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Abstract
We develop a deep generative model that generalizes feed-forward, rectified linear
neural networks with stochastic activations. We call these models bow tie networks
because of the shape of their activation distributions. We leverage the Pólya-
gamma augmentation scheme to render the model conditionally conjugate and
derive a block Gibbs sampling algorithm to approximate the posterior distribution
over activations and model parameters. The resulting algorithm is massively
parallelizable. We show a proof-of-concept of this model and Bayesian inference
algorithm on a variety of standard regression benchmarks.

1 Introduction
Consider a deep generative model for nonlinear regression. Let xn ∈ RDx denote the inputs,
yn ∈ RDy the outputs, and an = {an,l}Ll=1 with an,l ∈ RDl the latent activations at each of L
intermediate layers. We model the joint distribution as,

p(yn,an | xn,θ) =

[
L∏
l=1

N (an,l | µn,l,Σl)

]
N (yn | un,L+1,ΣL+1) (1)

µn,l , f(un,l) un,1 ,W 1xn + b1, un,l ,W lan,l−1 + bl for l > 1, (2)

where f is a nonlinear function applied element-wise. The parameters consist of the weights, biases,
and variances, θ = {W l, bl,Σl}L+1

l=1 . Though we have modeled the activations as random variables,
we can recover standard, feed-forward neural networks when Σl → 0 for l = 1, . . . , L.

Our goal is to infer the posterior distribution over parameters and activations given a set of observed
inputs and outputs,

p(θ, {an}Nn=1 | {xn,yn}Nn=1) ∝ p(θ)
N∏
n=1

p(yn,an,1, . . . ,an,L | xn,θ), (3)

under a prior p(θ).

MCMC methods like Hamiltonian Monte Carlo and variational approaches like Bayes by back-
prop [Blundell et al., 2015] could be used for posterior inference since they only require that the log
probability be differentiable. Instead, we introduce additional structure to the model which allows
for alternative methods that may yield more efficient inference. Specifically, we propose a deep
generative model that relaxes the model above so that it is amenable to Pólya-gamma augmenta-
tion [Polson et al., 2013]. This renders the model conditionally linear and Gaussian. Given this, with
tractable conditional distributions over large subsets of variables, methods such as Gibbs sampling
can update many variables at once and potentially converge more quickly than local, gradient-based
algorithms.

We call the model a bow tie network due to the shape of the conditional distribution of its activation
function. After introducing the model, we derive a Gibbs sampling algorithm that leverages the
simple conditionals to perform Bayesian inference. We demonstrate a prototype of the model and
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algorithm on various regression tasks and compare it to alternative algorithms for Bayesian deep
learning.

2 Bow Tie Networks
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Figure 1: Conditional distribution of the activa-
tion a given the input u (marginalizing over the
binary activations) for various settings of the tem-
perature τ and the noise η. Red: the conditional
mean and variance; black dots: samples from the
distribution. When τ = η = 0, we recover the stan-
dard rectified linear function; for nonzero values,
the conditional distribution looks like a bow tie.

Take the generative model from eq. 1 and assume
that f(u) = max{0, u} is the rectified linear (ReLU)
function. Nonlinear activation functions such as
this make posterior inference hard—if f were the
identity, we could place conjugate priors on the
parameters and derive closed form Gibbs updates
for the parameters and activations (more details be-
low). Observe, however, that we could equivalently
write the rectified linear function as f(u) = zu
where z = I[u > 0] is a binary activation that deter-
mines whether the node is on (z = 1) or off (z = 0).
Intuitively, if we knew the binary activations, then f
would be conditionally linear, which would make
inference much simpler.

Motivated by this observation, we propose a stochas-
tic relaxation of the rectified linear network. In the
notation of eq. 1, let

µn,l , zn,l � un,l (4)

zn,l
ind∼ Bern(σ(un,l/τ)), (5)

where� denotes the elementwise product, σ is the lo-
gistic function,wl,d ∈ RDl−1 is the d-th row ofW l,
and τ ≥ 0 is a temperature parameter. Under this
model, the rectified linear units are turned on or off
stochastically depending on their input.

Figure 1 shows the conditional distribution of the
activation an,l,d given the input un,l,d and marginalizing over the binary activations zn,l,d, for a few
values of the temperature τ and the variance η2l,d = [Σl]dd. For intermediate values of the temperature
and noise, the conditional distribution looks like a bow tie, hence the name.

