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Abstract
Deep networks often make confident, yet, incorrect, predictions when tested with
outlier data that is far removed from their training distributions. Likelihoods
computed by deep generative models (DGM) are a candidate metric for outlier
detection with unlabeled data. Yet, DGM likelihoods are readily biased and
unreliable. Here, we examine outlier detection with variational autoencoders
(VAEs), among the simplest of DGMs. We show that an analytically-derived
correction ameliorates a key bias with VAE likelihoods. The bias correction is
sample-specific, computationally inexpensive, and readily computed for various
visible distributions. Next, we show that a well-known preprocessing technique,
contrast stretching, extends the effectiveness of bias correction to improve outlier
detection performance. We evaluate our approach comprehensively with nine
(grayscale and natural) image datasets, and demonstrate significant advantages, in
terms of speed and accuracy, over four state-of-the-art methods.

1 Introduction
Deep neural networks are notorious for their confident, yet incorrect predictions when tested with data
whose statistics are far removed from the training data distribution [16]. Developing robust methods
for outlier detection is, therefore, an important challenge with critical real-world implications.

Deep generative models (DGMs), like variational autoencoders (VAEs [4]) or flow-based models
(e.g. Glow [3]), are increasingly used for outlier detection, especially with label-free data. Yet,
several previous studies have shown that likelihoods computed by DGMs, including VAEs, are
unreliable for outlier detection [13, 11, 1, 19], and are readily biased by differences in low-level
image statistics [13, 11]. A few solutions have been proposed, but these suffer from computational
bottlenecks [13, 19, 10], or theoretical limitations [1] (see Section 5, Related Work).

Here, we explore outlier detection with VAEs, arguably among the simplest of deep generative models.
We propose two efficient remedies that achieve or approach state-of-the-art for outlier detection, both
with grayscale and natural image datasets. Our key contributions are as follows:

• We present an easy-to-compute bias correction for VAE likelihoods that can be computed post hoc
during evaluation time.

• We show that a standard preprocessing step – contrast normalization – enables bias correction to
achieve state-of-the-art accuracies.

• We present, to the best of our knowledge, the most comprehensive evaluation of outlier detection
with VAEs to date, with 9 datasets and 4 competing approaches [15, 13, 19, 1].

2 The challenge with outlier detection using VAE likelihoods
We illustrate the challenge of outlier detection with VAE likelihoods, by taking a fresh look at two
previously reported sources of bias [13, 11].
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Figure 1: VAE likelihoods are unreliable for outlier detection.

Bias arising from pixel intensity. As a first example, we train a VAE on grayscale FMNIST images
[18] and compute the likelihoods for in-distribution (ID) FMNIST and out-of-distribution (OOD)
MNIST [6] test samples (continuous Bernoulli visible distribution [9]; model details in Appendix A).
We replicate the well-known issue with VAE likelihoods: FMNIST VAE likelihoods are higher for
OOD (MNIST) samples as compared to ID (FMNIST) samples (Fig. 1a). The highest likelihoods
are assigned to FMNIST samples with a large number of black pixels (Fig. 1b, top row), whereas
the lowest likelihoods are assigned to samples with many intermediate (gray) pixel values (Fig. 1b,
bottom row), consistent with previous reports [13]. On simulated images with different (constant)
pixel intensities, we find a U-shape trend in likelihood bias (Fig. 2, blue line).

Bias arising from channel variance or image contrast. Next, we train a VAE on the CelebA dataset [8],
and compute ID (CelebA) and OOD (GTSRB [17]) likelihoods. Again, the VAE assigns higher
likelihoods to OOD samples (Fig. 1c). Faces with dark backgrounds and high contrast between the
face and background are assigned the highest likelihoods (Fig. 1d, top row), and vice versa for low
contrast faces (Fig. 1d, bottom row). With simulated images, we observe that VAE likelihoods are
strongly biased by contrast (Fig. 3, blue line).

3 Debiasing VAE likelihoods
To improve outlier detection with VAE likelihoods, we develop remedies for correcting for the two
sources of bias discussed in the previous section.

3.1 Bias correction for pixel intensity

Figure 2: Bias arising from intensity.

We develop an analytically-derived correction for VAE
likelihoods. For VAEs, the marginal likelihood can be
written as:

log pθ(x) = logEqφ(z|x)pθ(x|z)p(z)/qφ(z|x)

We examine the negative reconstruction error term
pθ(x|z), assuming perfect reconstruction of the input
samples by the VAE. We denote this as pcB(x;λ

∗) where
pcB denotes the continuous Bernoulli pdf, and λ∗ are opti-
mal parameters that correspond to perfect reconstruction
(x̂ = x). We plot log pcB(x;λ

∗) for simulated images in Fig. 2 (dashed green). log pcB(x;λ
∗)

exhibits a bias that is nearly identical with the marginal likelihood (Fig. 2, blue). Thus, even if
two input samples are perfectly reconstructed by the VAE, these will be assigned different likeli-
hoods, depending on the average pixel intensity in each sample; a bias that is largely driven by the
reconstruction error term.

