatives reduce time complexity, and have
lower memory cost if D < OW, which is a common setting.

Method Time Memory Use when
Jacobian contraction N2O2LW2 N2O2 + NOW2 + NLW + LW2 Don’t
NTK-vector products N2OLW2 + N2O2 W N2O2 + NOW2 + NLW + LW2 O > W or N = 1
Structured derivatives N OLW2 + N2O2LW N2O2 + NOW + NLW + LW2 O < W or L = 1

Table 3: FCN NTK computation cost. NTK-vector products allow a reduction of the time complex-
ity, while Structured derivatives reduce both time and memory complexity. For brevity O = O(LW)
is assumed in this table.
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Figure 1: FLOPs (left) and wall-clock time (right) of computing the NTK for a 10-layer ReLU
FCN. As predicted by Table 3, our methods almost always outperform Jacobian contraction, allow-
ing orders of magnitude speed-ups and memory improvements (missing points are out-of-memory).
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Figure 2: Wall-clock time cost of computing an NTK for several ResNet sizes on a pair of
ImageNet inputs. Structured derivatives allow the NTK to be computed faster and for larger models
(see bottom row – missing points indicate out-of-memory error). NTK-vector products, as predicted
by Table 1, are advantageous for large O (bottom row), but also scale worse with FP than other
methods, which is especially noticeable in CNNs.
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prier, and Patrick Gallinari. A neural tangent kernel perspective of gans. arXiv preprint
arXiv:2106.05566, 2021.

[27] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining
neural scaling laws. arXiv preprint arXiv:2102.06701, 2021.

[28] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. NeurIPS, 2020.

[29] Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli
Yu. Harnessing the power of infinitely wide deep nets on small-data tasks. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
rkl8sJBYvH.

[30] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. arXiv preprint arXiv:2011.00050, 2020.

[31] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with
infinitely wide convolutional networks. arXiv preprint arXiv:2107.13034, 2021.

[32] Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the
neural tangent kernel. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
0b1ec366924b26fc98fa7b71a9c249cf-Abstract.html.

[33] Ben Adlam, Jaehoon Lee, Lechao Xiao, Jeffrey Pennington, and Jasper Snoek. Exploring
the uncertainty properties of neural networks’ implicit priors in the infinite-width limit. In
International Conference on Learning Representations, 2020.

5

https://openreview.net/forum?id=rkl8sJBYvH
https://openreview.net/forum?id=rkl8sJBYvH
https://proceedings.neurips.cc/paper/2020/hash/0b1ec366924b26fc98fa7b71a9c249cf-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0b1ec366924b26fc98fa7b71a9c249cf-Abstract.html


[34] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems, pages 8141–8150. Curran Associates, Inc., 2019.

[35] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural net-
works in python. In International Conference on Learning Representations, 2020. URL
https://github.com/google/neural-tangents.

[36] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 1126–1135. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/finn17a.html.

[37] Yufan Zhou, Zhenyi Wang, Jiayi Xian, Changyou Chen, and Jinhui Xu. Meta-learning with
neural tangent kernels. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Ti87Pv5Oc8.
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Appendix

A Additional figures
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Figure 3: Wall-clock time of computing NTK of a 10-layer ReLU FCN on different platforms.
In all settings, Structured derivatives allow orders of magnitude improvement in wall-clock time
and memory (missing points indicate out-of-memory error). However, we remark that on GPU
platforms (right), NTK-vector products deliver a robust improvement only for large O (rightmost
column), while for O = 16 the cost is comparable or even larger than Jacobian contraction. See
Fig. 1 for FLOPs and TPUv3 platform. See §K for details.
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Figure 4: Wall-clock time per input pair of computing NTK on various ImageNet models like
Vision Tansformers and hybrids [2, 3], WideResNets [4] and MLP-Mixers [5].
Structured derivatives generally allow fastest computaiton, but are also able to process more models
due to lower memory requirements (lower left; missing points indicate out-of-memory error). For
the case of single output logit O = 1 (top row), NTK-vector products are generally detrimental
due to costly forward pass FP relative to the size of parameters P (i.e. a lot of weight sharing; see
Table 1). However, since NTK-vector products scale well with output size, for O = 1000 (bottom
row), they perform comparably or better than other methods.
Finally, we remark that Jacobian not only runs out of memory faster, but can also take more time to
compute. We conjecture that due to a larger memory footprint, XLA can sometimes perform opti-
mizations that trade off speed for memory, and therefore compute the Jacobian in a less optimal way
than if it had more memory available. Alternatively, XLA could also be performing simplifications
of the NTK expression in these cases, such that those would not be possible in Jacobian computation
alone.
See Fig. 2 for ResNets, and §K for details.
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Figure 5: Notation used in main text, §I (FCN, top) and §J (CNN, bottom). For FCN, D = F = 1.
For CNN, D = 8, F = 3, and the penultimate layer is global average pooling.
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B Glossary

• N - batch size of inputs x to the NN f (θ, x). In a more general setting (§E), the number of
functions f(θ).

n - batch indices ranging from 1 to N.

• O - output size (e.g. number of logits) of the NN f (θ, x) for a single (N = 1) input x.

• The NTK matrix has shape NO× NO.

• W - width of an FCN, or number of channels of a CNN. Individual inputs x are usually
assumed to have the same size / number of channels.

• L - depth of the network, number of layers. In a more general setting, number of trainable
parameter matrices, that are used in a possibly different number of subexpressions in the
network.

l - depth index ranging from 0 to L.

• K - number of subexpressions (primitives, nodes in the computation graph) of the network
f(θ, x). For NNs without weight sharing, K = L.

k - subexpression index ranging from 1 to K.

• D - total number of pixels (e.g. 1024 for a 32 × 32 image; 1 for an FCN) in an input and
every intermediate layer of a CNN ( SAME or CIRCULAR padding is assumed, to consider
the spatial size unchanged from layer to layer).

• F - total filter size (e.g. 9 for a 3× 3 filter; 1 for an FCN) in a convolutional filter of a CNN
(no striding and dilation is assumed for simplicity).

• Y - total size of a pre-activation / primitive / subexpression y (e.g. Y = DW for a layer
with D pixels and W channels; Y = W for FCN). Depending on the context, can represent
size of a single or particular pre-activation in the network, or the size of all pre-activations
together.

• C - in §E, the size of the axis along which a subexpression derivative ∂y
/
∂θ admits certain

structure (C can often be equal to Y or a significant fraction of it, e.g. W).
c - index along the structured axis, ranging from 1 to C.

• P - total size of trainable parameters. Depending on the context, can represent the size of a
particular weight matrix θl in some layer l (e.g. W2 for width-W FCN), or the size of all
parameters in the network.

• FP - forward pass, cost (time or memory, depending on the context) of evaluating f(θ, x)
on a single (N = 1) input x.

• If a variable is present in complexity analysis with an index such as k or l, it is considered
to be the maximum over that index, e.g. Yk = maxk Yk. This is used in Table 1, Table 2,
and Table 3.