3 Bayesian inference via Pólya-gamma augmentation
The bow tie network introduces binary activations to the model so that,

p(yn,an, zn | xn,θ) =[
L∏
l=1

Bern(zn,l | σ(un,l/τ))N (an,l | zn,l � un,l,Σl)

]
N (yn | un,L+1,ΣL+1) (6)

The Bernoulli terms still make posterior inference challenging. However, this formulation is amenable
to Pólya-gamma (PG) augmentation [Polson et al., 2013]—an auxiliary variable method that equates
the Bernoulli pmf with a scale-mean mixture of Gaussians. Let γn = {γn,l}Ll=1 with γn,l ∈ RDl

+
denote the collection of PG auxiliary variables. The joint distribution on the extended space is,

p(yn,an, zn,γn | xn,θ) ∝[
L∏
l=1

PG(γn,l | 0, 1)e
τ−1(zn,l−

1
2 )
>un,l−

1
2τ2 u>n,lGn,lun,l N (an,l | zn,l � un,l,Σl)

]
×N (yn | un,L+1,ΣL+1), (7)

where PG(γn,l | 1, 0) is the probability density of a bank of Dl independent, standard PG random
variables andGn,l = diag(γn,l).
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Test RMSE Test Log-likelihood
Dataset BBB fBNN Bow Tie BBB fBNN Bow Tie
Boston 3.171±0.149 2.378±0.104 3.324±0.167 −2.602±0.031 −2.301±0.038 −2.506±0.035

Concrete 5.678±0.087 4.935±0.180 5.241±0.206 −3.149±0.018 −3.096±0.016 −3.045±0.041
Energy 0.565±0.018 0.412±0.017 1.096±0.086 −1.500±0.006 −0.684±0.020 −1.334±0.060
Wine 0.643±0.012 0.673±0.014 0.651±0.020 −0.977±0.017 −1.040±0.013 −0.992±0.059
Yacht 1.174±0.086 0.607±0.068 0.896±0.083 −2.408±0.007 −1.033±0.033 −1.139±0.093

Table 1: Performance of bow tie networks, Bayes by backprop (BBB) Blundell et al. [2015], and functional
variational Bayesian neural networks (fBNN) Sun et al. [2019] on UCI regression datasets Dua and Graff [2017].
Bow tie networks are generally competitive with both of these methods. BBB and fBNN results are from Sun
et al. [2019].

The log probability under the augmented model is quadratic in un,l, which is in turn a linear function
of the weights, biases, and preceding layer’s activations. Thus, the augmented model is conjugate
with a Gaussian prior on the weights and an inverse Wishart prior on the covariance matrices (or
more generally a matrix-normal inverse Wishart prior). Moreover, the conditional distribution of the
activations an = (an,1, . . . ,an,L) is a linear Gaussian chain. That means we can Gibbs sample the
activations via an efficient forward filtering backward sampling algorithm in order O(NLD3) time
(where D = maxlDl). When the covariances are constrained to be diagonal, the binary activations
follow simple, independent Bernoulli conditionals. Likewise, the PG variables follow a tilted PG
conditional distribution, which is also easy to sample from. Finally, note that the latent variables are
conditionally independent across data points, so the Gibbs sampler can be easily parallelized across
this dimension. Complete details are in the appendix.

4 Experiments
We evaluated bow tie networks on a standard set of regression tasks from the UCI dataset repository
Dua and Graff [2017]. Following Sun et al. [2019], we selected only datasets with fewer than
2000 data points so that full-batch learning was tractable. The bow tie network architecture used a
single hidden layer of 50 units, consistent with the experiment in Sun et al. [2019]. The activation
temperature τ was fixed at 0.1 and 1,000 samples were collected after a burn-in of 26,000 steps. See
table 1 for the experimental results. Bow tie networks were generally competitive with both Bayes
by backprop (BBB) and functional variational Bayesian neural networks (fBNNs) on the regression
tasks.

5 Conclusions
We presented bow tie networks, a novel model for Bayesian neural networks that allows for fast and
accurate inference via Pólya-gamma augmentation. In the future we will improve the performance
of bow tie networks by exploring alternative sampling strategies such as annealing the temperature
over training. We also hope to scale bow tie networks to larger datasets and explore connections with
inference in the function space.
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A Complete conditional distributions
In this section we provide the complete conditional distributions necessary for the Gibbs sampling
algorithm described in Section 3.