We eliminate this bias in the reconstruction error by dividing by the error for perfect reconstruction.
The “bias-corrected” marginal likelihood (BC) evaluates to:

log pcθ(x) = logEqφ(z|x)
[
pθ(x|z)
pcB(x;λ

∗)

p(z)

qφ(z|x)

]
= log pθ(x)− log pcB(x;λ

∗) (1)

The procedure for computing the correction term for the Bernoulli and continuous Bernoulli visible
distributions is shown in Appendix B. For other visible distributions, an equivalent empirical correc-
tion is presented in Appendix E. Following bias correction, the bias in the negative reconstruction
error is eliminated (Fig. 2, orange). We note that this correction can be computed during evaluation
time and does not require retraining the VAE.
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3.2 Normalization of image contrasts

Figure 3: Bias arising from contrast.

For eliminating the second source of bias arising from
image contrasts, we propose a standard image pre-
processing step: “contrast stretching”. Each image
sample, for both training and testing data, is contrast
normalized with the following transformation: xi =
min(max(0, [xi − a]/r), 1), where xi refers to the ith
pixel of image x, r = P95(vec(x)) − P5(vec(x)),
a = P5(vec(x)), Pj refers to the jth percentile and vec()
represents the vectorization of the input sample tensor.

Variation in image contrasts produces systematic biases in the negative reconstruction error (Fig. 3,
blue). Contrast stretching and bias correction ameliorate this bias (Fig. 3, orange).

4 Experiments
We trained and tested VAEs with 9 grayscale and natural image datasets (see Appendix A for
architecture and training details). For all approaches, we report average metrics across 6 runs (3 seeds
× 2 train-validation splits).

4.1 Bias-corrected likelihoods improve outlier detection
Bias correction improved OOD detection performance significantly: for the FMNIST VAE AUROC%
improved from 23 to 100 and for the CelebA VAE AUROC% improved from 47 to 88. Moreover,
samples that were assigned the highest and lowest bias-corrected likelihoods were visually more
typical and atypical, respectively (Fig. 4b, 4d), as compared to those based on uncorrected likelihoods
(Fig. 1b, 1d). Similar improvements occurred with all 9 datasets (Table 1, original LL first column, vs
BC second column). We report similar improvements for additional visible distributions in Appendix
E (Figs. 8, 9 and 10).

(a) (b) (c) (d)

Figure 4: Bias correction improves outlier detection.

4.2 Comparison with state-of-the-art outlier detection methods
We compare our method against four competing approaches: i) input complexity (IC) [15]), ii)
likelihood ratio (LRat) [13], iii) likelihood regret (LReg) [19] and iv) WAIC (Watanabe-Akaike
Information Criterion) [1]. On average, BC performed on par with, arguably, more complex state-of-
the-art approaches (Table 1). We report exhaustive comparisons in a grid in Appendix C (Figs. 5 and
6). We report significant (4-100x) improvements in computation times in Appendix D (Fig. 7).

Table 1: Comparison with four competing outlier detection approaches using AUROC% for grayscale
(left) and natural image datasets (right). For each ID dataset, AUROC values reflect average perfor-
mance across all other (OOD) datasets in the respective table.

ID Data LL BC IC LRat LReg WAIC

MNIST 98 98 97 100 100 99
FMNIST 57 100 73 99 98 88
EMNIST 80 98 93 100 97 86
KMNIST 65 74 90 75 48 75

ID Data LL BC IC LRat LReg WAIC

SVHN 50 93 53 93 78 64
CelebA 73 90 75 63 78 73
CompCars 78 100 100 100 100 91
GTSRB 80 91 95 88 96 78
CIFAR10 51 63 66 47 76 51
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5 Related work
Our work is inspired by previous studies that seek to correct for biases in generative model likelihoods.
Our bias correction is, perhaps, most closely related to the work of Serra et al. (2019) [15] who
proposed a correction for Glow and PixelCNN++ model likelihoods based on “input complexity”
(IC). Their out-of-distribution score is computed by subtracting a sample-specific complexity estimate
L(x) from the negative log-likelihood (compare with our Equation (1)). Nonetheless, IC depends on
the particular choice of a compression algorithm (e.g. PNG, JPEG2000, FLIF), which is unrelated to
the VAE, whereas our correction is theoretically-grounded and contingent on the VAE decoder visible
distribution. Interestingly, IC’s outlier detection performance is sub-par for the Fashion-MNIST VAE
(Table 1), and it also fails to distinguish in-distribution data from uniform noise for several natural
image datasets (Appendix C, Fig. 6, sixth row).