• Jkl is the cost of evaluating a single primitive Jacobian ∂yk/∂θl, given the structure present
in yk according to §E.

C Motivation

The past few years have seen significant progress towards a theoretical foundation for deep learn-
ing. Much of this work has focused on understanding the properties of random functions in high
dimensions. One significant line of work [6–12] established that in the limit of infinite width, ran-
domly initialized Neural Networks (NNs) are Gaussian Processes (called the NNGP). Building on
this development, [13] showed that in function space the dynamics under gradient descent could
be computed analytically using the so-called Neural Tangent Kernel (NTK) and [14] showed that
wide neural networks reduce to their linearization in weight space throughout training. A related
set of results [15, 16] showed that the ubiquitous bias-variance decomposition breaks down as high-
dimensional models enter the so-called interpolating regime. Together these results describe learning
in the infinite-width limit and help explain the impressive generalization capabilities of NNs.

Insights from the wide network limit have had significant practical impact. The conditioning of
the NTK has been shown to significantly impact trainability and generalization in NNs [17–19].
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This notion inspired initialization schemes like Fixup [20], MetaInit [21], and Normalizer Free
networks [22, 23] and has enabled efficient neural architecture search [24, 25]. The NTK has addi-
tionally given insight into a wide range of phenomena such as: behavior of Generative Adversarial
Networks [26], neural scaling laws [27], and neural irradiance fields [28]. Kernel regression using
the NTK has further enabled strong performance on small datasets [29], and applications such as
dataset distillation [30, 31] and uncertainty prediction [32, 33].

Despite the significant promise of theory based on the NTK, computing the NTK in practice is chal-
lenging. In the infinite-width limit, the NTK can sometimes be computed analytically. However,
it remains intractable for many architectures, and finite-width corrections can be important to de-
scribe actual NNs used in practice. The NTK can be computed for finite-width networks as the
outer-product of Jacobians using forward- or reverse-mode automatic differentiation,

Θθ(x1, x2) =
[
∂f(θ, x1)

/
∂θ
] [
∂f(θ, x2)

/
∂θ
]T
. (5)

However, as we have shown in §I.3, this is often infeasible due to computational and memory re-
quirements, and our work presents techniques that improve both.

D Related Work

The finite-width NTK (denoted as simply NTK throughout this work) has been used extensively
in many recent works, but to our knowledge implementation details and compute costs were rarely
made public. Below we draw comparison to some of these works, but we stress that it only serves as
a sanity check to make sure our contribution is valuable relative to the scale of problems that have
been attempted (none of these works had efficient NTK computation as their central goal).

In order to compare performance of models based on the NTK and the infinite-width NTK, Arora
et al. [34, Table 2] compute the NTK of up to 20-layer, 128-channel CNN in a binary CIFAR-2
classification setting. In an equivalent setting with the same hardware (NVIDIA V100), we are able
to compute the NTK of a 2048-channel CNN, i.e. a network with at least 256 times more parameters.

To demonstrate the stability of the NTK during training for wide networks, Lee et al. [14, Figure S6]
compute the NTK of up to 3-layer 212-wide or 1-layer 214-wide Fully Connected Networks (FCNs).
In the same setting with the same hardware (NVIDIA V100), we can reach widths of at least 214

and 218 respectively, i.e. handle networks with at least 16 times more parameters.

To investigate convergence of a WideResNet WRN-28-k [4] to its infinite-width limit, Novak et al.
[35, Figure 2] evaluate the NTK of this model with widening factor k up to 32. In matching setting
and hardware, we are able to reach the widening factor of at least 64, i.e. work with models at least
4 times larger.

To meta-learn NN parameters for transfer learning in a MAML-like [36] setting, Zhou et al. [37,
Table 7] replace the inner training loop with NTK-based inference. They use up to 5-layer, 200-
channel CNNs on MiniImageNet [38] with scalar outputs and batch size 25. In same setting we
achieve at least 512 channels, i.e. support models at least 6 times larger.

Park et al. [24, §4.1] use the NTK to predict the generalization performance of architectures in
the context of Neural Architecture Search [39, NAS]; however, the authors comment on its high
computational burden and ultimately use a different proxy. In another NAS setting, Chen et al. [40,
§3.1.1] use the condition number of NTK to predict a model’s trainability. Chen et al. [25, Table 1]
also use the NTK to evaluate the trainability of several ImageNet [41] models such as ResNet 50/152
[42], Vision Transformer [2] and MLP-Mixer [5]. However, in all of the above cases the authors only
evaluate a pseudo-NTK, i.e. an NTK of a scalar-valued function1, which impacts the quality of the
respective trainability/generalization proxy. In this work we can compute the full 1000×1000 NTK
on the same models, i.e. perform a task 1000 times more costly.

Finally, we remark that in all of the above settings, scaling up by increasing width or by working
with the true NTK (vs the pseudo-NTK) should lead to improved downstream task performance
due to better infinite-width/linearization approximation or higher-quality trainability/generalization
proxy respectively, which makes our work especially relevant to modern research.

1Precisely, computing the Jacobian only for a single logit or the sum of all 1000 class logits. The result is
not the full NTK, but rather a single diagonal block or the sum of its 1000 diagonal blocks (finite-width NTK
is a dense matrix, not block-diagonal).
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Structure of ∂y
/
∂θ ↓ Outside-in Left-to-right Inside-out

None w/ VJPs & JVPs: NO [FP] + N2O2P N2O [FP] Not possible
None w/ explicit matrices NOYP + N2O2P N OYP + N2O2Y N2Y2P + N2OY2 + N2O2Y
Block-diagonal NOYP/C + N2O2P N OYP/C + N2O2Y N2Y2P/C2 + N2OY2/C + N2O2Y
Constant block-diagonal NOYP/C + N2O2P N OYP/C + N2O2Y N2Y2P/C2 + N2OY2/C + N2O2Y
Input block-tiled NOYP/C + N2O2P N OYP/C + N2O2Y N2Y2P/C + N2OY2 + N2O2Y
Output block-tiled NOYP/C + N2O2P + NOY N OYP/C + N2O2Y/C + NOY N2Y2P/C2 + N2OY2/C2 + N2O2Y/C + NOY
Block-tiled NOYP/C2 + N2O2P/C + NOY N OYP/C2 + N2O2Y/C2 + NOY N2Y2P/C3 + N2OY2/C2 + N2O2Y/C + NOY

Table 4: Asymptotic time complexities of computing the contractions for NTK summands
Θ (fn1

1 , fn2
2 ) (θ0, . . . , θL)k1,k2l ∈ RO×O in Eq. (6), for all n1 and n2 from 1 to N (resulting in a

NO × NO NTK matrix). Time complexity of Structured derivatives is the minimum (due to using
np.einsum with optimal contraction order) of the row corresponding to the structure present in in

a pair of primitives yk11 and yk22 . How it compares to Jacobian contraction and NTK-vector prod-
ucts (top row) depends on many variables, including the cost of evaluating the primitive FP. See
Table 2 and Table 3 for exact comparison in the case of convolution and matrix multiplication. See
§B for legend.