Let ãn,l = (an,l, 1) and w̃l,d , (wl,d, bl,d) where wl,d ∈ RDl−1 is the d-th row of the weightsW l.
Assume, for simplicity, that the noise covariances are diagonal Σl = diag(η2l,1, . . . , η

2
l,Dl

). Then
assume a factored prior,

p(θ) =
∏
l=1

Dl∏
d=1

N (w̃l,d | µ0,Σ0)Ga(η−2l,d | α0, β0). (8)

Each of the updates below can be performed in parallel. For example, activations can be sampled in
parallel for all data points, the weights can be sampled in parallel for indices all layers and output
dimensions, and the binary activations and auxiliary variables can be sampled in parallel for all data
points, layers, and dimensions. Leveraging this parallelism could lead to much faster implementations
on massively parallel architectures like GPUs.

Conditional distribution of the activations. The most interesting conditional distribution is that
of the activations. Given the parameters, binary activations, and auxiliary variables, the conditional
distribution of the activations is proportional to,

p(an | yn, zn,γn,xn,θ) ∝ exp

{
−1

2

L∑
l=1

a>n,lJn,lan,l −
L∑
l=2

a>n,lLn,lan,l−1 +

L∑
l=1

h>n,lan,l

}
.

(9)
This is a linear Gaussian chain, just like a Gaussian linear dynamical system (LDS). To simplify the
expressions below, let Zn,l = diag(zn,l). Then the coefficients are,

Jn,l = Σ−1l +W>
l+1(τ

−2Gn,l+1 +Zn,l+1Σ
−1
l+1Zn,l+1)W l+1 for l < L (10)

Jn,L = Σ−1L +W>
L+1ΣL+1WL+1 (11)

Ln,l = −Zn,lΣ−1l W l (12)

hn,1 = Z1Σ
−1
1 b1 +W

>
2 (

1
τ (zn,2 −

1
2 )−

1
τ2Gn,2b2 −Zn,2Σ−12 b2) +Zn,1Σ

−1
1 W 1xn (13)

hn,l = ZlΣ
−1
l bl +W

>
l+1(

1
τ (zn,l+1 − 1

2 )−
1
τ2Gn,l+1bl+1 −Zn,l+1Σ

−1
l+1bl+1) (14)

hn,L = ZLΣ−1L bL +W>
L+1Σ

−1
L+1(yn − bl+1) (15)

We can draw exact samples from this conditional distribution in O(LD3) time where D = maxlDl

using the forward filtering backward sampling algorithm. Note that we have presented the conditional
distribution in “information form” rather than in terms of mean parameters, as linear Gaussian
dynamical systems.

Conditional distribution of the weights and biases. Under this prior, the conditional distribution
of the weights is,
p(w̃l,d | an,l, zn,l,γn,l,an,l−1) = N (w̃l,d | J−1l,dhl,d,J

−1
l,d ) (16)

where J l,d = Σ−10 +

N∑
n=1

(τ−2γn,l,d + η−2l,d zn,l,d) ãn,lã
>
n,l (17)

hl,d = Σ−10 µ0 +

N∑
n=1

(τ−1(zn,l,d − 1
2 ) + η−2l,d zn,l,d an,l,d) ãn,l (18)

Conditional distribution of the variances. The conditional distribution of the precisions (inverse
variances) is,

p(η−2l,d | an,l, zn,l,γn,l,an,l−1,wl,d, bl,d) = Ga(η−2l,d | αl,d, βl,d) (19)

where αl,d = α0 +
N

2
(20)

βl,d = β0 +
1

2

N∑
n=1

(an,l,d − zn,l,dun,l,d)2 (21)
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Conditional distribution of the binary activations. The conditional distribution of the binary
activations, marginalizing over the PG auxiliary variables, is,

p(zn,l,d | an,l,an,l−1,θ) = Bern(σ(νn,l,d)) (22)

where νn,l,d =
un,l,d
τ

+
an,l,dun,l,d

η2l,d
−
u2n,l,d
2η2l,d

(23)

Conditional distribution of the PG auxiliary variables. Since we Gibbs sample the binary
activations from their conditional distribution under the non-augmented model (eq. 6), we must
immediately Gibbs sample the PG auxiliary variables after updating the binary activations. Their
conditional distribution is,

p(γn,l,d | ãn,l−1,θ) = PG(γn,l,d | 1, τ−1un,l,d) (24)
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