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Abstract

The Structured Variational Autoencoder (SVAE) was introduced five years
ago [Johnson et al, 2016]. It presented a modeling idea—to use probabilsitic
graphical models (PGMs) as priors on latent variables and deep neural networks
(DNNSs) to map them to observed data—as well as an inference idea—to have the
recognition network output conjugate potentials to the PGM prior rather than a
full posterior. While mathematically appealing, the SVAE proved impractical to
use or extend, as learning required implicit differentiation of a PGM inference
algorithm, and the original authors’ implementation was in pure Python with no
GPU or TPU support. Now, armed with the power of JAX [Bradbury et al., 2018]],
a software library for automatic differentiation and compilation to CPU, GPU, or
TPU targets, we revisit the SVAE. We develop a modular implementation that is
orders of magnitude faster than the original code and show examples in a variety
of different settings, including a scientific application to animal behavior modeling.
Furthermore, we extend the original model by incorporating interior potentials,
which allows for more expressive PGM priors, such as the Recurrent Switching
Linear Dynamical System (rSLDS). Our JAX implementation of the SVAE and
its extensions open up avenues for many practical applications, extensions, and
theoretical investigations.

1 Introduction

Deep neural networks (DNNs) are the main workforce of artificial intelligence nowadays, due to their
flexibility and scalability in representing complex high dimensional distributions. Another key factor
in the popularity of deep neural nets is the (unreasonable) effectiveness of generic stochastic gradient-
based optimization techniques. However, generic DNNs are hard to interpret, and quantifiably
building prior knowledge into these architectures can be more of an art than science. On the other
hand, probabilistic graphical models (PGMs) are often interpretable by design, which in turn allows
for specialized algorithms for efficient inference. Furthermore, it is easy to design these graphical
models to reflect our understanding of the underlying structure of the problem, and use conjugate
priors to quantitatively reflect our prior knowledge. However, PGMs are not applicable to many real
world problems because of their limited scalability and efficiency in performing inference in high
dimensional settings. Therefore, many methods have combined deep neural networks and PGMs
to leverage the best of both [Johnson et al.| 2016, |Archer et al., 2015, [Krishnan et al.| 2015} [Lin
et al.L 2018 e.g.]. We revisit one such method—the Structured Variational Autoencoder Johnson
et al.|[2016]—and provide a modular implementation in JAX that is easy to use and extend. In this
paper, we provide examples of different SVAE models implemented with our JAX code, as well as
an extension to the original framework that enables a broader class of PGM priors, like recurrent
switching linear dynamical systems [Linderman et al., 2017].
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2 Structured Variational Autoencoders

Structured variational autoencoders are a special case of VAEs. Let y € RY denote an observed
data point and 2 € R” be its latent representation. In an SVAE, the joint distribution factors into a
prior p(x; #) and a likelihood p(y | z; ), but rather than being a simple Gaussian, the prior is allowed
to be any PGM built of conjugate, exponential family conditional distributions with parameters 6.
The likelihood is assumed to be nonconjugate with the prior, and it is usually implemented by a deep
neural network with weights +.

Learning and inference in the SVAE are done by stochastic gradient ascent on the evidence lower
bound (ELBO),

L(},0,7) = Eq(ay,0.0)log p(z,y;0,7) —logq(z;y,0,0)] <logp(y | 0,7), (1

where ¢ are parameters of the recognition network. The key inference idea is to have the recogni-
tion network output conjugate potentials 1 (x;y, ¢) that is linear in the sufficient statistics of the
exponential family prior. Together, the prior and conjugate potentials define a surrogate model,

p(w;y,0,0) o< p(a;0) exp{(z;y,0)} - 2

The variational posterior is then implicitly defined as the solution to the surrogate variational inference
problem:

q(zy,0,0) = argergin KL(q() [| p(23 9,0, 8)) 3)
q

where () is the variational family. Since the potentials are conjugate with the PGM prior, solving
the surrogate variational inference problem often admits existing inference algorithms. For exam-
ple, when @ is the a mean-field variational family, we can perform coordinate ascent variational
inference (CAVI) to find a local optimum ¢. We can view the conjugate potential ¥ (x; y) as approxi-
mations of the log likelihood function log p(y | x) that are linear in the sufficient statistics of the prior.
For example, if the prior were a multivariate Gaussian with sufficient statistics ¢(x) = (2, zx "),
the conjugate potentials would be of the form v (z;y, ®) = (h(y, ¢),z) + (J(y,¢),zz"); ie. a
quadratic approximation to the log likelihood.

The challenge is that taking gradients of the ELBO with respect to the recognition parameters ¢
requires differentiating the implicitly defined posterior density in eq. (3). Since the SVAE was first
introduced, implicit models have become much more widely used [Duvenaud et al., [2020]], fueled in
part by better software tools like PyTorch and JAX. We developed a JAX implementation that makes
SVAE:s practically usefuﬂ we demonstrate it on a variety of test problems, and show an extension to
a model where the prior is only partially conjugate.