E Types of structured derivatives

Here we continue §3 and list the types of structures in primitive derivatives ∂y
/
∂θ that allow linear

algebra simplifications of the NTK expression. Analysis from the following subsections is summa-
rized in Table 4.

E.1 No structure

We first consider the default cost of evaluating a single summand in Eq. (4), denoting individual
matrix shapes underneath:

Θl,k1,k2
θ (f1, f2) :=

∂f1

∂yk11

∂yk11
∂θl

∂yk22
∂θl

T
∂f2

∂yk22

T

=:

O×O︷ ︸︸ ︷
∂f1
∂y1︸︷︷︸
O×Y

∂y1

∂θ︸︷︷︸
Y×P

∂y2
∂θ

T

︸ ︷︷ ︸
P×Y

∂f2
∂y2

T

︸ ︷︷ ︸
Y×O

(6)

We have dropped indices l, k1 and k2 on the right-hand side of Eq. (6) to avoid clutter, and consider
θ := θl, y1 := yk11 , y2 := yk22 until the end of this section. There are 3 ways of contracting Eq. (6)
that cost

(a) Outside-in: OYP + O2P

(b) Left-to-right and right-to-left: OYP + O2Y.

(c) Inside-out-left and inside-out-right: Y2P + OY2 + O2Y.

In the next sections, we look at how these costs are reduced given certain structure in ∂y
/
∂θ.

E.2 Block-diagonal

Assume ∂y/∂θ = ⊕C
c=1∂y

c/∂θc, where ⊕ stands for direct sum of matrices, i.e. ∂y/∂θ is a block-
diagonal matrix made of blocks {∂yc/∂θc}C

c=1, where ∂yc/∂θc have shapes (Y/C)× (P/C). Here
{yc}C

c=1 and {θc}C
c=1 are partitions of y and θ respectively. In NNs this structure is present in binary

bilinear operations (on θ and another argument) such as multiplication, division, batched matrix
multiplication, or depthwise convolution. Then Eq. (6) can be re-written as
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Θl,k1,k2
θ (f1, f2) =

∂f1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f2
∂y2

T

(7)

=
∂f1
∂y1

(
⊕C
c=1

∂yc1
∂θc

)(
⊕C
c=1

∂yc2
∂θc

)T
∂f2
∂y2

T

(8)

=
∂f1
∂y1

(
⊕C
c=1

[
∂yc1
∂θc

∂yc2
∂θc

T
])

∂f2
∂y2

T

(9)

=

C∑
c=1

∂f1
∂yc1

[
∂yc1
∂θc

∂yc2
∂θc

T
]
∂f2
∂yc2

T

, (10)

where we have applied the block matrix identity

[A1, . . . , AC]T
(
⊕C
c=1B

c
)

[D1, . . . , DC] =

C∑
c=1

AcBcDc.

We now perform a complexity analysis similar to Eq. (6):

Θl,k1,k2
θ (f1, f2) =

C∑
c=1

O×O︷ ︸︸ ︷
∂f1
∂yc1︸︷︷︸

O×(Y/C)

∂yc1
∂θc︸︷︷︸

(Y/C)×(P/C)

∂yc2
∂θc

T

︸ ︷︷ ︸
(P/C)×(Y/C)

∂f2
∂yc2

T

︸ ︷︷ ︸
(Y/C)×O

In this case complexities of the three methods become

1. Outside-in: OYP/C + O2P.

2. Left-to-right and right-to-left: OYP/C + O2Y.

3. Inside-out-left and inside-out-right: Y2P/C2 + OY2/C + O2Y.

E.3 Constant block-diagonal

Assume ∂y
∂θ = IC ⊗ ∂y1

∂θ1
, and ∂y1

∂θ1
has shape (Y/C) × (P/C). In NNs, this is present in fully-

connected, convolutional, locally-connected, attention, and many other layers that contain a matrix
multiplication along some axis. This is also present in all unary elementwise linear operations
on θ like transposition, negation, reshaping and many others. This is a special case of §E.2 with
∂yc

∂θc
= ∂y1

∂θ1
for any c. Here an identical analysis applies, yielding

Θl,k1,k2
θ (f1, f2) =

C∑
c=1

O×O︷ ︸︸ ︷
∂f1
∂yc1︸︷︷︸

O×(Y/C)

∂y11
∂θ1︸︷︷︸

(Y/C)×(P/C)

∂y12
∂θ1

T

︸ ︷︷ ︸
(P/C)×(Y/C)

∂f2
∂yc2

T

︸ ︷︷ ︸
(Y/C)×O

and the same contraction complexities as in §E.2.

E.4 Input block-tiled

Assume ∂y
∂θ = 1(1,C) ⊗ ∂y

∂θ1
, where 1(1,C) is an all-ones matrix of shape 1 × C, and ∂y

∂θ1
has shape

Y× (P/C). In this case
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Θl,k1,k2
θ (f1, f2) =

∂f1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f2
∂y2

T

(11)

=
∂f1
∂y1

(
1(1,C) ⊗

∂y1
∂θ1

)(
1(1,C) ⊗

∂y2
∂θ1

)T
∂f2
∂y2

T

(12)

=
∂f1
∂y1

(
C1(1,1) ⊗

[
∂y1
∂θ1

∂y2
∂θ1

T
])

∂f2
∂y2

T

(13)

= C
∂f1
∂y1

[
∂y1
∂θ1

∂y2
∂θ1

T
]
∂f2
∂y2

T

. (14)

The matrix shapes are

Θl,k1,k2
θ (f1, f2) = C

O×O︷ ︸︸ ︷
∂f1
∂y1︸︷︷︸
O×Y

∂y1
∂θ1︸︷︷︸

Y×(P/C)

∂y2
∂θ1

T

︸ ︷︷ ︸
(P/C)×Y

∂f2
∂y2

T

︸ ︷︷ ︸
Y×O

Which leads to the following resulting complexities:

1. Outside-in: OYP/C + O2P.
2. Left-to-right and right-to-left: OYP/C + O2Y.
3. Inside-out and inside-out-right: Y2P/C + OY2 + O2Y.

E.5 Output block-tiled

Assume ∂y
∂θ = 1(C,1) ⊗ ∂y1

∂θ , where ∂y1

∂θ has shape (Y/C) × P. This occurs during broadcasting or
broadcasted arithmetic operations. In this case

Θl,k1,k2
θ (f1, f2) =

∂f1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f2
∂y2

T

(15)

=
∂f1
∂y1

(
1(C,1) ⊗

∂y11
∂θ

)(
1(C,1) ⊗

∂y12
∂θ

)T
∂f2
∂y2

T

(16)

=
∂f1
∂y1

(
1(C,C) ⊗

[
∂y11
∂θ

∂y12
∂θ

T
])

∂f2
∂y2

T

(17)

=

(
C∑
c=1

∂f1
∂yc1

)[
∂y11
∂θ1

∂y12
∂θ1

T
](

C∑
c=1

∂f2
∂yc2

T
)
, (18)

where we have used a block matrix identity

[A1, . . . , AC]T
(
1(C,C) ⊗B

)
[D1, . . . , DC] =

(
C∑
c=1

Ac

)
B

(
C∑
c=1

Dc

)
.

