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Abstract

A new bimodal generative model is proposed for generating conditional and joint
samples, accompanied with a training method with learning a succinct bottleneck
representation. The proposed model, dubbed as the variational Wyner model, is de-
signed based on two classical problems in network information theory—distributed
simulation and channel synthesis—in which Wyner’s common information arises
as the fundamental limit on the succinctness of the common representation. The
model is trained by minimizing the symmetric Kullback–Leibler divergence be-
tween variational and model distributions with regularization terms for common
information, reconstruction consistency, and latent space matching terms, which is
carried out via an adversarial density ratio estimation technique.

1 Introduction

This paper studies how to learn a good common representation Z of a pair of an arbitrarily correlated
random vectors (X,Y) from data, which is often referred to as the cross-domain disentanglement
problem [4] in the representation learning literature [9]. This is a fundamental problem in machine
learning with numerous applications including joint and conditional generative tasks (also known
as domain transfer or image-to-image translation) and cross-domain retrieval tasks [25, 4, 10, 12,
5, 24, 15]. The main difficulty of this problem lies with the lack of a notion of a “good” common
representation Z that captures the commonality of (X,Y). While there have been several information
theoretic proposals on learning a good bottleneck representation including the famous information
bottleneck principle [20] and a recent proposal [6], to name a few, there is no definitive answer in the
literature. This work proposes a new information-theoretic representation learning principle with a
recipe for training its deep-generative-model manifestation.

To motivate our perspective, consider the following game between Alice (“encoder”) and Bob
(“decoder”) that captures the problem setting of conditional generation. Given an image of a child’s
photo X, Alice is asked to encode X and send its description Z to Bob who draws a portrait Y of
how the child will grow up based on it. In this game, we wish Bob to draw nice adulthood portraits,
as various as possible, given a child’s photo. In this cooperative game, Alice needs to help Bob in
the process by providing a good description Z of the child’s photo X. Intuitively, seeking the most
succinct description Z that contains information common in X and Y may be beneficial in their
guessing process, since Alice need not describe any extra information beyond that is contained in X
and Bob is not required to filter out any redundant information from Z for generating Y.

P. Cuff (2013) formulated this game of conditional generation as the channel synthesis problem in
network information theory and characterized the minimum description rate for such conditional
generation by Wyner’s common information [22, 3] denoted by J(X;Y) and defined as the optimal
value of the optimization problem

minimize I(X,Y;Z) subject to X↔ Z↔ Y. (1)

Submitted to the 6th Bayesian Deep Learning (BDL) Workshop at 35th Conference on Neural Information
Processing Systems (NeurIPS 2021), Sydney, Australia.



Here, I(X,Y;Z) is the mutual information between (X,Y) and Z and X↔ Z↔ Y denotes that
X,Z,Y form a Markov chain, or equivalently, X is independent of Y given Z [1]. Furthermore,
notably, the same quantity J(X;Y) arises as the fundamental limit of the distributed simulation of
correlated sources studied originally by A. Wyner (1975) in which two distributed agents wish to
simulate a target distribution q(x,y) (i.e., joint generation of (X,Y)) based on the least possible
amount of shared common randomness. In this sense, the joint distribution q(x,y) and the conditional
distributions q(y|x), q(x|y) have the same common information structure characterized by the
optimization problem (1).

2 The Proposed Method

(1) The variational Wyner model Thus motivated, we propose a probabilistic model that finds a
common representation of the joint and conditional distributions and its training objectives based
on the Wyner’s optimization problem (1). For modeling the joint distribution q(x,y), we consider
the latent variable model pθ(z)pθ(x|z)pθ(y|z), where Z ∼ pθ(z) signifies the common randomness
fed into the probabilistic decoders pθ(x|z) and pθ(y|z). We further parameterize the probabilistic
decoders pθ(x|z) and pθ(y|z) by (deterministic) functions xθ(z,u) and yθ(z,v) with independent
local randomness U ∼ pθ(u) and V ∼ pθ(v). To model the conditional distribution q(y|x),
we consider the bottleneck conditional model qθ(z|x)pθ(y|z) that follows X ↔ Z ↔ Y; note
that the decoder pθ(y|z) is shared by the joint model. The other direction for modeling q(x|y) is
symmetric. Lastly, we introduce three additional variational encoders: (1) a joint encoder qφ(z|x,y)
that plays a key role of an anchor for tying the joint and conditional models, and (2) two local
encoders qφ(u|z,x) and qφ(v|z,y), which can be viewed as style extractors for each modality x
and y. Note that the local encoders qφ(u|z,x) and qφ(v|z,y) are designed to satisfy the conditional
independence structure qφ(z,u,v|x,y) = qφ(z|x,y)qφ(u|z,x)qφ(v|z,y) implied by the joint
model pθ(z)pθ(u)pθ(v)xθ(z,u)yθ(z,v), differing from existing works, e.g., [4, 6, 21].