Ren et al. (2019) [13] originally highlighted the problem of bias in deep generative model likelihoods,
for samples with many zero-valued pixels. They proposed correcting for this bias by training a second
generative model with noise-corrupted samples to capture background statistics; the “likelihood ratio”
between the original and noisy VAEs provided a sensitive readout of foreground object statistics.
With VAEs, our bias correction matches or outperforms the likelihood ratio score, on average (Table
1). Our bias correction also obviates the need for training multiple, duplicate models.

Similarly, Nalisnick et al. (2019) [11] originally identified the problem of bias in likelihoods arising
from sample variance, and proposed a typicality test for robust outlier detection [10]. However, the
typicality test works best with batches of samples, and performs relatively poorly with single samples.
Interestingly, with the continuous Bernoulli visible distribution, our likelihood trends are opposite to
those reported by Nalisnick et al. [11]: Samples with the lowest contrasts yield the lowest likelihoods,
and vice versa, (Fig. 3), indicating that biases with VAE likelihoods depend on the choice of visible
distribution.

Previous studies have also demonstrated the effectiveness of deep ensembles for outlier detection
(e.g. [1, 5]). Nonetheless, many of these approaches (e.g. [5, 7]) do not work with unlabeled data. A
notable exception is the WAIC score proposed by Choi et al. (2018) [1]. However, the WAIC score
lacks clear theoretical arguments for its efficacy [10].

Recent work by Yong et al. (2020) [20] proposed employing bias-free Gaussian likelihoods and their
variances for outlier detection. Yet, Gaussian visible distributions are not theoretically appropriate to
model the finite range of pixel values (0-255) encountered in images. One way of overcoming this
challenge is to discretize the Gaussian (or logistic) visible distribution with an underlying categorical
representation, a solution adopted by other studies (e.g. PixelCNN++ [14]). However, in practice,
such a categorical distribution also concentrates probability mass at the edges (0 and 255 values),
yielding systematically biased likelihoods. Moreover, Yong et al.’s approach does not work well with
natural image datasets (their Appendix C). Our contrast normalization and bias correction enable
robust outlier detection, even with natural image datasets.

Xiao et al. (2020) [19] proposed a “likelihood regret” metric that involves quantifying the improvement
in marginal likelihood by retraining the encoder network to obtain optimal likelihood for each sample.
Such sample-specific optimizations are computationally expensive, for example, when millions of
samples need to be evaluated on the fly. In contrast, our proposed metrics are readily computed with
a single forward pass through pre-trained VAEs, leading to a 50-100x speedup in evaluation times
over likelihood regret (Fig. 7). Interestingly, Xiao et al also showed that other state-of-the-art outlier
detection metrics (e.g. IC, likelihood ratios) perform comparatively poorly with VAEs.
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Supplementary Material: Appendices

Appendix A: VAE architecture and training

All experiments were performed using Tensorflow 2 and Tensorflow Probability libraries. We
employed a convolutional VAE architecture that follows the DCGAN [12] structure (Table 2), nearly
identical with that of [19]. We used the Adam optimizer [2] with a learning rate of 5e-4 for training
all of our models. Each model was trained for 1000 epochs with a batch size of 64, and the checkpoint
with the best validation performance based on negative log-likelihood was used for reporting results.
We used the Xavier uniform initializer (default in Tensorflow 2) for initializing network weights.

For reporting results based on the bias-corrected log-likelihood (BC score), we used a VAE with a
latent dimension (nz) of size 20. The same architecture was used for training both grayscale and
natural image VAEs, with two differences (grayscale: nf = 32, nc = 1; natural: nf = 64, nc = 3). Log
likelihoods were estimated using the importance weighted lower bound (n=100 samples) [19].

Table 2: VAE architecture. nc: number of channels; nf: number of filters; nz: number of latent
dimensions; BN: batch normalization; Conv: convolution layer; DeConv: deconvolution layer; ReLU:
rectified linear unit

Encoder Decoder
Input image of shape 32 × 32 × nc Input latent code, reshape to 1 × 1 × nz
4 × 4 Convnf Stride=2, BN, ReLU 4 × 4 DeConv4× nf Stride=1, BN, ReLU
4 × 4 Conv2× nf Stride=2, BN, ReLU 4 × 4 DeConv2× nf Stride=2, BN, ReLU
4 × 4 Conv4× nf Stride=2, BN, ReLU 4 × 4 DeConv nf Stride=2, BN, ReLU
4 × 4 Conv2× nz Stride=1 4 × 4 DeConvnc Stride=2

Appendix B: Bias correction for Bernoulli and continuous Bernoulli decoders

Bias correction for the Bernoulli decoder. For a VAE decoder with a Bernoulli visible distribution,
the negative reconstruction error is given by:

log pθ(x|z) = log pB(x; x̂θ(z))

=

D∑
i=1

xi log x̂i + (1− xi) log(1− x̂i)

where xi is the pixel value of the ith pixel in the input sample and x̂i (or x̂i(z)) is the corresponding
pixel value in the image reconstructed by the decoder, and z is the latent representation corresponding
to the input image (see [4] their Appendix C.1).