Finally, denoting the shapes,

Θl,k1,k2
θ (f1, f2) =

O×O︷ ︸︸ ︷(
C∑
c=1

∂f1
∂yc1

)
︸ ︷︷ ︸

O×(Y/C)

∂y11
∂θ︸︷︷︸

(Y/C)×P

∂y12
∂θ

T

︸ ︷︷ ︸
P×(Y/C)

(
C∑
c=1

∂f2
∂yc2

T
)

︸ ︷︷ ︸
(Y/C)×O

,

complexities of the three methods become (notice we add an OY term to perform the sums)

1. Outside-in: OYP/C + O2P + OY.
2. Left-to-right: OYP/C + O2Y/C + OY.
3. Inside-out: Y2P/C2 + OY2/C2 + O2Y/C + OY.
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E.6 Block-tiled

Assume ∂y
∂θ = 1(C,C) ⊗ ∂y1

∂θ1
, where ∂y1

∂θ1
has shape (Y/C)× (P/C). This occures for instance when

y is a constant. In this case

Θl,k1,k2
θ (f1, f2) =

∂f1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f2
∂y2

T

(19)

=
∂f1
∂y1

(
1(C,C) ⊗

∂y11
∂θ1

)(
1(C,C) ⊗

∂y12
∂θ1

)T
∂f2
∂y2

T

(20)

=
∂f1
∂y1

(
C1(C,C) ⊗

[
∂y11
∂θ1

∂y12
∂θ1

T
])

∂f2
∂y2

T

(21)

= C

(
C∑
c=1

∂f1
∂yc1

)[
∂y11
∂θ1

∂y12
∂θ1

T
](

C∑
c=1

∂f2
∂yc2

T
)
, (22)

This results in the following contraction:

Θl,k1,k2
θ (f1, f2) = C

O×O︷ ︸︸ ︷(
C∑
c=1

∂f1
∂yc1

)
︸ ︷︷ ︸

O×(Y/C)

∂y11
∂θ1︸︷︷︸

(Y/C)×(P/C)

∂y12
∂θ1

T

︸ ︷︷ ︸
(P/C)×(Y/C)

(
C∑
c=1

∂f2
∂yc2

T
)

︸ ︷︷ ︸
(Y/C)×O

,

with final complexities of

1. Outside-in: OYP/C2 + O2P + OY.
2. Left-to-right: OYP/C2 + O2Y/C2 + OY.
3. Inside-out: Y2P/C3 + OY2/C2 + O2Y/C + OY.

E.7 Batched NTK cost analysis

For simplicity, we have considered evaluating the NTK Θ (f1, f2) on a single pair of functions f1
and f2. In practice one is almost always interested in computing the NTK for all pairs of functions
fn1
1 and fn2

2 from two batches {fn1
1 }

N1

n1=1 and {fn2
2 }

N2

n2=1, resulting in a N1O1×N2O2 NTK matrix.
In common NNs, this corresponds to having batches of N1 and N2 inputs x1 and x2 respectively,
and having fni

1

(
θ0, . . . , θL) := f

(
θ0, . . . , θL, xni

i

)
. In this case the same argument as in previous

section follows (given identical assumptions for all n1 and n2), but the cost of contractions involving
terms from different batches grow by a multiplicative factor of N1N2, while all other costs grow by
a factor of N1 or N2. To declutter notation we consider N1 = N2 = N, and summarize resulting
batched costs in Table 4.

E.8 Complex structure cost analysis

In previous sections we have considered ∂y1
/
∂θ and ∂y2

/
∂θ admitting the same, and at most one

kind of structure. While this is a common case, in general these derivatives may admit multiple
types of structures along multiple axes (for instance, addition is Constant block-diagonal along non-
broadcasted axes, and Output block-tiled along the broadcasted axes), and ∂y1

/
∂θ and ∂y2

/
∂θ

may have different types of structures and respective axes, if the same weight θ is used in multiple
different subexpressions of different kind. In such cases, equivalent optimizations are possible (and
are implemented in the code) along the largest common subsets of axes for each type of structure
that ∂y1

/
∂θ and ∂y2

/
∂θ have.

For example, let θ be a matrix in RW×W, y1 be multiplication by a scalar y1(θ) = 2θ, and y2 be
matrix-vector multiplication y2(θ) = θx, x ∈ RW. In this case ∂y1

/
∂θ = 2IW ⊗ IW, i.e. it is

Constant block-diagonal along axes both 1 and 2. ∂y2
/
∂θ = IW ⊗ xT , i.e. it is also Constant

block-diagonal, but only along axis 1. Hence, the NTK term containing ∂y1
/
∂θ and ∂y2

/
∂θ will

be computed with Constant block-diagonal simplification along axis 1. There are probably more
computationally optimal ways of processing different structure combinations, as well as more types
of structures to be leveraged for NTK computation, and we intend to investigate it in future work.
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Structure of ∂y
/
∂θ ↓ Outside-in Left-to-right Inside-out

None w/ JVPs and VJPs N2O2W2 N2O W2 Not possible
None NW3O + N2O2W2 NOW3 + N2O2W N2W4 + NOW2 + N2O2W
Constant block-diagonal N2O2W2 NOW2 + N2O2W N2W2 + N2O2W

Table 5: Asymptotic time complexities of computing a single fully-connected layer NTK con-
tribution. See §E.9 for discussion, Table 4 for a more general setting, Table 3 for the case of deep
networks, and §B for detailed legend.

E.9 Example

In §3 and previous sections we have demonstrated how structure in primitive derivatives ∂y
/
∂θ

can be leveraged to reduce the cost of computing NTK. In this section we will consider a simple
example of applying the framework of structured derivatives to FCNs to reproduce Table 3. See §J
for equivalent application for CNNs.

As in §3, we consider a deep FCN with width W and O outputs. We assume the network is deep
and/or wide enough to ignore the size of inputs x, and we ignore biases. In this case the num-
ber of parameters is quadratic in width P ∼ W2, and intermediate primitive outputs have the
same size as the width, Y = W. We recognize that individual primitives yk,n (θk) = θlx

k,n,
as matrix multiplications

(
θk ∈ RW×W, xk,n ∈ RW) admit the Constant block-diagonal structure(

∂yk,n/∂θk = IW ⊗ xk,n
T
)

with C = Y = W = J. Finally, FP costs W2. Substituting all
these equalities into Table 4 we get a simplified Table 5, that confirms the benefits of NTK-vector
products and Structured derivatives for FCNs.