Table 1: Induced distributions and their shorthand notation.

Type Distribution over (x,y, z,u,v) Notation

joint (→ xy) pθ(z)pθ(u)pθ(v)xθ(z,u)yθ(z,v) p→xy

cond. (x→ y) q(x)qθ(z|x)pθ(v)yθ(z,v)qφ(u|z,x) px→y

cond. (y→ x) q(y)qθ(z|y)pθ(u)xθ(z,u)qφ(v|z,y) py→x

variational (xy→) q(x,y)qφ(z|x,y)qφ(u|z,x)qφ(v|z,y) qxy→

We call the entire model with all the
components introduced above as the
(bimodal) variational Wyner model.
See Table 1 for a summary of the
four distributions over (x,y, z,u,v)
defined under the variational Wyner
model and their shorthand notations.

(2) Training objectives The main components of our training objectives are derived
from the Wyner’s optimization problem (1). For each model distribution pmodel ∈
{p→xy, px→y, py→x}, we can convert (1) with variational relaxation to an unconstrained La-
grangian form minimize Dxyzuv

model + λCImodelImodel. Here we define the distribution matching
term Dxyzuv

model := Dsym(qxy→(x,y, z,u,v), pmodel(x,y, z,u,v)) for the symmetric KL diver-
gence Dsym(p(s), q(s)) := DKL(p(s) ‖ q(s)) + DKL(q(s) ‖ p(s)) [7] following Pu et al. [16]
and define the common information (CI) regularization term Imodel := Imodel(X,Y;Z) :=
DKL(pmodel(x,y, z) ‖ pmodel(x,y)pmodel(z)). On top of the base objectives, we further propose
to add several terms that can guide training, including (1) reconstruction consistency terms (joint
Rxy→xy (data), Rzuv→zuv (latent); conditional Rx→y,Ry→x; marginal Rx→x,Ry→y, all definitions
omitted), (2) latent matching terms (Mx→y := Dsym(px→y(z), pθ(z)) and My→x) that enforce
the joint and conditional models to share the same latent space, and (3) the cross-matching term
Dxyzuv

x↔y := Dsym(px→y(x,y, z,u,v), py→x(x,y, z,u,v)) that may improve the quality of representa-
tion for cross-domain tasks. When training, we optimize a weighted combination of the proposed
objectives, where the weights are hyperparameters to be tuned.

(3) Approximate training with adversarial density ratio estimation To minimize the proposed
objective without explicitly assuming densities of the model distributions, we adopt the adversarial
density ratio estimation technique proposed by [16]. The idea is to estimate the density ratio p(s)/q(s)
by a solution r(s) of the following variational characterization of the Jensen–Shannon divergence
DJS(p(s), q(s)) = maxr(s)

{
Ep(s)[log σ(log r(s))] + Eq(s)[log σ(− log r(s))]

}
, since the maximum

is attained if and only if r∗(s) ≡ p(s)/q(s). Here, σ(x) = 1/(1+ e−x) denotes the sigmoid function.
As in a typical GAN training procedure, we alternate between training the variational Wyner model
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components and training the discriminators batch-by-batch, freezing one while training the other.
When training the variational Wyner model, we freeze the density ratio estimators and estimate
Dsym(p(s), q(s)) ≈ Ep(s)[log r(s)] − Eq(s)[log r(s)] assuming that r(s) ≈ p(s)/q(s). A mutual
information Imodel(X,Y;Z) term can be handled by the same technique. We use the tilde notation to
denote a corresponding discriminator objective of a generator objective requiring a discriminator,
e.g., e.g., D̃xyzuv

→xy for Dxyzuv
→xy . Lastly, our density ratio estimation network has several important design

choices, including (1) a shared joint data feature map with (2) deterministic parameterization of
encoders using the instance noise trick [19], for computational efficiency and stable training.

3 Experiment

(1) MNIST–SVHN add-one dataset To validate the efficacy of the proposed approach and illus-
trate the effect of information decomposition in our model, we considered a synthetic image-image
pair dataset constructed from MNIST [8] and SVHN [14] datasets, similar to Shi et al. [18] as a toy
example. Here, we randomly picked an MNIST image Xi of label `i ∈ {0, . . . , 9} and paired with
m = 4 randomly picked SVHN images of label (`i + 1) mod 10; we call the resulting dataset a
MNIST-SVHN add-one dataset. Note that the images are paired only through their labels, and clearly
the common information structure we seek is the underlying label of a pair.

We trained the variational Wyner model with all joint and conditional models, with the objective
Dxyzuv
→xy +Dxyzuv

x→y +Dxyzuv
y→x +λCI(I→xy+Ix→y+Iy→x)+Rxy→x+Rxy→y+Rx→y+Ry→x for training

the variational Wyner model and D̃xyzuv
→xy + D̃xyzuv

x→y + D̃xyzuv
y→x + Ĩ→xy + Ĩx→y + Ĩy→x for training the

discriminator with the dimension of the latent space (Z,U,V) = (16, 8, 8). We tried four different
CI regularization weight λCI ∈ {0, 0.1, 0.5, 1} to demonstrate the effect of the regularization for 50
epochs and the averaged `1 distance over dimensions was used for the reconstruction loss functions.