The negative reconstruction error for perfect reconstruction is simply calculated by setting x̂i = xi,
as:

log pB(x;x) =

D∑
i=1

xi log xi + (1− xi) log(1− xi)

Bias correction for the continuous Bernoulli decoder. For a VAE decoder with a continuous
Bernoulli visible distribution, the negative reconstruction error is given by:

log pθ(x|z) = log pcB(x;λθ(z))

=

D∑
i=1

logC(λi) + xi log λi + (1− xi) log(1− λi)
(2)
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Note that the continuous Bernoulli decoder outputs the shape parameter (λi) for the ith pixel. The
decoded pixel value itself is given by:

x̂i =
λi

2λi − 1
+

1

2 tanh−1(1− 2λi)
if λi 6=

1

2

=
1

2
if λi =

1

2

As before, for perfect reconstruction we set x̂i = xi. To find the optimal λ∗i corresponding to perfect
reconstruction, we used SciPy’s implementation of Nelder-Mead simplex algorithm to iteratively
maximize log pcB(xi;λi); the correction was then calculated by setting λi = λ∗i in equation (2)
above.

Appendix C: Bias correction tested on 9 grayscale and natural image datasets

Figure 5: Outlier detection AUROC for 4 different grayscale image VAEs (columns), each tested
with the other 3 grayscale image datasets and noise. The last row shows the average AUROC across
all outlier datasets (also reported in Table 1).
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Figure 6: Same as Figure 5 but for natural image datasets.

Appendix D: Compute times and speedups

Figure 7: Compute times (top row) and speedups (bottom row) for BC using a grayscale (left) and
natural (right) image VAEs. Compute times are averaged across 10,000 test examples.

.

Appendix E: Bias correction with alternative visible distributions

We report outlier detection results for Bernoulli (Fig. 8), Categorial (Fig. 9) and truncated Gaussian
(Fig. 10) VAEs. To correct biases in the Bernoulli VAE, we compute the correction factor as discussed
in Appendix B. For Categorical and truncated Gaussian VAEs, we corrected for the bias with the
following approach: For each VAE, we computed the average probability assigned for every target
pixel value (0-255) employing all of the training (inlier) samples for that VAE. Then, for each
test sample, we computed the correction term for the negative reconstruction error as its average
value across pixels, under the Categorical/truncated Gaussian visible distribution. This procedure
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is described in detail in Algorithm 1. For all VAEs, the images were contrast stretched during both
training and testing phases.

Algorithm 1: Bias correction for the Categorical/truncated Gaussian visible distribution
Data: Training Set X = {x1,x2, ...xn} with xp of shape 32× 32× nc (no. of channels),

Encoder Parameters φ, and Decoder Parameters θ
Result: Log Correction Factor C : (v, k)→ Float for v = 0, 1, . . . 255 and k = 1, 2, . . . nc

Init: Map A : (v, k)→ EmptyList for v = 0, 1, . . . 255 and k = 1, 2, . . . nc
for xp ∈ X do

Init: Map B : (v, k)→ EmptyList for v = 0, 1, . . . 255 and k = 1, 2, . . . nc
z ∼ qφ(z|xp)
for i← 1 to 32, j ← 1 to 32, k ← 1 to nc do

Append pijkθ (xijkp |z̄) to B(xijkp , k)
end
for v ← 0 to 255, k ← 1 to nc do

Append Mean(B(v, k)) to A(v, k)
end

end
Init: Map C : (v, k)→ 0 for v = 0, 1, . . . 255 and k = 1, 2, . . . nc
for v ← 0 to 255, k ← 1 to nc do

C(v, k)← Log(Mean(A(v, k)))
end

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Bias correction improves outlier detection for the Bernoulli VAE
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Bias correction improves outlier detection for the Categorical VAE

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Bias correction improves outlier detection for the truncated Gaussian VAE

11


	Introduction
	The challenge with outlier detection using VAE likelihoods
	Debiasing VAE likelihoods
	Bias correction for pixel intensity
	Normalization of image contrasts

	Experiments
	Bias-corrected likelihoods improve outlier detection
	Comparison with state-of-the-art outlier detection methods

	Related work