F Implementation

Both algorithms are implemented in JAX [1] as the following function transformation ntk_fn :
[f : (θ, x) 7→ f(θ, x)] 7→ [Θ : (x1, x2, θ) 7→ Θθ(x1, x2)] , i.e. our function accepts any function f
with the above signature and returns the efficient NTK kernel function operating on inputs x1 and
x2 and parameterized by θ. Inputs x, parameters θ, and outputs f(θ, x) can be arbitrary PyTrees.
We rely on many utilities from JAX and Neural Tangents [35].

NTK-vector products algorithm is implemented by using JAX core operations such as vjp , jvp ,
and vmap to map the NTK-vp function to the IO matrix and to parallelize the computation over
pairwise combinations of N inputs in each batch x1 and x2.

Structured derivatives algorithm is implemented as a Jaxpr interpreter, built on top of the default
JAX reverse-mode AD interpreter. On a high level, the algorithm performs the sum in Eq. (4). Each
summand is a contraction of 4 factors: ∂f1

/
∂y1, ∂y1/∂θ, ∂y2/∂θ, ∂f2

/
∂y2.

First, we linearize f to obtain a computational graph constructed out of a limited set (54,2 see
Table 6) of linear primitives y1, . . . , yK. Then, we can obtain two factors ∂f1

/
∂y1, ∂f2

/
∂y2 as part

of a backward pass almost identical to calling jax.jacobian (f)(θ, x). To contract these terms
with ∂y1/∂θ and ∂y2/∂θ, as described above, we query a dictionary of rules which map primitives
to a structural description (§E.8); for a given pair of primitives, these rules allow us to analytically
simplify the contraction and avoid explicitly instantiating the derivatives.

Finally, owing to the nuanced trade-offs between different computational methods in the general
case, we release all our implementations as a single function that allows the user to manually select
the desired implementation. For convenience, we include an automated setting which will perform
FLOPs analysis for each method at compilation time and automatically select the most efficient one.

2JAX leverages a similar approach to implement only 54 transpose rules for linear primitives for reverse-
mode differentiation instead of 131 VJP rules [43].
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Transposable primitive in jax.ad.primitive_transposes CBD BD OBT
add X X
add any X X
all gather
all to all
broadcast in dim X X
call
complex X
concatenate
conj X
conv general dilated
convert element type X
cumsum
custom lin
custom linear solve
device put X
div X X
dot general X X
dynamic slice
dynamic update slice
fft
gather
imag X
linear call
mul X X
named call
neg X
pad X
pdot
ppermute
psum
real X
reduce sum X
reduce window sum X
remat call
reshape X
rev X
scatter
scatter-add
scatter-mul
select
select and gather add
select and scatter add
sharding constraint
sharding constraint
slice
squeeze X
sub X X
transpose X
triangular solve
while
xla call
xla pmap
xmap
zeros like X

Table 6: List of all linear primitives and currently implemented Structured derivatives rules.
In the future, more primitives and more rules can be supported, yet at the time of writing even
the small set currently covered enables dramatic speed-up and memory savings in contemporary
ImageNet models as in Fig. 2 and Fig. 4.
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G Jacobian rules for structured derivatives

Here we discuss computing primitive ∂y/∂θ Jacobians as part of our implementation in §F. We
provide 4 options to compute them through arguments j_rules and fwd :

1. Forward mode, fwd = True , is equivalent to jax.jacfwd , forward mode Jacobian
computation, performed by applying the JVP to P columns of the IP identity matrix. Best
for P < Y.

2. Reverse mode, fwd = False , is equivalent to jax.jacrev , reverse mode Jacobian
computation, performed by applying the VJP to Y columns of the IY identity matrix. Best
for P > Y.

3. Automatic mode, fwd = None , selects forward or reverse mode for each primitive based
on parameters and output shapes.

4. Rule mode, j_rules = True , queries a dictionary of Jacobian rules (similar to the dic-
tionary of structure rules) with our custom implementations of primitive Jacobians, instead
of computing them through VJPs or JVPs. The reason for introducing custom rules fol-
lows our discussion in §I.4: while JAX has computationally optimal VJP and JVP rules,
respective Jacobian computations are not guaranteed to be most efficient. In practice, we
find our rules to be most often faster, however this effect is not perfectly consistent (can
occasionally be slower) and often negligible, requiring further investigation.

The default setting is j_rules = True , fwd = None , i.e. a custom Jacobian implementation is
preferred, and, if absent, Jacobian is computed in forward or reverse mode based on parameters
and output sizes. Note that in all settings, structure of ∂y/∂θ is used to compute only the smallest
Jacobian subarray necessary, and therefore most often inputs to VJP/JVP will be smaller identity
matrices IP/C or IY/C respectively, and all methods will return a smaller Jacobian matrix of size
(Y/C) × (P/C). If for any reason (for example debugging) you want the whole ∂y/∂θ Jacobians
computed, you can set the a_rules=False , i.e. disable structure rules.

H Known issues

We will continue improving our function transformations in various ways after release, and welcome
bug reports and feature requests. Below are the missing features / issues at the time of submission:

1. No support for complex differentiation.
2. Not tested on functions with advanced JAX primitives like parallel collectives

( jax.lax.psum , jax.lax.pmean , etc.), gradient checkpointing ( jax.remat ), com-

piled loops ( jax.lax.scan ; Python loops are supported).

3. Our current implementation of NTK-vector products relies on XLA’s common subexpres-
sion elimination (CSE) in order to reuse computation across different pairs of inputs x1
and x2, and, as shown in Fig. 1 and Fig. 3, can have somewhat unpredictable wall-clock
time performance and memory requirements. We believe this could correspond to CSE not
always working perfectly, and are looking into a more explicitly efficient implementation.

I Complexity analysis for fully-connected networks

This section presents our contributions in a simplified setting of fully-connected (FCN) networks.
For a more general discussion, see main text.

Setting. Consider an L-layer FCN f (θ, x) = θL φ
(
θL−1 . . . θ1 φ

(
θ0x
)
. . .
)
∈ RO, where O is the

number of logits. We denote individual weight matrices as θl with shapes W ×W (except for top-
layer θL of shape O×W), where W is the width of the network, and write the set of all parameters
as θ = vec

[
θ0, . . . , θL] ∈ RLW2+OW. We further define xl := φ

(
yl−1

)
as post-activations (with

x0 := x), and yl := θlxl as pre-activations with yL = f (θ, x). See Fig. 5 for a visual schematic of
these quantities. For simplicity, we assume that inputs x also have width W, and O = O (LW), i.e.
the number of logits is dominated by the product of width and depth.
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The NTK of f evaluated at two inputs x1 and x2 is an O×O matrix defined as

Θθ :=
∂f(θ, x1)

∂θ

∂f(θ, x2)

∂θ

T

=

L∑
l=0

∂f (θ, x1)

∂θl
∂f (θ, x2)

∂θl

T

=:

L∑
l=0

Θl
θ ∈ RO×O, (23)

where we have defined Θl
θ to be the summands. We omit dependence on x1, x2, and f for brevity.

In §I.1 and §I.2 we describe the cost of several fundamental AD operations that we will use as
building blocks throughout the text. We borrow the nomenclature introduced by Autograd [44]
and describe Jacobian-vector products (JVP), vector-Jacobian products (VJP), as well as the cost of
computing the Jacobian ∂f(θ, x)

/
∂θ.

