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Abstract

Variational inference recently became the de facto standard method for approximate
Bayesian neural networks. However, the standard mean-field approach (MFVI)
possesses many undesirable behaviours. This short paper empirically investigates
the variational biases [Turner and Sahani, 2011] of MFVI and other variational
families. The preliminary results shed light on the poor performance of many
variational approaches for model selection.

1 Introduction

Scalable stochastic variational inference methods have played a key role in the recent resurgence of
Bayesian neural networks (BNNs) [see e.g. Hinton and van Camp, 1993, Graves, 2011, Blundell et al.,
2015]. The most popular variational approach among all is one based on a mean-field (or diagonal)
Gaussian variational approximation (MFVI). The MFVI variational objective bears similarity to a
regularised loss function used in vanilla deep learning, hence is easy to implement and scale. Despite
the popularity and successes, the approximation quality of MFVI for modern deep neural networks
is still largely unknown. In many settings, MFVI has been shown to give pathological behaviours.
For example, Trippe and Turner [2018] and Swaroop et al. [2019] demonstrate excessive hidden
unit pruning when using MFVI on simple regression and classification tasks; Foong et al. [2019a,b]
provably demonstrate mean-field variational BNNs with one hidden rectified linear layer unable to
capture in-between uncertainty; and even more worryingly, Coker et al. [2021] show MFVI will
ignore data in the infinite width limit.

In this short paper, we empirically investigate MFVI and other variational families using a slightly
different lens, the marginal likelihood. In particular, we ask: how well do these variational approaches
approximate the marginal likelihood, and if not very well, what does the variational bias [Turner and
Sahani, 2011] looks like for variational BNNs?. The answers to these questions will shed light on
the reliability of these variational approaches for hyper-parameter or model selection, and model
comparison. We will first summarise the variational methods used for the comparison in section 2
and then present some preliminary results in section 3.

2 Variational inference for Bayesian neural networks

Consider a neural network with parameters w and a training dataset D, exact inference and learning
requires computing the posterior density, p(w|D, θ), and the log marginal likelihood, L(θ), as
follows,

p(w|D, θ) = p(w|θ)p(D|w, θ)
p(D|θ)

, L(θ) = log p(D|θ) = log

∫
w

p(D|w, θ)p(w|θ), (1)

where θ denotes the hyper-parameters, or architecture of the model, e.g. the prior variance or the
observation noise variance in the regression setting. Whilst the posterior is useful at test time, the
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Figure 1: Negative log marginal likelihood estimate and negative test log likelihood (both in log
scale) given by AIS and MFVI. Black dashed line indicates the true observation noise.

marginal likelihood is central to empirical Bayes approaches to model selection and comparison.
However, both terms are intractable for all modern neural networks and thus require approximations.
Variational inference conveniently provides a lower bound to the log marginal likelihood, which can
be used for optimising a variational density and, in principle, selecting or comparing models,

F(q(w), θ) = −KL[q(w)||p(w|θ)] +
∫
w

q(w) log p(D|w, θ). (2)

The variational families (aka. the form of q(w)) governs the flexibility of the approximate poste-
rior and thus the tightness of the variational lower bound. We consider the following variational
approximations:

• mean-field Gaussian variational inference (MFVI) with q(w) = N (w;m,diag(v)), where
m and v represent the means and variances of network weights.

• fully-correlated Gaussian variational inference (FCVI) with q(w) = N (w;m,V)), where
m and V represent the mean and covariance of network weights. Note that this approach is
only tractable for small networks.

• importance weighted variational inference (IWVI) [Burda et al., 2015] with a mean-field
Gaussian proposal as in MFVI.

• VI using the Thermodynamic Variational Objective (TVO) [Masrani et al., 2019]. The key
challenge for both IWVI and TVO for BNNs is the need to sample from a high-dimensional
and potentially inaccurate approximate posterior, leading to high variance.

• an autoregressive, conditionally Gaussian approximation based on inducing points (IPVI)
[Ober and Aitchison, 2021]. This approximation assumes a correlated Gaussian density
for the first layer’s weights, but all other layers’ are marginally non-Gaussian and that all
weights in the network are correlated.

