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Abstract

Bayesian methods feature useful properties for solving inverse problems, such as
tomographic reconstruction. The prior distribution introduces regularization, which
helps solving the ill-posed problem and reduces overfitting. In practice, this often
results in a suboptimal posterior temperature and the full potential of the Bayesian
approach is not realized. In this paper, we optimize both the parameters of the
prior distribution and the posterior temperature using Bayesian optimization. Well-
tempered posteriors lead to better predictive performance and improved uncertainty
calibration, which we demonstrate for the task of sparse-view CT reconstruction.
Our source code is publicly available at github.com/Cardio-AI/mfvi-dip-mia.

1 Introduction

Reconstructing a tomography from a finite number of X-ray projections requires solving an inverse
problem. The unknown tomography x can only be observed through projections y = F [x], affected
by the forward Radon transform F , which is not directly invertible. The reconstruction can be found
by minimization of the ill-posed objective x̂ = arg min {L(y,F [x̂]) + λR(x̂)}, with similarity
measure L and regularizationR, weighted by λ [1]. Common regularization is manually engineered,
such as penalization of spatial derivatives, or implicitly learned from a large data set. However,
obtaining ground truth pairs {x,y} is impossible in computed tomography (CT), especially in sparse-
view CT, where only a limited number of projections are obtained to reduce radiation exposure.

Deep image prior (DIP) has shown promising results in solving inverse problems by optimizing
a randomly-initialized convolutional network as neural representation of the reconstruction [2, 3].
To overcome the overfitting behavior of DIP, different Bayesian approaches have been proposed
[4, 5]. In Bayesian deep learning, a prior distribution p(w |α) is placed over the weights w of a
neural network, governed by a hyperparameter α. After observing the data D, we are interested in
the posterior p(w | D, α) = p(D |w, α)p(w |α)/p(D). However, this distribution is not tractable
in general as the normalizing factor involves marginalization of the model likelihood over the prior
p(D) =

∫
p(D |w, α)p(w |α) dw. A common way to approximate the posterior is variational

inference (VI), which uses optimization to find the member qφ(w) of a family of distributions that
is close to the exact posterior, defined by the variational parameters φ. qφ(w) is optimized w.r.t.
φ, such that the Kullback-Leibler divergence is minimized with regard to the true posterior [6]. A
practical implementations of VI is Bayes by backprop, where a fully factorized Gaussian distribution
wij ∼ N (µij , σ

2
ij) is used as variational distribution qφ(w), also known as mean-field distribution,

which treats the mean and variance of each weight as learnable parameters φij = {µij , σ2
ij} [7].
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Cold Posteriors Cold posteriors have been reported to perform better in practice in the context
of Bayesian deep learning [8]. In order to bring the variational distribution qφ(w) close to the true
posterior, a lower bound on the log-evidence (ELBO) is derived and maximized. Graves [9] already
suggested to reweight the complexity term in the ELBO using a factor λ to balance both terms in
case of discrepancy between number of weights and training samples:

ELBO(qφ(w)) = Ew∼q[log p(D |w)]− λKL[qφ(w) ‖ p(w)] . (1)
It is common for Bayesian deep learning researchers to employ values of λ < 1 to achieve better
predictive performance [7]. While their main motivation was to qualitatively balance out discrepancies
between number of model parameter and dataset size, the reweighting has recently been studied
in more detail and described as the “cold posterior” effect [10]. Wenzel et al. [8] derived the
tempered Bayesian posterior p(w | D) ∝ exp(−U(w)/T ) with posterior energy function U(w) =
− log p(D |w) − log p(w) and have shown empirically that cold posteriors with T < 1 perform
considerably better. The authors also recover Eq. (1) and show that introducing λ into the ELBO is
equivalent to a partially tempered posterior, where only the likelihood term is scaled.

In this paper, we will not argue whether cold posteriors invalidate Bayesian principles, as there
is disagreement among researchers [8, 10, 11], but use it in a directed way to increase predictive
performance and uncertainty calibration of unsupervised sparse-view CT reconstruction with deep
image prior. This workshop paper is based on our recent journal submission [12] and extends it by
additional experiments on CIFAR-10/100 (see Appendix C).