In §I.3, we describe the baseline complexity of evaluating the NTK, by computing two Jacobians
and contracting them. This approach is used in most (likely all) prior works, and scales poorly with
the NN width W and output size O.

In §I.4 we present our first contribution, that consists in observing that many intermediate operations
on weights performed by NNs possess a certain structure, that can allow linear algebra simplifica-
tions of the NTK expression, leading to a cheaper contraction and smaller memory footprint.

In §I.5 we present our second contribution, where we rephrase the NTK computation as instantiating
itself row-by-row by applying the NTK-vector product function to columns of an identity matrix. As
we will show, this trades off Jacobian contraction for more forward passes, which proves beneficial
in many (but not all) settings.

I.1 Jacobian-vector products and vector-Jacobian products

We begin by defining Jacobian-vector products and vector-Jacobian products:

JVP(f,θ,x) : θt ∈ RLW2+OW 7→ ∂f (θ, x)

∂θ
θt ∈ RO, (24)

VJP(f,θ,x) : fc ∈ RO 7→ ∂f (θ, x)

∂θ

T

fc ∈ RLW2+OW. (25)

The JVP can be understood as pushing forward a tangent vector in weight-space to a tangent vector
in the space of outputs; by contrast the VJP pulls back a cotangent vector in the space of outputs
to a cotangent vector in weight-space. These elementary operations correspond to forward- and
reverse-mode AD respectively and serve as a basis for typical AD computations such as gradients,
Jacobians, Hessians, etc. The time cost3 of both operations is comparable to the forward pass (FP),
i.e. [FP] = [cost of all intermediate layers] + [cost of the top layer] =

[
LW2

]
+ [OW] ∼ LW2.

For a single input, the memory cost of computing both the JVP and the VJP are respectively,

[size of all weights] + [size of activations at a single layer] =
[
LW2 + OW

]
+ [W + O] ∼ LW2,

[size of all weights] + [size of activations in all layers] =
[
LW2 + OW

]
+ [LW + O] ∼ LW2.

Despite the fact that the VJP requires more memory to store intermediate activations (which is
necessary for efficient backpropagation), we see that both computations are dominated by the cost
of storing the weights.

Batched inputs. If x is a batch of inputs of size N, the time cost of JVP and VJP increases linearly
to NLW2. The memory cost is slightly more nuanced. Since weights can be shared across inputs,
the memory cost of the JVP and VJP are respectively,

[size of all weights] + N [size of activations at a single layer]

=
[
LW2 + OW

]
+ N [W + O] ∼ LW2 + NW + NO,

[size of all weights] + N [size of activations in all layers] + N [size of all weight matrices]

=
[
LW2 + OW

]
+ N [LW + O] + N

[
LW2 + OW

]
∼ NLW2.

The cost of the VJP is dominated by the cost of storing the cotangents in weight-space. For the
purposes of computing the NTK, we will be contracting Jacobians layerwise and so we will only

3To declutter notation, we omit the O symbol to indicate asymptotic complexity in this work.
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need to store one cotangent weight matrix, ∂f
/
∂θl, at a time. Thus, for the purposes of this work

we end up with the following costs:

• JVP costs NLW2 time and LW2 + NW + NO memory.
• VJP costs NLW2 time and LW2 + NLW + NW2 + NOW memory.

I.2 Jacobian computation

For neural networks, the Jacobian is most often computed by evaluating the VJP on rows of the
identity matrix IO, i.e.[

∂f (θ, x)
/
∂θ
]T

=
[
∂f (θ, x)

/
∂θ
]T
IO ∈ R(LW2+OW)×O. (26)

It follows that computing the Jacobian takes O evaluations of the VJP. However, as above we only
need to store one ∂f

/
∂θl at a time and the weights and intermediate activations are reused across

evaluations. Thus, the time and memory costs to compute the Jacobian are respectively,
ON ([cost of all intermediate layers] + [cost of the top layer])

= ON
([

LW2
]

+ [OW]
)
∼ NLOW2 + NO2W,

[size of all weights] + N [size of activations in all layers] + ON [size of a single weight matrix]

=
[
LW2 + OW

]
+ N [LW + O] + ON

[
W2 + OW

]
∼ LW2 + NLW + NOW2 + NO2W.

Therefore, asymptotically,

Jacobian costs NLOW2 + NO2W time and LW2 + NLW + NOW2 + NO2W memory.

I.3 Jacobian contraction

We now analyze the cost of computing the NTK, starting with the direct computation as the product
of two Jacobians. Consider a single summand from Eq. (1):

Θl
θ︸︷︷︸

O×O

=
∂f (θ, x1)

∂θl︸ ︷︷ ︸
O×(W×W)

∂f (θ, x2)

∂θl

T

︸ ︷︷ ︸
(W×W)×O

. (27)

The time cost of this contraction is O2W2, and the memory necessary to instantiate each factor and
the result is OW2 + O2. Repeating the above operation for each θl, we arrive at LO2W2 time cost
and unchanged memory, due to being able to process summands sequentially.

Batched inputs. If we consider x1 and x2 to be input batches of size N, then the resulting NTK
is a matrix of shape NO × NO, and the time cost becomes N2LO2W2, while memory grows to
[NTK matrix size] + [factors size] = N2O2 + NOW2.

What remains is to account for the cost of computing and storing individual derivatives ∂f
/
∂θl,

which is exactly the cost of computing the Jacobian described in §I.2. Adding the costs up we
obtain

Jacobian contraction costs N2LO2W2 time and N2O2 + NOW2 + NO2W + LW2 + NLW
memory.

I.4 Leveraging structured derivatives for computing the NTK

We can rewrite Θl
θ in Eq. (27) using the chain rule and our pre- and post-activation notation as:

Θl
θ =

[
∂f (θ, x1)

∂ylx1

∂ylx1

∂θl

][
∂f (θ, x2)

∂ylx2

∂ylx2

∂θl

]T
=
∂f (θ, x1)

∂ylx1︸ ︷︷ ︸
O×W

∂ylx1

∂θl︸ ︷︷ ︸
W×(W×W)

∂ylx2

∂θl

T

︸ ︷︷ ︸
(W×W)×W

∂f (θ, x2)

∂ylx2

T

︸ ︷︷ ︸
W×O

.