3 Examples

The Gaussian Poisson model First we consider a very simple toy example:
Ln ~ N(M7 U)a Yn ~ PO(Softplus(mn))

Here z,, € R is areal-valued latent variable for the n-th datapoint, and y,, € N is the count-valued
observation. We sampled 10K datapoints from this generative model and fit our model with a
fixed prior for simplicity. The SVAE converges at around 100 training iterations (figure[Ia). It is
worth noting that this simple model demonstrates an important limitation of the SVAE: the Poisson
likelihood function is not well approximated by Gaussian potentials, as shown in figure [[b] This
means that there will always be an approximation gap between the model ELBO and the true log
likelihood of the data (the red line in figure [Ta). This approximation gap motivates the use of a
more flexible class of potentials, such as mixtures of Gaussians, as one possible extension of the
framework.

Mouse behavioral segmentation with switching linear dynamical systems The switching linear
dynamical system (SLDS) is a popular probabilistic model for segmenting complex systems with
nonlinear dynamics into simple linear systems. Here we use an SLDS-SVAE to model mouse behavior
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Figure 1: The Gaussian Poisson model. (a) the training curve over 200 iterations. Note the gap
between obtained ELBO and the true data log likelihood. (b) the ELBO gap is caused by the Gaussian
potential’s inability to approximate Poisson likelihoods accurately.

videos in order to discover interpretable behavior syllables of free roaming mice Wiltschko et al.
[2015]). The probabilistic model is as follows:

z0 ~ Cat(ﬂ'o), Zt‘ztfl ~ Cat(ﬂ-zt—l)’
2o ~ Nz, 220)s @elre—1 ~ N(Az 21 + 02, 25,),

where z1.7 and x1.p are the discrete and continuous latent states respectively. We use convolution
architectures similar to the ones in [Batty et al.,|2019] for the recognition and generator networks.
We fit the model to mouse behavior videos in [Wiltschko et al.| [2015]] and visualize the learned
representations and discrete states (the “syllables” of behavior) in figures|2aland We see that the
model learns to categorize typical behaviors of free roaming mice including darting, rearing, etc.

Recurrent switching linear dynamical system One downfall of the SLDS model, as pointed out
in|Linderman et al|[[2017] is that the discrete state is fully autonomous, while in the real world many
dynamical systems change their states based on where they are in the state space. For example, a ball
bouncing inside a box will only enter the “in collision” state when it touches one of the edges of the
box. This motivates the recurrent switching linear dynamical system (rSLDS), where an additional
dependence of the discrete state transition on the continuous state is added, changing the discrete
state transition to:

zt|zt—1, w1 ~ Cat(m(zp—1,21-1)), 7(2¢, z¢) = Softmax(Wxy + 7,, + ¢)

where W, c are parameters of the affine mapping. Variational inference in this model is tricky since
the additional arrows from x;_; to z; breaks the conjugacy structure. To accommodate this, we
extend the SVAE framework by introducing interior dynamics potentials:

Ya(2e, 20—1,T4—1) = H[CijN(xtfl‘Jija hij)]ﬂ(ztzz)ﬂ(zt*1=3)7
i,J

where J;; and h;; are the natural parameters of the Gaussian potentials, and Cj; is a scaling constant,
thereby replacing non-conjugate terms with learnable conjugate terms. Similarly, in the prior
parameter updates, we use gradient descent to update the softmax weights W and c since they are
non-conjugate. We use the NASCAR® toy dataset |Linderman et al.|[2017]] as a proof of concept,
where the discrete transitions are entirely dependent on the continuous states. The SVAE model is
successful in inferring the 2-dimensional latent dynamics (up to a linear transformation) as well as
the prior dynamics from 5-dimensional observations, as shown in figure[2c| [2d] Although the learned
prior dynamics are not perfect, the model captures the 4 discrete regimes reasonably well. More work
remains to be done to scale this model to realistic datasets with high-dimensional observations.

4 Conclusion

The original SVAE is known by many to be hard to implement and train. With this JAX implemen-
tation of the framework, we hope to eliminate some of the obstacles to training and using SVAEs,
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Figure 2: Examples with switching linear dynamical system priors. (a) the 5-dimensional latent
representation of mouse behavior inferred by the model. The colored regions represent discrete
states. (b) two examples of the discrete states (behavior syllables) learned by the model. (c) the latent
dynamics from which the data is generated. (d) the SVAE model is able to recover the dynamics and
learn the discrete states reasonably well, without any knowledge of the prior parameters.

and make the model accessible to a wider audience. We hope that this work can inspire further
investigations on how to train hybrid neural network and probabilistic models more efficiently and
effectively, making viable a class of powerful models that gets the best of both worlds.
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