2 Temperature-scaled Posterior

The ELBO for a fully temperature-scaled posterior in VI is given by (derivation in Appendix B):
ELBOT (qφ(w)) = −Ew

[
log qφ(w)− 1

T log p(w)
]

+ Ew
[
1
T log p(D |w)

]
(2)

= −KL
[
qφ(w) ‖ p(w)

1/T
]

+ Ew
[
1
T log p(D |w)

]
. (3)

The KL contains the scaled prior pT (w) ∝ p(w)1/T , which will have the same mean, but different
variance as the unscaled prior. In case of a Gaussian prior p(w) ∝ exp(−‖w‖2/2σ2), this is
equivalent to a scaled prior variance p(w)1/T ∝ exp(−‖w‖2/2σ2

T ) with σT =
√
Tσ [13]. Therefore,

we set pT (w) = N (0, σ
2

T I
2), which results in the following minimization criterion

arg min
φ

T ·KL [qφ(w) ‖ pT (w |T )]− Ew [log p(D |w)] , (4)

which, in contrast to Eq. (1) and Wenzel et al. [8], optimizes the fully temperature-scaled ELBOT .

3 Posterior Temperature Optimization

Instead of manually selecting the optimal posterior temperature using heuristics or inefficient grid
search, we employ Bayesian optimization (BO) to jointly find the posterior temperature T and prior
scale σ. BO allows us to optimize functions that are expensive to evaluate, e.g., the training of a deep
network [14]. It uses a computationally inexpensive surrogate to retrieve a distribution over functions.

We apply optimization of the posterior temperature to maximize the peak signal-to-noise ratio (PSNR)
between the sparse-view reconstruction x̂ and the dense-view image x as a function of T and σ

max
T∈T ,σ∈S

f(T, σ) = max
T∈T ,σ∈S

PSNR(x̂(T, σ),x) (5)

using a Gaussian process (GP) as surrogate f ∼ GP . In each step of the BO, we evaluate our ob-
jective function f at the current candidates T ∗ and σ∗ to increase the set of observations DBO

and update the posterior of the surrogate model. Next, we maximize an acquisition function
a(T, σ;µGP , σ2

GP) using the current GP posterior mean µGP and variance σ2
GP . Its maximizing

arguments T ∗, σ∗ ← arg max a(T, σ;µGP , σ2
GP) are used as candidates for the next iteration [15].

We choose the commonly accepted expected improvement (EI) as acquisition function
aEI(T, σ;µGP , σ

2
GP) = E

[
max(y − f∗), 0) | y ∼ N (µGP(T, σ), σ2

GP(T, σ))
]
, (6)

where f∗ = f(Tbest, σbest) is the minimal value of the objective function observed so far. Eq. (6)
can be solved analytically as shown in [16]. We utilize automatic differentiation from modern deep
learning frameworks to optimize the acquisition function to get the next candidates T ∗ and σ∗ [17].
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Figure 1: Posterior temperature optimization for sparse-view CT reconstruction: (Top) Dense-view
ground truth and sparse-view test reconstruction from FBP, non-Bayesian DIP and Bayesian DIP at
optimal posterior temperature T ∗ and prior scale σ∗. (Bottom) Predictive error and uncertainty at
{T ∗, σ∗}, mean of the GP from BO, and PSNR for different methods and values of {T, σ}.

4 Experiments

To evaluate posterior temperature optimization in Bayesian inversion, we simulate sparse-view CT
by computing only 45 projections from dense-view lung CTs of COVID-19 patients1 using the
forward Radon transform. We use mean-field VI (MFVI) as Bayesian approach to DIP for solving
the inverse task (see Fig. 2 in the appendix). The Bayesian network is used as parameterization of the
reconstruction x̂ and its variational parameters are optimized by minimizing Eq. (4) using the squared
error ‖F [x̂]− y‖2 as likelihood. BO is used to find optimal values for {T, σ} as described below.

Finding the Optimal Posterior Temperature The Gaussian process regressor from § 3 is im-
plemented in GPyTorch [17] using a constant mean function with prior N (15, 42), a scaled radial
basis function kernel as covariance function and a prior length-scale ` = 0.3. The surrogate model is
trained on observations {(log Ti, log σi),PSNR(x̂Ti,σi

,x)} to impose a non-negativity constraint
on T and σ. A Gaussian likelihood with a homoscedastic noise model with prior Γ(0.1, 100) is used.
We limit the search space to T ∈ [1e−12, 1e−2] and σ ∈ [1e−10, 1] and initialize the BO with four
candidate pairs with T ∈ {1e−7, 1e−4} and σ ∈ {1e−6, 1e−1}. If the acquisition function from
Eq. (6) has multiple local maxima, we select the best four candidates for the next iteration.