(28)

19



At face value, rewriting Eq. (27) in this way is unhelpful as it appears to have introduced additional
costly contractions. However, recall that yl = θlxl, and therefore

∂ylx1

∂θl
= IW ⊗ xl1

T
,

∂ylx2

∂θl
= IW ⊗ xl2

T
, (29)

where ⊗ is the Kronecker product. Plugging Eq. (29) into Eq. (28) we get

Θl
θ (x1, x2) =

∂f (θ, x1)

∂ylx1

(
IW ⊗ xl1

T
)(

IW ⊗ xl2
T
)T ∂f (θ, x2)

∂ylx2

T

= (30)

=
∂f (θ, x1)

∂ylx1

(
IW ⊗

[
xl1
T
xl2

]) ∂f (θ, x2)

∂ylx2

T

=
(
xl1
T
xl2

)[∂f (θ, x1)

∂ylx1

∂f (θ, x2)

∂ylx2

T
]
, (31)

where we were able to pull out
(
xl1
T
xl2

)
since it is a scalar. Therefore we obtain

Θl
θ =

xl1T︸︷︷︸
1×W

xl2︸︷︷︸
W×1


∂f (θ, x1)

∂ylx1︸ ︷︷ ︸
O×W

∂f (θ, x2)

∂ylx2

T

︸ ︷︷ ︸
W×O

 , (32)

and observe that it takes only O2W time and OW + O2 memory. Accounting for depth, time cost
increases by a factor of depth L and becomes LO2W, while memory does not change since the
summands can be processed sequentially.

Batched inputs. In the batched setting, the time cost grows quadratically with the size of the NTK
to N2LO2W, while the memory cost increases to N2O2 + NOW to store the result, Θl

θ(x1, x2), and
factors, ∂f (θ, x)

/
∂ylx, respectively.

Finally, we need to account for the cost of computing the derivatives, ∂f
/
∂yl, and post-activations,

xl. Notice that both xl and ∂f
/
∂yl arises naturally when computing the Jacobian as the primals

and cotangents in layer l respectively. However, since we do not need to compute the weight-space
cotangents explicitly (in other words, we cut the backpropagation algorithm short) the memory cost
will be,

[size of all weights] + N [size of activations in all layers]

=
[
LW2 + OW

]
+ N [LW + O] ∼ LW2 + NLW.

The extra time cost is asymptotically the cost of O forward-passes, NLOW2 which is the same as
the Jacobian. However, as we will see in experiments, in practice we’ll often compute the NTK
faster than the Jacobian. Putting everything together we find the following costs,

By leveraging Structured derivatives in NN computations, we have reduced the cost of NTK
to N2LO2W + NLOW2 time and N2O2 + NOW + LW2 + NLW memory.

The key insight was to leverage the constant block-diagonal structure of the pre-activation derivatives
∂yl
/
∂θl. This idea is quite general; as we discuss in §I.4 and detail in the §E, similar structure

exists for many common operations such as convolutions, pooling, and arithmetic. However, the
improvements discussed in this section do not emerge automatically in AD. While JAX and other
libraries leverage structures analogous to Eq. (29) to efficiently compute single evaluations of the
VJP and JVP, this structure is lost once the (structureless) Jacobian is instantiated (e.g. by composing
the VJP with vectorization and contraction). We discuss how we impose this structure to compute
the NTK for general neural networks in §E.

I.5 NTK via NTK-vector products

Computing the Jacobian contraction using Jacobian first instantiates the Jacobian using using VJPs
and then performs a contraction. Structured derivatives use a similar strategy, but speed-up the
contraction and avoid explicitly instantiating the weight-space cotangents. In this section we avoid
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performing a contraction altogether at the cost of extra VJP/JVP calls; this ends up being beneficial
for FCNs.

We introduce the linear function performing the NTK-vector product: ΘVP : v ∈ RO 7→ Θθv ∈ RO.
Applying this function to O columns of the identity matrix IO allows us to compute the NTK, i.e.
ΘθIO = Θθ. The cost of evaluating the NTK in this fashion is equal to O times the cost of a single
NTK-vector product evaluation ΘVP(v). We now expand ΘVP(v) = Θθv as

∂f (θ, x1)

∂θ

∂f (θ, x2)

∂θ

T

v =
∂f (θ, x1)

∂θ
VJP(f,θ,x2) (v) = JVP(f,θ,x1)

[
VJP(f,θ,x2) (v)

]
, (33)

where we have observed that, if contracted from right to left, the NTK-vector product can be ex-
pressed as a composition of a JVP and VJP of the underlying function f . The cost of this operation
is asymptotically equivalent to the cost of Jacobian, since it consists of O VJPs followed by O
(cheaper) JVPs. Therefore it costs LOW2 + O2W time and LW2 + OW2 + O2W memory.

Batched inputs. In the batched setting Eq. (33) is repeated for each pair of inputs, and there-
fore time increases by a factor of N2 to become N2LOW2 + N2O2W. However, the memory
cost grows linearly in N (except for the cost of storing the NTK of size N2O2), since interme-
diate activations and derivatives necessary to compute the JVP and VJP can be computed for
each batch x1 and x2 separately; these quantities are then reused for every pairwise combina-
tion resulting in a memory cost equal to the cost of computing the Jacobian over a batch, i.e.
N2O2 +

(
LW2 + NOW2 + NO2W + NLW

)
.

NTK computation as a sequence of NTK-vector products costs N2LOW2 + N2O2W time
and N2O2 + NOW2 + LW2 + NLW memory.

J Complexity analysis for convolutional networks

Here we go through the same analysis as in §I for the case of convolution, where before the top layer
L global average pooling is applied. In this case the weights of the network θ are expanded by the
total filter size F, and inputs x, pre-activations yl and post-activations xl become matrices of shape
D×W, where D is the total number of pixels. See Fig. 5 for visual depiction. We will again assume
that O = O (LW).

J.1 JVP and VJP

Forward pass, JVP, and VJP costs [cost of all intermediate layers] + [cost of the top layer] =[
LDFW2

]
+ [OW] ∼ LDFW2 time. Forward pass and JVP require [size of all weights] +

[size of activations at a single layer] =
[
LFW2 + OW

]
+[DW + O] ∼ LFW2+DW memory. VJP

requires [size of all weights] + [size of activations in all layers] + [size of a single weight matrix] =[
LFW2 + OW

]
+ [LDW + O] +

[
FW2 + OW

]
∼ LFW2 + LDW memory.

Batched inputs. Time cost of JVP and VJP increase linearly in N up to NLDFW2. JVP memory
cost becomes [size of all weights] + N [size of activations at a single layer] =

[
LFW2 + OW

]
+

N [DW + O] ∼ LFW2 + NDW + NO. VJP memory cost becomes [size of all weights] +
N [size of activations in all layers] + N [size of a single weight matrix] =

[
LFW2 + OW

]
+

N [LDW + O] + N
[
FW2 + OW

]
∼ LFW2 + NLDW + NFW2 + NOW.

• JVP costs NLDFW2 time and LFW2 + NDW + NO memory.
• VJP costs NLDFW2 time and LFW2 + NLDW + NFW2 + NOW memory.

J.2 Jacobian

Computing the Jacobian costs O times the cost of VJP, hence time is
ON ([cost of all intermediate layers] + [cost of the top layer]) = ON

([
LDFW2

]
+ [OW]

)
∼

NLODFW2 + NO2W. Memory is [size of all weights] + N [size of activations in all layers] +
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Structure of ∂y
/
∂θ ↓ Outside-in Left-to-right Inside-out

Constant block-diagonal NODFW2 + N2O2FW2 NODFW2 + N2O2DW N2D2FW2 + N2OD2W + N2O2DW
Table 7: Time complexity of contracting Θl,k1,k2

θ (f1, f2) corresponding to a CNN primitive
obtained by substituting Y = DW, C = W, and P = FW2 into Table 4. The time cost of Struc-
tured derivatives are the minimum of the three entries due to using optimal contraction path by
np.einsum .