In Figure 1, we present a few joint and conditional samples generated from the trained model with
λCI = 1 at the end of training. In the figure, z is shared across the row, and u and/or v are shared
across the column. In particular, the top row of the last panel (c) shows the reference samples whose
style are transferred downward along each column. The samples clearly indicate that the learned
model successfully disentangles the common and local representations. For example, in Figure 1(b),
in the first three rows, regardless of the specifics of the input MNIST images independent to their
label 0, the generated samples coherently present the correct label 1 as well as sharing the same style
fixed along each column. Figure 1(c) illustrates that using the local variational encoder qφ(u|z,x)
we can generate conditional samples given a fixed style extracted from a reference image.

(a) Joint generation (b) Conditional generation (c) Conditional generation with style transfer

Figure 1: MNIST–SVHN add-one samples from the variational Wyner model.
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Figure 2: A summary of numerical
evaluations for MNIST–SVHN add-
one dataset.

In order to numerically examine the effect of CI regularization
in the model, we computed two metrics (1) custom Frechet
distance (FD) scores and (2) classification accuracy of gener-
ated samples; the details for computing these metrics will be
reported in a full paper. The results are summarized in Fig-
ure 2. The dashed lines are the evaluated metrics for a baseline
model whose discriminator was trained only with distribution
matching terms, i.e., without any CI related term. As shown
in the figure, increasing λCI improves the quality of generated
samples in terms of the smaller FD scores and improved the
digit accuracy. Note that the high digit accuracy with large FD
score under no or small CI regularization indicates that such
models generate coherent samples yet with less variation.
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(2) Zero-shot sketch based image retrieval To demonstrate the utility of learned representations
beyond generative modeling, we consider the zero-shot sketch based image retrieval (ZS-SBIR) task
proposed by Yelamarthi et al. [23], where the goal is to construct a good retrieval model that retrieves
relevant photos from a sketch, with a training set of no overlapping classes with a test set. For this
experiment, we borrowed the the same setting from Hwang et al. [6]. We trained and evaluated our
model with the Sketchy Extended dataset [17, 13], which consists of total 75,479 sketches (X) and
73,002 photos (Y) from 125 different classes. To perform the retrieval task after training, we first
find and keep the common representations {zi} of test photos {yi} using the model encoder qθ(z|y).
Then, given a query sketch xo, we find the common representation zo ∼ qθ(z|xo) to retrieve the
K-nearest neighbors of zo from {zi} with respect to the cosine similarity.

For this task, we trained our model only with conditional model components, as we only need
to learn good model encoders qθ(z|x) and qθ(z|y). Specifically, we trained with the objective
Dxyzuv

x→y +Dxyzuv
y→x +Dxyzuv

x↔y +λCI(Ix→y+Iy→x)+λ
rec(Rx→y+Ry→x+Rx→x+Ry→y) for training the

variational Wyner model and D̃xyzuv
→xy +D̃xyzuv

x→y +D̃xyzuv
y→x +Ĩx→y+Ĩy→x for training the discriminator. We

used the `22-distance averaged over dimensions for the reconstruction loss functions. The dimension
of the latent space (Z,U,V) was (64, 64, 64).

Table 2: Evaluation of the ZS-SBIR task with
the Sketchy Extended dataset.

Models P@100 mAP

LCALE [11] 0.583 0.476
IIAE [6] 0.659 0.573

Variational Wyner 0.703 0.629

As a quantitative evaluation, we computed the Pre-
cision@100 (P@100) and mean average precision
(mAP) scores for the test split; see Table 2. The
reported scores for the adversarially learned Wyner
model was obtained with λCI = 0.1 and λrec = 8.
We outperform the scores reported by Hwang et al.
[6], who already demonstrated that their scores sig-
nificantly improved upon the existing work tailored
to extra information; for example, LCALE [11] in-
corporated word embedding during training. The
improvement corroborates the power of our approach in learning disentangled representations. For
an ablation study, we trained our model with degenerate local encoders qφ(u|x) and qφ(u|y), i.e.,
without conditioning with z, and achieved suboptimal scores (0.670,0.591); it justifies the design of
our local encoders qφ(u|z,x) and qφ(v|z,y).
Some examples of retrieved photos are show in Figure 3. Note that most of the falsely retrieved
photos share visual similarity with the query sketches.

XX XX Xbell

XX OO Xracket

jack-o-lantern OO OO O

bear OO OO O

Figure 3: A few examples of retrieved samples from the Sketchy Extended dataset. For each query
sketch, the top-5 retrieved images are shown, where the top-1 is in the leftmost. The O/X’s indicate
whether the retrievals belong to the same class of the query.
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