Results The results for a test image are summarized in Fig. 1. At optimal temperature T ∗, the
Bayesian reconstruction outperforms filtered back-projection (FBP) and non-Bayesian DIP by means
of PSNR. From the GP mean, we see that the posterior temperature has a considerable effect on the
reconstruction, with T ∗ � 1. The effect of the prior scale is less prominent, with optimal value
σ∗ ≈ 1e−2. We observe similar findings for classification experiments on CIFAR-10/100 with
Bayesian ResNets (see Appendix C). The uncertainty calibration is improved at optimal temperature.

5 Conclusion

We optimized the ELBO for a fully tempered posterior to exploit the cold posterior effect in Bayesian
deep learning. For ill-posed inverse problems, the optimized posterior temperature introduces the
right amount of regularization to allow enough flexibility but to avoid overfitting. This can be used in
many medical applications such as CT reconstruction, registration, denoising, or artifact removal.

1We use publicly available data from https://coronacases.org
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A Conceptual Overview
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Figure 2: Conceptual overview. A randomly-initialized MFVI autoencoder network fed with uniform
noise outputs a CT. The image reconstruction is performed iteratively by applying the forward Radon
transform F and minimizing the fully tempered negative ELBO w.r.t. the variational parameters
φ = {µ,σ} using gradient descent. The posterior temperature T and prior standard deviation σ are
found using Bayesian optimization.

B Derivation of Fully Tempered ELBO

In the following, the ELBO for a fully temperature-scaled Bayesian posterior in variational inference
is derived. Let pT (w | D) be the fully tempered posterior [8]:

KL [qφ(w) ‖ pT (w | D)] (7)
= Ew [log qφ(w)− log pT (w | D)] (8)

= Ew
[
log qφ(w)− log

(p(w | D)p(w))1/T∫
(p(w′ | D)p(w′))1/T dw′

]
(9)

= Ew
[
log qφ(w)− log(p(w | D)p(w))1/T

]
+ log

∫
(p(w | D)p(w))1/T dw︸ ︷︷ ︸

const.w.r.t.w, =:logET

(10)

= Ew
[
log qφ(w)− 1

T log p(w)
]
− Ew

[
1
T log p(D |w)

]︸ ︷︷ ︸
=:ELBOT (qφ(w))

+ logET (11)

⇒ logET = KL [qφ(w) ‖ pT (w | D)] + ELBOT (qφ(w)) (12)

As the tempered evidence ET is constant, maximizing ELBOT minimizes the KL, thus bringing the
variational distribution qφ(w) closer to the fully tempered posterior pT (w | D).

C CIFAR-10/100 Experiments
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Figure 3: We additionally perform classification experiments on CIFAR-10 (ResNet-34) and CIFAR-
100 (ResNet-50). The figures show estimated accuracy and uncertainty calibration error (UCE) [18]
landscapes. Green dots denote observed points during BO. As for CT reconstruction, the posterior
temperature T has a considerable effect on both the accuracy and calibration. On CIFAR-100, the
effect of the prior scale σ on the calibration can not be neglected. We measure uncertainty as the
entropy of the softmax vector after Monte Carlo integrationH

[
1/N

∑N
i=1 p(y |x,wi)

]
.
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D BO Steps
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Figure 4: Posterior temperature optimization for CT reconstruction: GP mean, confidence (2 standard
deviations) and expected improvement acquisition function after BO iteration i ∈ {0, 5, 7, 11}. Green
dots denote observed points and green crosses show candidates for the next BO iteration. Note that
per BO step, up to 4 candidates are evaluated in parallel.

E Implementation Details

• Code for training pipeline and evaluation is available at github.com/Cardio-AI/mfvi-dip-mia.
• For CT reconstruction, we use the same architecture as described by Lempitsky et al. [2]

and optimize the network for 1e5 iterations.
• The final CT is sampled from the probabilistic neural representation using Monte Carlo

integration x̂ = 1
N

∑N
i=1 x̂i, where x̂i is a sample from the posterior predictive p(x |wi,y).

• We estimate reconstruction uncertainty using the predictive variance from Monte Carlo
samples Σ̂ = 1

N

∑N
i=1(x̂i − 1

N

∑N
i=1 x̂i)

2.
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