ON [size of a single weight matrix] + ON [activations in a single layer] =
[
LFW2 + OW

]
+

N [LDW + O]+ON
[
FW2 + OW

]
+ON [DW] ∼ LW2 +NLDW+NODW+NOFW2 +NO2W

Jacobian costs NLODFW2+NO2W time and LW2+NOFW2+NO2W+NLDW+NODW
memory.

J.3 Jacobian contraction

Since weight matrices are increased by F, the contraction cost goes up to N2LO2FW2 time
and N2O2 + NOFW2 memory. The cost of computing the Jacobian is also modified (§J.2),
which results in N2LO2FW2 + NLODFW2 + NO2W ∼ N2LO2FW2 + NLODFW2 time and(
N2O2 + NOFW2

)
+
(
LFW2 + NOFW2 + NO2W + NLDW + NODW

)
∼ N2O2 +NOFW2 +

NO2W + NLDW + NODW + LFW2 memory.

Jacobian contraction costs N2LO2FW2+NLODFW2 time and N2O2+NOFW2+NO2W+
NLDW + NODW + LFW2 memory.

J.4 Structured derivatives

Convolution is Constant block-diagonal along the output channel axis with C = W, P = FW2,
Y = DW. Substituting this in Table 4, the cost of contraction is the minimum of the costs
from Table 7. If we exclude the Inside-out contraction path from np.einsum (in practice it
will always select the best out of three) for simplicity, we can and conclude that for L layers,
the time cost of the contraction is at most N2LO2 min

(
FW2,DW

)
+ DFNLOW2, as the mini-

mum cost between the Outside-in and Left-to-right. Note that this dominates the time cost of
the Jacobian from §J.2, so we don’t need to modify it further. Memory due to Jacobian computa-
tion is [size of all weights]+N [size of activations in all layers]+NO [activations in a single layer]+
[size of primitive derivatives] =

[
LFW2 + OW

]
+N [LDW + O]+NO [DW]+N [DW] ∼ LFW2+

NLDW + NODW. Again, as in §I.4, and unlike other methods, we do not need to compute or store
∂f
/
∂θl derivatives, allowing to avoid the NOFW2 + NO2W extra memory overhead. However, we

need to add the cost of storing the (subarray of) primitive Jacobians ∂y/∂θ, while have the size of
J = YP/C2 = DFW, hence the extra cost is NDFW.

Structured derivatives cost N2LO2 min(FW2,DW) + NLODFW2 time and N2O2 +
NDFW + NLDW + NODW + LFW2 memory.

J.5 NTK-vector products

The cost of this approach is asymptotically equivalent to the cost of Jacobian (§J.2), since it consists
of O VJPs followed by O (cheaper) JVPs. Therefore it costs LODFW2 + O2W time and LFW2 +
OFW2 + O2W + LDW + ODW memory.

Batched inputs. In a batched setting Eq. (33) is repeated for each pair of inputs, and therefore time
increases by a factor of N2 to become N2LODFW2 + N2O2W. Memory only grows linearly in
N (except for storing the result of size N2O2), by similar argument to §I.5, i.e. becomes N2O2 +(
LFW2 + NOFW2 + NO2W + NLDW + NODW

)
total memory.
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NTK computation as a sequence of NTK-vector products costs N2LODFW2 + N2O2W
time and N2O2 + NOFW2 + LFW2 + NLDW + NODW memory.

K Experimental details

All experiments were performed in JAX [1] using 32-bit precision.

Throughout this work we assume the cost of multiplying two matrices of shapes (M,K) and (K,P )
to be MKP . While there are faster algorithms for very large matrices, the XLA compiler (used by
JAX, among other libraries) does not implement them, so our assumption is accurate in practice.

Hardware. CPU experiments were run on Dual 28-core Intel Skylake CPUs with at least 240 GiB of
RAM. NVIDIA V100 and NVIDIA P100 used a respective GPU with 16 GiB GPU RAM. TPUv3
and TPUv4 have 8 and 32 GiB of RAM respectively, and use the default 16/32-bit mixed precision.

Fig. 1 and Fig. 3: a 10-layer, ReLU FCN was constructed with the Neural Tangents
[35] nt.stax API. Defeault settings (weight variance 1, no bias) were used. Individ-
ual inputs x had size 3. Jacobian contraction was evaluated using nt.empirical_ntk_fn

with trace_axes=(), diagonal_axes=(), vmap_axes=0 . Jacobian was evaluated using

jax.jacobian with a vmap over inputs x. For time measurements, all functions were

jax.jit ted, and timing was measured as the average of 100 random samples (compilation time
was not included). For FLOPs, the function was not JITted, and FLOPs were measured on CPU
using the utils.get_flops function that is released together with our code.4

Fig. 2 and Fig. 4: for ResNets, implementations from Flax [45] were used, specifically
flax.examples.imagenet.models . For WideResNets, the code sample from Novak et al.

[35] was used.5 For all other models, we used implementations from https://github.com/
google-research/vision transformer. Inputs were random arrays of shapes 224 × 224 × 3.
All models were JITted. All reported values are averages over 10 random samples. For each setting,
we ran a grid search over the batch size N in

{
2k
}9
k=0

, and reported the best time divided by N2, i.e.
best possible throughput in each setting.

4The XLA team has let us know that if JITted, the FLOPs are currently correctly computed only on TPU,
but are incorrect on other platforms. Therefore we compute FLOPs of non-JITted functions.

5We replaced stax.AvgPool((8, 8)), stax.Flatten() with stax.GlobalAvgPool() .

23

https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://www.tensorflow.org/xla
flax.examples.imagenet
https://github.com/google-research/vision_transformer
https://github.com/google-research/vision_transformer
https://www.tensorflow.org/xla

	jccJacobian contraction
	ntvpc NTK-vector products – our first contribution
	sdcStructured derivatives – our second contribution
	Additional figures
	Glossary
	Motivation
	Related Work
	Types of structured derivatives
	No structure
	Block-diagonal
	Constant block-diagonal
	Input block-tiled
	Output block-tiled
	Block-tiled
	Batched NTK cost analysis
	Complex structure cost analysis
	Example

	Implementation
	Jacobian rules for structured derivatives
	Known issues
	Complexity analysis for fully-connected networks
	Jacobian-vector products and vector-Jacobian products
	Jacobian computation
	Jacobian contraction
	Leveraging structured derivatives for computing the NTK
	NTK via NTK-vector products

	Complexity analysis for convolutional networks
	JVP and VJP
	Jacobian
	Jacobian contraction
	Structured derivatives
	NTK-vector products

	Experimental details