We also consider an approximation based on α-divergence (BB-α) [Hernandez-Lobato et al., 2016],
with a mean-field Gaussian approximation as in MFVI. As some of the methods above do not admit
unbiased gradients using data minibatches, we opt for a comparison using the full dataset at each
gradient step. We use 5 samples from the approximate posterior or proposal for all methods, train
each method for 5000 epochs, and use 50 log-spaced intermediate distributions for TVO.

Note that all the methods above are approximate and thus only give an approximation to the log
marginal likelihood. To assess the fidelity of these approximations, we run annealed importance
sampling (AIS) [Neal, 2001] with 5000 intermediate distributions and 100 parallel chains, and hybrid
Monte Carlo (HMC) [Neal, 2011] with 10 leapfrog steps to sample from the intermediate distributions
for the regression datasets considered in section 3. AIS requires the full dataset at each HMC gradient
step and a large number of intermediate densities, and is, therefore, not tractable for big networks and
large datasets. We only use it here for evaluation, in a similar spirit to how Izmailov et al. [2021] use
HMC to evaluate approximate inference methods.

3 Experimental results

In this section, we summarise the results of the aforementioned methods on a 1D synthetic regression
dataset and a neural network with 50 ReLUs. The observations on other regression/classification
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datasets and when using tanh units are almost identical. Similar to [Turner and Sahani, 2011], we
vary the hyperparameters in the model, prior variance and observation noise variance and evaluate the
log marginal likelihood approximation after training each method. We also evaluate the performance
of these methods on a test set. All results are averaged using five random seeds.

3.1 Biases of mean-field variational inference

We first plot the log marginal likelihood and test log likelihood surfaces when varying the hyper-
parameters in fig. 1. It could be seen that (i) AIS marginal likelihood and its test performance
strongly correlate, (ii) MFVI marginal likelihood is biased towards larger noise and smaller prior
variances, and (iii) critically, MFVI test performance is not correlated with MFVI marginal likelihood.
The last two points explain the use of a validation set, instead of the variational bound, to select
hyperparameters or models in practice [see e.g. Blundell et al., 2015]. To understand these issues
further, we plot the MFVI and HMC predictions using the best hyperparameters suggested by AIS
and MFVI in fig. 2. Due to the mean-field assumption and the KL term in the variational bound,
MFVI prefers a large observation noise and forces all network weights to match the prior.

Figure 2: Training data and predictions given by AIS and MFVI at hyperparameters selected using
the marginal likelihood in fig. 1. Left to right: HMC prediction using the best AIS hypers, HMC
prediction using the best MFVI hypers, MFVI prediction using the best AIS hypers, and MFVI
prediction using the best MFVI hypers. Due to the variational biases, MFVI suggests the model in
the fourth plot has a higher log marginal likelihood than that of the model in the third plot.

3.2 Biases of more structured approximations and other divergences

We repeat the same experiment as above using other variational families, and plot the log marginal
likelihood estimates and test performance in fig. 3. Note that all other mean-field variational methods
exhibit the same pathological behaviour as MFVI. FVCI, initialised at the MFVI solution, does
not seem able to escape from the MFVI local optimum. IPVI surprisingly outperforms all other
methods and closely tracks the AIS estimate. This suggests structured, non-Gaussian variational
approximations are crucial to obtain accurate log marginal likelihood estimates.

Figure 3: Marginal likelihood estimates and test likelihood provide by AIS and several variational
approximations. Left: the prior std is fixed to 1. Right: the observation noise std is fixed to the true
noise level, 0.4.
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4 Summary

We have empirically shown the hyper-parameter biases of several variational methods on Bayesian
neural networks. The results, despite preliminary, demonstrate the benefit of more structured, non-
Gaussian variational approximations, and suggest a direction of research into empirical Bayes using
AIS or by direct estimation of the log marginal likelihood gradients [Tomczak and Turner, 2021].
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